
Non-oscillatory interpolation for the
Semi-Lagrangian scheme

Tomos Wyn Roberts

Abstract

In this dissertation we are concerned with the study of various interpolation
methods for use with the semi-lagrangian scheme. In particular we are inter-
ested in the limited form of the divided di�erence interpolation method as
suggested by M.Berzins [1], because of its parallels with ENO type numerical
schemes in reducing the oscillations in a solution.

It is found that this new interpolation compares favourably with standard
polynomial interpolation when approximating Runge’s function on a stan-
dard mesh. Moving on to semi-lagrangian schemes we see how the new
divided di�erence interpolation method o�ers no improvement over existing
methods when modelling a square wave with passive advection in 1-D.

In the �nal chapter we examine two methods of departure point calculation
for the semi-lagrangian scheme. When modelling a non-linear equation with
a smooth initial condition we see that Berzins’ interpolation performs rather
poorly if used in conjunction with these methods and the semi-lagrangian
scheme. If we change the initial condition for a function that has disconti-
nuities we see that it performs rather better.

Finally we provide a summary and o�er some suggestions for further work.

Acknowledgements

Many thanks to my supervisor Mike Baines for all his patience and help
along the way. Thanks also to Amos Lawless for sharing his knowledge on
semi-lagrangian schemes. I would also like to thank NERC for their �nancial
support while completing my masters.

3

4 Introduction

Declaration

I con�rm that this is my own work and the use of all material from other
sources has been properly and fully acknowledged.

Signed

Contents

Abstract 3

1 Introduction 7

1.1 The Semi-Lagrangian method 7

1.1.1 1-D Advection Equation 8

2 Interpolation Methods 11

2.1 Linear Interpolation . 11

2.2 Polynomial Interpolation . 12

2.3 Piecewise Linear Interpolation 14

2.4 Cubic Hermite Interpolation 15

2.5 Shape-Preserving Piecewise Cubic (pchip) 16

2.6 Divided Di�erence Polynomial Interpolation 18

2.6.1 Limited Form of the Divided Di�erence Interpolating
Polynomial . 20

3 Results 23

3.1 Results for Runge’s function 23

3.1.1 Runge’s function with polynomial interpolation 23

3.1.2 Runge’s function with standard divided di�erence in-
terpolation . 24

5

6 CONTENTS

3.1.3 Runge’s function with the limited form of divided dif-
ference interpolation 26

3.2 Results for the Semi-Lagrangian scheme 27

4 A non-linear equation 33

4.1 The inviscid form of Burgers’ equation 33

4.1.1 Exact Solution . 33

4.1.2 The semi-lagrangian scheme with the inviscid form of
Burgers’ equation . 35

4.1.3 Results using the midpoint method 36

4.1.4 The Shu-Osher Runge-Kutta method 37

4.1.5 Changing the initial condition 39

Bibliography 45

Chapter 1

Introduction

In this dissertation we compare di�erent interpolation methods for use with
the semi-lagrangian scheme, a type of numerical advection scheme used ex-
tensively in weather forecasting. In particular we look for an interpolation
method that will successfully reduce oscillations in our solution. We are
mainly concerned with a certain interpolation method put forward by Berzins
[1] and how it behaves in relation to other well-known interpolation schemes
when modelling simple advection problems.

1.1 The Semi-Lagrangian method

8 CHAPTER 1. INTRODUCTION

schemes are stable for large timesteps, but the particles may spread out over
a large area, or become ‘tangled’ in a small area, making it di�cult to esti-
mate gradients etc. which results in a less accurate model.

Semi-Lagrangian schemes are a combination of the above schemes, where
we try to take the best properties from the two. We keep the �xed com-
putational grid from the Eulerian frame of reference schemes but still have
stability for large timesteps, as for Lagrangian schemes. The basic principle
involves using a di�erent set of particles for each timestep, and using values
at the gridpoints from the previous timestep to approximate the gridpoint
values for each new timestep.

We can use the semi-lagrangian scheme to solve a variety of advection equa-
tions.

1.1.1 1-D Advection Equation

The 1-D advection equation with constant velocity a is given by

@u

@t
+ a

@u

@x
= 0 with u(0) = u0 (1.1)(0)12.425h

1.1. THE SEMI-LAGRANGIAN METHOD 9

Figure 1.1: Diagram showing a brief outline of the semi-lagrangian scheme.

Since u is constant along the characteristic, the solution u(xa; tn+1) will be
the same as u(xd; tn). So all we need to solve the equation (1.1) at x = xa is
the value of u at x = xd.

If u(xd; tn) happens to lie on a gridpoint, then since we know the solution
at the gridpoints at t = tn then we have our answer to u(xa; tn+1), as it is
simply equal to u(xd; tn).

If u(xd; tn) does not lie on a gridpoint (as is mostly the case) we must estimate
its value by using the values that we already know.
Thus we interpolate the value of u at x = xd at time tn by using the values
of u at neighbouring gridpoints. The better our interpolation method, the
more accurate our solution will be to the advection equation.
This then motivates us to study di�erent types of interpolation methods to

10 CHAPTER 1. INTRODUCTION

see which one can give us the best results for this scheme.

In chapter two we look various types of well known interpolation methods and
introduce an interpolation scheme suggested by Berzins [1]. In chapter three
we compare results for the various interpolation methods when approximat-
ing a function on a standard mesh and also when modelling a 1-D advection
problem with the semi-lagrangian scheme. Chapter four will be concerned
with the modelling of a non-linear equation using the semi-lagrangian scheme
along with various interpolation methods. We introduce two di�erent meth-
ods for departure point calculation, the midpoint method and the Shu-Osher
Runge-Kutta method. We �nish with a summary of the work undertaken.

Chapter 2

Interpolation Methods

Interpolation is a process where given a set of function values at unique data
points, we estimate the values of the function at a new set of data points.
The new data points must be within the range of the original set.

2.1 Linear Interpolation

One of the simplest methods of interpolating a given data set is by linear
interpolation. Given two points in the x� y plane, (x1; y1) and (x2; y2), with
x1 6= x2 then we can form a �rst order polynomial (a straight line) between
the two points. We call this polynomial the interpolant. Our approximation
to the function at any intervening point (x; y) is then given by

y = y1 + (x� x1)
(y2 � y1)

(x2 � x1)

For example if we know that a function has values of 1 and 6 at x = 0; 2 then
our linear interpolation estimation to the value of the function at x = 1 is

y = 1 + (1� 0)
(6� 1)

(2� 0)
= 3:5:

The disadvantages of linear interpolation are that it is not very accurate,
and we cannot di�erentiate the interpolant at the data points. Nevertheless
it is easy to use and can provide a quick solution to a problem.

11

12 CHAPTER 2. INTERPOLATION METHODS

Figure 2.1: Linear interpolation between the points (0; 1) and (2; 6)

2.2 Polynomial Interpolation

We can extend linear interpolation to more than two data points. Given a
set of n data points where function values are de�ned, (xk; yk) k = 1; : : : ; n,
there exists a unique polynomial, P (x) (again called the interpolant), of order
less than n that passes exactly through each point, i.e.

P (x) = yk; k = 1; : : : n (2.1)

At any point (x; y) that is within the range of the original data points P (x)
is given by the Lagrangian interpolating polynomial

P (x) =

�
x� x2

x1 � x2

��
x� x3

x1 � x3

�
� : : :�

�
x� xn
x1 � xn

�
� y1

+

�
x� x1

x2 � x1

��
x� x3

x2 � x3

�
� : : :�

�
x� xn
x2 � xn

�
� y2 + : : :

: : : +

�
x� x1

xn � x1

��
x� x2

xn � x2

�
� : : :�

�
x� xn−1

xn � xn−1

�
� yn

or

P (x) =
X
k

 Y
j 6=k

x� xj
xk � xj

!
yk:

2.2. POLYNOMIAL INTERPOLATION 13

Figure 2.2: Polynomial interpolation using the data set x = (0; 1; 2; 3); y =
(6;�11;�8; 5)

As an example consider the following data set:

x = (0; 1; 2; 3); y = (6;�11;�8; 5)

Using these points the interpolating polynomial is given by

P (x) =
(x� 1)(x� 2)(x� 3)

(�6)
(6) +

x(x� 2)(x� 3)

(2)
(�11)

+
x(x� 1)(x� 3)

(�2)
(�8) +

x(x� 1)(x� 2)

(6)
(5)

or, written in power form (see below)

P (x) = �5

3
x3 + 15x2 � 91

3
x+ 6

The power form of an n� 1th degree polynomial takes the form

P (x) = anx
n−1 + an−1x

n−2 + an−2x
n−3 + : : :+ a2x+ a1

Substituting this into (2.1) we get a system of simultaneous linear equations,
which we can write in matrix form as26664

xn−1
1 xn−2

1 : : : x1 1
xn−1

2 xn−2
2 : : : x2 1

...
...

...
...

xn−1
n xn−2

n : : : xn 1

37775
26664
a1

a2
...
an

37775 =

26664
y1

y2
...
yn

37775

14 CHAPTER 2. INTERPOLATION METHODS

The matrix on the left is known as the Vandermonde Matrix. This matrix
may be very badly conditioned leading to very large errors when we try to
solve the above system using standard methods such as Gaussian elimination.
We might use polynomial interpolation to solve a problem given a handful
of evenly spaced data points, but we will experience di�culties if we try to
use it as a general method.

2.3 Piecewise Linear Interpolation

Piecewise linear interpolation is an extension of linear interpolation to n
points, where n > 2. Given a data set (xk; yk) k = 1; : : : ; n we perform linear
interpolation between each point within the set. To interpolate the value of
y at any intervening point x, we must �rstly locate it within our data set,
i.e. �nd k where

xk � x < xk+1:

k is referred to as the interval index. We then proceed to �nd the distance s
from x to the data point directly to the left of it

s = x� xk

and then the �rst divided di�erence

�k =
yk+1 � yk
xk+1 � xk

Note that s and �k are unique to every interval within the data set. They
are thus referred to as local variables

Once these three quantities are known, the interpolating value at x is given
by

P (x) = yk + (x� xk)
yk+1 � yk
xk+1 � xk

= yk + s�k

which gives a straight line that82nua

xk; yk

)

2.4. CUBIC HERMITE INTERPOLATION 15

16 CHAPTER 2. INTERPOLATION METHODS

We will concentrate on piecewise cubic Hermite interpolation, and so will
only be concerned with two neighbouring data points at a time, xk and xk+1.

The cubic Hermite interpolant at any point x, with xk < x < xk+1, takes the
form

P (x) =
3hs2 � 2s3

h3
yk+1 +

h3 � 3hs2 + 2s3

h3
yk +

s2(s� h)

h2
dk+1 +

s(s� h)2

h2
dk

where

h = xk+1 � xk
�k =

yk+1 � yk

2.5. SHAPE-PRESERVING PIECEWISE CUBIC (PCHIP) 17

‘harmonic mean’ of the two di�erences �k and �k−1

1

dk
=

1

2

�
1

�k+1

+
1

�k

�
If �k and �k−1 have di�erent signs or if one is zero, then we set dk = 0, since
this means that (xk; yk) will be a stationary point.

If �k and �k−1 have the same sign but the intervals are not of the same
lengths, then dk is given by the ‘weighted harmonic mean’

w1 + w2

dk
=

w1

�k−1

+
w2

�k

with weights
w1 = 2kk + hk−1; w2 = kk + 2hk−1

where
hk = xk+1 � xk; hk−1 = xk � xk−1:

A di�erent non-centred shape preserving 3-point formula is used to de�ne
the derivatives at the endpoints (x1; y1) and (xn; yn).

Figure 2.4: pchip (blue) and piecewise linear interpolation (green) using the
data set x = (0; 1; 2; 3; 4); y = (15; 6; 3; 10; 7)

Figure (2.4) shows how pchip (blue line) compares with piecewise linear in-
terpolation (green line). pchip produces a smooth interpolant that has a

18 CHAPTER 2. INTERPOLATION METHODS

continuous �rst derivative at the data points, as compared to the ’jagged’
linear interpolant. We can also see that the the pchip interpolant does not
overshoot the data points at the ends of each interval.

2.6 Divided Di�erence Polynomial Interpola-

tion

We now proceed to look the interpolation method described by M.Berzins
in his paper on Adaptive Polynomial Interpolation in SIAM Review, vol. 49
[1].

These methods are motivated by the ENO (Essentially non-Oscillatory) schemes
for the numerical solution solution of hyperbolic conservation laws.

Consider a set of n+ 1 data points (xi; yi); i = 0; : : : n, where yi = U(xi)
on the interval [�1; 1]. Let UL(x) be an approximating polynomial to the
data set.
For this interpolation method we will use the standard notation for divided
di�erences:

U [xi] = U(xi) and U [xi; xi+1] =
U [xi+1]� U [xi]

xi+1 � xi

with higher order di�erences given by

U [xi; xi+1; : : : ; xi+k] =
U [xi+1; xi+2; : : : ; xi+k]� U [xi; xi+1; : : : ; xi+k−1]

xi+k � xi

For example for i = 0 the �rst few divided di�erences are

U [x0] = U(x0)

U [x0; x1] =
U [x1]� U [x0]

x1 � x0

U [x0; x1; x2] =
U [x1; x2]� U [x0; x1]

x2 � x0

=

U [x2]−U [x1]
x2−x1

� U [x1]−U [x0]
x1−x0

x2 � x0

etc:

2.6. DIVIDED DIFFERENCE POLYNOMIAL INTERPOLATION 19

It is often easier to picture divided di�erences if we form a di�erence table

x0 U [x0]
U [x0; x1]

x1 U [x1] U [x0; x1; x2]
U [x1; x2] U [x0; x1; x2; x] U

20 CHAPTER 2. INTERPOLATION METHODS

So using the de�nitions above we use the same �-function for U [xi−1; xi; xi+1]
(rewritten as U [xi; xi+1; xi−1]) as we did for U [xi; xi+1; xi+2], since the �-
function only depends on the �rst two gridpoints written in the di�erence.

To try to reduce the oscillations in our answer (as seen with polynomial
interpolation) we choose the interpolant with the smallest divided di�erence,
i.e. if

jU [xi−1; xi; xi+1]j < jU [xi; xi+1; xi+2]j
then we use (3.3), and vice-versa.

Unfortunately, when using evenly spaced meshpoints this type of interpola-
tion does not guarantee a data bounded interpolant.

De�nition 2.1 An interpolating polynomial UL(x) is data bounded on the
interval [xi; xi+1] if:

UL(xi) = U(xi)

UL(xi+1) = U(xi+1)

min(U(xi); U(xi+1)) � UL(x) � max(U(xi); U(xi+1)) x 2 [xi; xi+1]

We would prefer a data bounded interpolant since a motivation for this work
comes from uid dynamics, where positive and data bounded solutions are
required for physical quantities. We would also prefer an interpolant that is
monotonic on each local interval, since this would eliminate the oscillations
in our semi-lagrangian solution.

2.6.1 Limited Form of the Divided Di�erence Interpo-
lating Polynomial

So far we have seen ho

2.6. DIVIDED DIFFERENCE POLYNOMIAL INTERPOLATION 21

Consider the divided di�erence

U [xi−1; xi; xi+1] =
U [xi; xi+1]� U [xi−1; xi]

(xi+1 � xi−1)

and suppose that U [xi−1; xi] = ��U [xi; xi+1] where � is some positive con-
stant.

Rewriting the above we get

U [xi−1; xi; xi+1] = (1 + �)
U [xi; xi+1]

xi+1 � xi−1

and if (xi+1 � xi−1) < 1 then

1 + �

xi+1 � xi−1

is an ampli�cation factor and so we have

U [xi−1; xi; xi+1] > U [xi; xi+1]:

This shows how using a higher order interpolating polynomial can produce
jumps in the sizes of the di�erences used which in turn gives a poorer ap-
proximation.

To solve this problem Berzins suggests that we form an interpolant on each
interval within the data set and set any divided di�erences formed using dif-
ferences of opposite signs to zero.

For example suppose we decided to use equation (2.3) to form a quadratic
interpolant on the interval [xi; xi+1]

UL(x) = U [xi] + �1;i U [xi; xi+1] + �2;i U [xi; xi+1; xi+2]:

We know that U [xi; xi+1; xi+2] is formed using U [xi; xi+1] and U [xi+1; xi+2]

U [xi; xi+1; xi+2] =
U [xi; xi+1]� U [xi+1; xi+2]

xi � xi+2

and so if U [xi; xi+1] and U [xi+1; xi+2] are of opposite sign we set U [xi; xi+1; xi+2]
to zero.

Chapter 3

Results

3.1 Results for Runge’s function

3.1.1 Runge’s function with polynomial interpolation

A famous example from numerical analysis involves Runge’s function

f(x) =
1

1 + 25x2
: x 2 [�1; 1]

In 1901 Carl David Tolm Runge found that accuracy is lost when approxi-

24 CHAPTER 3. RESULTS

Figure 3.1: Polynomial interpolation (blue) plotted against Runge’s function
(green) and data points (red) with increasing order. n indicates the number
of data-points used.

3.1.2 Runge’s function with standard divided di�er-
ence interpolation

We now investigate how the standard form of the divided di�erence interpo-
lation (section 2.6) behaves when we use it to interpolate Runge’s function.
We can write a Matlab program to emulate the results on the standard form
found in Berzin’s paper [1].
We use 7 evenly spaced data points on the interval [�1; 1]. The graph is
shown in �gure(3.2).

As we can see from the oscillations in the graph the standard form of the
divided di�erence interpolant does not provide an accurate approximation to
Runge’s function when using 7 data points.

To show how the standard form behaves as the number of data points used

3.1. RESULTS FOR RUNGE’S FUNCTION 25

Figure 3.2: Standard divided di�erence interpolation using 7 evenly spaced
data points (green) plotted with Runge’s function (blue) and data points
(red).

is increased, we recreate the above plot using 3,5,7 and 9 data points. The
four graphs are shown in �gure(3.3).

We can see that the standard form of the divided di�erence interpolant gives
wilder oscillations (and thus a poorer approximation) when the number of
data points used is increased, as we saw was the case for polynomial inter-
polation (see previous subsection). These results con�rm the theory on the
standard form seen in section (2.6), where we saw how using higher order
divided di�erences (i.e. more data points) can produce large errors in the so-
lution, due to divided di�erences being formed using lower order di�erences
of opposite sign.

26 CHAPTER 3. RESULTS

Figure 3.3: Runge’s function (blue) plotted with the standard divided di�er-
ence interpolant (green) for increasing number of data points (red).

3.1.3 Runge’s function with the limited form of di-
vided di�erence interpolation

We can now show that the limited form of the divided di�erence interpolant
can produce a better approximation to Runge’s function than the methods
discussed so far in this chapter. The graphs in �gure(3.4) show Runge’s
function plotted against the limited form of the divided di�erence interpolant
using an increasing number of data points.

From the graphs we see that using the limited form of the divided di�erence
interpolant gives a drastic improvement in our approximation to Runge’s
function when compared to the methods seen previously in the chapter. We
no longer see large oscillations in our solution, and increasing the number
of data points seems to improve the accuracy of the interpolant as opposed

3.2. RESULTS FOR THE SEMI-LAGRANGIAN SCHEME 27

28 CHAPTER 3. RESULTS

(see subsection (1.1.1)) to model a square wave travelling to the right in the
region x = [�10; 10] with periodic boundary conditions.

We choose u0 to be a square wave with height 10 and width 2, centred
at the origin. So our initial condition is

u =

�
10 �1 � x � 1
0 otherwise:

A square wave is notoriously di�cult to interpolate because of the disconti-
nuities that occur, in our case at x = �1; 1.

To begin we choose a time step dt = 1, spatial step dx = 0:2 and veloc-
ity a = 0:7, and run the scheme for 999 time steps. The initial plot and �nal
plot for the three types of interpolation are shown in �gures (3.5),(3.6) and
(3.7).

Figure (3.5) shows how standard piecewise cubic interpolation behaves in
this instance. On the �nal plot we see oscillations either side of the wave
where the interpolant ’undershoots’ the x-axis. Also the wave has a rounded
peak (it is no longer square) that reaches above 10. Despite this, the width
of the wave at the �nal time is well-preserved.

Figure (3.6) shows pchip interpolation. Again, the wave has become ’smoothed’
at the �nal time. The pchip interpolant has no oscillations at the �nal time,

30 CHAPTER 3. RESULTS

Figure 3.5: Standard piecewise cubic piecewise interpolation (dt=1, a=0.7,
run for 999 time steps).

Figure 3.6: pchip interpolation (dt=1, a=0.7, run for 999 time steps).

3.2. RESULTS FOR THE SEMI-LAGRANGIAN SCHEME 31

Figure 3.7: Limited form of divided di�erence interpolation (dt=1, a=0.7,
run for 999 time steps).

Figure 3.8: Standard piecewise cubic piecewise interpolation (dt=1, a=0.7,
run for 9999 time steps).

32 CHAPTER 3. RESULTS

Figure 3.9: pchip interpolation (dt=1, a=0.7, run for 9999 time steps).

Figure 3.10: Limited form of divided di�erence interpolation (dt=1, a=0.7,
run for 9999 time steps).

Chapter 4

A non-linear equation

4.1 The inviscid form of Burgers’ equation

4.1.1 Exact Solution

ENO (Essentially non-Oscillatory) schemes were originally developed for use
with non-linear equations. One such equation is the inviscid form of Burgers’
equation

@u

@t
+ u

@u

@x
= 0 u(x; 0) = u0(x): (4.1)

We shall use the initial condition found on page 77 of Smith [4]

u0 =

�
cos2

�
�
2

�
x−3

2

��
jx� 3j � 2

0 otherwise.
(4.2)

The characteristic curves of 4.1 are given by

dx

dt
= u(x(t); t) (4.3)

along which we know that the solution u is constant.

Hence the solution u(x(t); t) will be the same as the solution at x0, where x0

is the point where the characteristic that passes through u(x(t); t) arrives at
t = 0. So we may rewrite 4.3 as

dx

dt
= u(x0; 0) = u0(x0):

33

34 CHAPTER 4. A NON-LINEAR EQUATION

Integrating we get
x = u0(x0)t+ x0 (4.4)

So given any point (tn+1; xa) in (t; x) space we can obtain the solution u at
this point by solving 4.4 for x0.

To do this we rewrite 4.4 as

F (x0) = x� u0(x0)t� x0

and use the Newton-Rhaphson method:

xnew0 = xold0 �
F (x0)

F ′(x0)

with initial guess x0=xa.
This method should converge fairly quickly to give us the original value of
x0.

Figure(4.1) shows the exact solution to the above problem at times t = 0
and t = 1.

Figure 4.1: The exact solution to equation 4.1 at times t = 0 and t = 1

Notice the parallels between the above method the the semi-lagrangian scheme
seen in previous chapters. In both cases, we travel back along the charac-
teristic curves (in the above case to the start time t = 0 as opposed to the

4.1. THE INVISCID FORM OF BURGERS’ EQUATION 35

previous timestep as with the semi-lagrangian scheme) and use the fact that
the solution u is constant along these characteristics to obtain a solution at
the new time.

The method we have used in this subsection for �nding the exact solution
is very useful for simple problems such as the inviscid Burgers’ equation,
but we will run into di�culties if we attempt to use it for more complicated
equations. We would then have to use the numerical semi-lagrangian scheme.

4.1.2 The semi-lagrangian scheme with the inviscid form
of Burgers’ equation

We now solve the inviscid form of Burgers’ equation (4.1) with initial condi-

36 CHAPTER 4. A NON-LINEAR EQUATION

�(k+1) = �tu∗(xa �
�(k)

2
; tn +

�t

2
)

with u∗(xi; tn +
�t

2
) =

3

2
u(xi; tn)� 1

2
u(xi; tn ��t)

We use two to three iterations of the midpoint method to give us a value for
�, from which we can �nd xd (since xd = xa � �).

If xd lies on a grid point we have the solution immediately since u(xa; tn+1) =
u(xd; tn) . If xd does not coincide with a gridpoint, then we use an interpola-
tion method to approximate u(xd; tn) using local nodal values at time t = tn
which gives us u(xa; tn+1).

4.1.3 Results using the midpoint method

We use the semi-lagrangian scheme with the midpoint method to solve the
inviscid form of Burgers’ equation (4.1) using initial condition (4.2) and pa-
rameters �t = 0:00526(initia)1(l)-326(condition)-326(()]TJ
0.00 0.00 0.5 rg 0.00 0.00 0.56ay().

2d :00526(initia)1(l)-326(condition)-326(()]TJ
0.00 .9552 Tf 6 Td [(x)]TJ350.FJ/F201 Tf 6.653 Figu0e3
rameters �

4.1. THE INVISCID FORM OF BURGERS’ EQUATION 37

Figure 4.2: The exact solution to (4.1) at t = 0:6 plotted with the semi-
lagrangian solution using the midpoint method and three di�erent interpo-
lation methods

4.1.4 The Shu-Osher Runge-Kutta method

As well as using polynomials with least variation to interpolate given data
values, ENO schemes make extensive use of the 3rd order Shu-Osher Runge-
Kutta method to increase their order of accuracy.

We can adopt this ENO approach for use with our semi-lagrangian scheme
when solving the inviscid form of Burgers’ equation (4.1) with initial condi-
tion 4.2. As usual we suppose we know the solution u at time t = tn, and
that we wish to �nd u at a certain point xa at time t = tn+1.

As opposed to using the midpoint method (see (4.1.2) and (4.1.3) for calcu-
lation of our departure point xd at time t = tn, we can use a slightly modi�ed
version of the Shu-Osher method.

38

4.1. THE INVISCID FORM OF BURGERS’ EQUATION 39

Figure 4.3: The exact solution to (4.1) at t = 0:6 plotted with the semi-
lagrangian solution using the Shu-Osher Runge-Kutta method and three dif-
ferent interpolation methods

Again we see that pchip produces a slight ‘hump’ near the peak of the wave
at the �nal time. Therefore we must again conclude that of the three inter-
polation methods used, standard piecewise cubic polynomial interpolation
seems best in this instance.

4.1.5 Changing the initial condition

So far in this chapter, we have been solving equation (4.1) using initial condi-
tion (4.2) given by Smith [4]. Since this initial condition has a fairly smooth
pro�le, we saw no oscillations in the semi-lagrangian solutions at the �nal
time using our various interpolation methods.

Changing the initial condition to a function that has discontinuities might

40 CHAPTER 4. A NON-LINEAR EQUATION

give some oscillations in the semi-lagrangian solutions, and may give us a
better way to distinguish which interpolation method and which method for
�nding the departure point works best in our case.

We therefore change our initial condition to a simple ‘step function’

u0 =

�
1 x < 0
2 x � 0

(4.5)

Figure 4.4: Plot of the step function used as initial condition (4.5)

We shall examine how each interpolation method fares when solving the
inviscid form of Burgers’ equation (4.1) with this new initial condition along
with the two di�erent methods for obtaining the departure point at each
gridpoint, the midpoint method and the Shu-Osher Runge-Kutta method.

Figure (4.5) shows the exact solution at the �nal time t = 0:5 along with the
semi-lagrangian solutions for the three interpolation methods using the mid-
point method for calculation of the departure point. Figure (4.6) shows the
same plots when we use the Shu-Osher Runge-Kutta methods for calculating
the midpoint. The parameters used are �t = 0:005, �x = 1

15
. Limited Form

denotes the limited form of the divided di�erence interpolant (see (2.6.1)),

42 CHAPTER 4. A NON-LINEAR EQUATION

Figure 4.6: Solving equation (4.1) with initial condition (4.5) using the semi-
lagrangian scheme with various interpolation methods using the Shu-Osher
Runge-Kutta method for calculation of the departure point.

semi-lagrangian solutions appear to be travelling ahead of the exact solution,
while when the Shu-Osher Runge-Kutta method is used the semi-lagrangian
solutions are seen to be trailing the exact solution. Again the solutions for

Summary and further work

Summary

In this dissertation we have compared various interpolation methods for use

44 CHAPTER 4. A NON-LINEAR EQUATION

method proved to be more useful for our case than the traditionally used
midpoint method.
Finally we used the semi-lagrangian scheme in conjunction with the depar-
ture point calculation methods to model the non-linear equation. At �rst we
used a smooth initial condition and found, rather surprisingly, that standard
piecewise cubic polynomial interpolation behaved better than both Berzins’
interpolation and pchip. We than changed the initial condition to a func-

Bibliography

[1] M.Berzins: Adaptive Polynomial Interpolation on Evenly Spaced
Meshes, SIAM Review, 49, 2007, 604{627.

[2] A.Harten: Multiresolutional algorithms for the numerical solution of
hyperbolic conservation laws, Comm. Pure Appl. Math., 48, 1995, 1304{
1342.

[3] Andrew Staniforth and Jean Cote: Semi-Lagrangian Integration
Schemes For Atmospheric Models - A Review, Monthly Weather Review,
119, 1990, 2206{2223.

[4] Chris Smith: The Semi-Lagrangian Method in Atmospheric Mod-
elling, PhD Thesis, University of Reading, 2000

[5] Amos S Lawless: Development of Linear Models for Data Assimi-
lation in Numerical Weather Prediction, PhD Thesis, University of
Reading, 2001

[6] Cleve Moler: Numerical Computing with Matlab, Society for Indus-
trial and Applied Mathematics, 2004.

[7] Jan Hesthaven, David Gottlieb and Sigal Gottlieb: Spec-
tral methods for time-dependent problems, Cambridge Monographs on
Applied and Computational Mathematics, 2007.

[8] M.Berzins: Data Bounded Polynomials and Preserving Positivity in
High Order ENO and WENO Methods, SCI Report UUSCI, 2009

45

	Abstract
	Introduction
	The Semi-Lagrangian method
	1-D Advection Equation

	Interpolation Methods
	Linear Interpolation
	Polynomial Interpolation
	Piecewise Linear Interpolation
	Cubic Hermite Interpolation
	Shape-Preserving Piecewise Cubic (pchip)
	Divided Difference Polynomial Interpolation
	Limited Form of the Divided Difference Interpolating Polynomial

	Results
	Results for Runge's function
	Runge's function with polynomial interpolation
	Runge's function with standard divided difference interpolation
	Runge's function with the limited form of divided difference interpolation

	Results for the Semi-Lagrangian scheme

	A non-linear equation
	The inviscid form of Burgers' equation
	Exact Solution
	The semi-lagrangian scheme with the inviscid form of Burgers' equation
	Results using the midpoint method
	The Shu-Osher Runge-Kutta method
	Changing the initial condition

	Bibliography

