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Abstract



that the image of a solutionu is piecewise a�ne if either the rank of Du is equal
to one orn = 2 and u has additively separated form. As a consequence we obtain
corresponding 
atness results forp-Harmonic maps forp 2 [2; 1 ].

The aim of the Chapter 4 is to derive new explicit solutions to the1 -Laplace
equation, the fundamental PDE arising in Calculus of Variations in the spaceL1.
These solutions obey certain symmetry conditions and are derived in arbitrary
dimensions, containing as particular sub-cases the already known classes of two-
dimensional in�nity-harmonic functions.

Chapter 5 is the joint paper with N.Katzourakis. We discuss two distinct mini-
mality principles for general supremal �rst order functionals for maps and charac-
terise them through solvability of associated second order PDE systems. Speci�-
cally, we consider Aronsson's standard notion of absolute minimisers and the con-
cept of 1 -minimal maps introduced more recently by N.Katzourakis. We prove
that C1 absolute minimisers characterise a divergence system with parameters
probability measures and thatC2 1 -minimal maps characterise Aronsson's PDE
system. Since in the scalar case these di�erent variational concepts coincide, it
follows that the non-divergence Aronsson's equation has an equivalent divergence
counterpart.
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Chapter 1

Background and motivations

1.1 Introduction

Minimization problems have been studied by many mathematician for a di�er-
ent purposes. Most of their e�orts were focused in study the relation between
minimality conditions and partial di�erential equations (PDEs). One of the way
to view the minimality as a variational approach, which is the core idea of Calculus
of Variations. We introduce some fundamental methods of Calculus of Variations
to solve possibly non-linear PDE, which for a simplicity we have in the following
form

L[u] = 0; (1.1.1)

where L[u] is a given di�erential operator and u is the unknown. The equation
(1.1.1) can be characterised as the minimiser of appropriate energy functional E[u]
such that

E0[u] = L[u]:

The usefulness of this method that now we can proof existence of extremum points
of the functional energy E[�] and consequently the solution of (1.1.1). One of
di�culties of described method that in general the minimiser of the functional
might not be a classical solution of the PDE and the de�nition of



the method mentioned above. Section 1.2 and 1.3 of this chapter give more details
on Calculus of Variations in L1 and organization of the thesis respectively.

1.2 Calculus of Variations in L 1

Calculus of Variations in L1 has a long history started in the 1960s by G.
Aronsson [4{8]. He considered the following variational problem for the supremal
functional

E1(u; O) := ess sup
x2O

jDu(ff 4.5DD



work for mappings, coe�cients of full system arediscontinuousand solutions are
need to beC2 to make a classical sense. However there is a method to reduce
the regularity of solutions to C1 using measures as parameters. For more details
about this method we refer to Chapter 5.

For more details about explicit classical solutions of (1.2.3) we refer to the
introduction of the paper presented in Chapter 4.

1.3 Organisation of thesis

The aim of the thesis is to �nd new classical solutions, derive necessary and
su�cient conditions and describe a geometric properties of absolute minimisers.
We have reached our goal by publishing and submitting papers in di�erent �elds of
nonlinear PDEs. Each paper is presented in this thesis as chapter. Every chapter
below is explained in the outline below.

Chapter 2 is the joint paper with N.Katzourakis. The estimated contribution
is 50%. The paper has been accepted at Proceedings of the Royal Society of
Edinburgh A (Mathematics). We study a pointwise characterisation of the PDE
system of vectorial calculus of variations inL1. In this chapter we prove that
generalized solution to PDE8<: HP (�; u; Du) D

�
H(�; u; Du)

�
= 0;

H(�; u; Du) [[HP (�; u; Du)]]?
�

Div
�
HP (�; u; Du)

�
� H�(�; u; Du)

�
= 0;

can be characterized as local minimisers for appropriate classes of a�ne variations
to the following energy

E1(u; O) := ess sup
O

H(�; u; Du); u 2 W 1;1
loc (
 ; RN ); O b 
 ;

wheren; N 2 N with 
 � Rn open, H2 C2(
 � RN � RNn) is a given, HP ; ;



open set andn; N � 1 and u 2 C2(
 ; RN ) be a solution to the nonlinear system
[[Du]]?� u = 0 in 
, satisfying that the rank of its gradient matrix is at most one:

rk(Du) � 1 in 
 :

Then, its imageu(
) is contained in a polygonal line in RN , consisting of an at most
countable union of a�ne straight line segments (possibly with self-intersections).
After we show that this theorem is optimal by giving an example that system can
not have a�ne image but only piecewise a�ne. Then we have next theorem as



following

ln jtj + c =

8>>>><>>>>:
1
2

ln
��� �2(t)+B2

�2(t)��(t)+B2

��� � 1
2

1p
B2� 1

4

arctan �(t)� 1
2p

B2� 1
4

; if B 2 � 1
4

> 0

1
2

ln
��� �2(t)+B2

�2(t)��(t)+B2

��� + 1
2

1
�(t)� 1

2

; if B 2 � 1
4

= 0

1
2

ln
��� �2(t)+B2

�2(t)��(t)+B2

��� � 1

4
p

1
4
�B2

ln
����(t)� 1

2
�
p

1
4
�B2

�(t)� 1
2

+
p

1
4
�B2

���; if B 2 � 1
4

< 0;

where c is any constant, provided RHS is well de�ned.

Finally second result, letn � 2 and u : 
 � Rn �! R be a C2(
) separated
1 -harmonic function of the 1 -Laplace equation

nX
i;j=1

Diu Dju D2
iju = 0:

Then
jf i(xi)j = jf i(x0

i )j eAi(xi�x



The converse statement is true if in addition for anyx 2 
, H( x; �; �) is convex on
Rn � RN�n.

(III) If u is 1 -minimal map for (1.1.1) on 
, then it solves the (reduced) Aronsson
system

A1u := H P (�; u; Du) D
�
H(�; u; Du)

�
+ H( �; u; Du) [[HP (�; u; Du)]]?

�
Div
�
HP (�; u; Du)

�
� H�(�; u; Du)

�
= 0:

The converse statement is true if in addition H does not depend on� 2 RN ,
HP (�; Du) has full rank on 
 and for any x 2 
 H (x; �) is convex inRN�n.

Second result \Divergence PDE characterisation of Absolute minimiser" says,
let u : Rn � 
 �! RN be a map inC1(
; RN ). Fix also O b 
 and consider the
following statements:

(I) u is a vectorial minimiser of E1(�; O) in C1
u(O; RN )1.

(II) We have

max
ArgmaxfH(�;u;Du) :Og

h
HP (�; u; Du) : D + H �(�; u; Du) �  

i
� 0;

for any  2 C1
0 (O; RN )1.

(III) For any  2 C1
0 (O; RN ), there exists a non-empty compact set

K � K � Argmax
�

H(�; u; Du) : O
	

(1.3.3)

such that, �
HP (�; u; Du) : D + H �(�; u; Du) �  

����
K

= 0: (1.3.4)

Then, (I) = ) (II) = ) (III). If additionally H( x; �; �) is convex onRN � RN�n

for any �xed x 2 
, then (III) = ) (I) and all three statements are equivalent.
Further, any of the statements above are deducible from the statement:

(IV) For any Radon probability measure2 � 2 P (O) satisfying

supp(� ) � Argmax
�

H(�; u; Du) : O
	

; (1.3.5)

we have
� div

�
HP (�; u; Du)�

�
+ H �(�; u; Du)� = 0; (1.3.6)

in the dual space (C1
0 (O; RN ))�.

1 We say u 2 C1
g (O; RN ) if u � g 2 C1

0 (O; RN ), where C1
0 (O; RN ) :=

�
 2 C1(Rn; RN ) :

 = 0 on @O
	

.
2A Radon measure is a Borel measure that is �nite on all compact sets, outer regular on all

Borel sets and inner regular on all open sets. See [42] for precise de�nition.
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Finally, all statement are equivalent if K = Argmax
�

H(�; u; Du) : O
	

in (III) (this
happens for instance when the argmax is a singleton set).

The result above provides an interesting characterisation of Aronsson's concept
of Absolute minimisers in terms of divergence PDE systems with measures as
parameters. The exact distributional meaning of (1.3.6) isZ

O

�
HP (�; u; Du) : D + H �(�; u; Du) �  

�
d� = 0

for all  2 C1
0 (O; R



Chapter 2

A Pointwise Characterisation of
the PDE System of Vectorial
Calculus of Variations in L1

2.1 Introduction

Calculus of Variations



prescribed boundary condition on@
 to avoid trivial minimisers. This means that
any putative minimiser u 2 C , if it exists, should satisfy

E(u; 
) � E(v; 
) ; for all v 2 C with u = v on @
 :

If such a minimiser exists, then the real functiont 7! E(tv + (1 � t)u) has a
minimum at t = 0 and should satisfy

d





In index form, F1 reads

F1(x; �; P; X )� :=
X
i

HP�i(x; �; P )

 X
�;j

HP�j (x; �; P )X �ij +
X
�

H�� (x; �; P ) P�i

+ H xi(x; �; P )

!
+ H( x; �; P )

X
�

[[HP (x; �; P )]]?�� �

�

 X
i;j

HP�iP�j (x; �; P ) X �ij +
X
i

HP�i�� (x; �; P ) P�i

+
X
i

HP�ixi(x; �; P ) � H�� (x; �; P )

!
;

where� = 1; : : : ; N . Note that, although H is C2, the coe�cient [[H P (�; u; Du)]]? is
discontinuousat points where the rank of HP (�; u; Du) changes. Further, because
of the perpendicularity of HP and [[HP ]]? (that is [[HP ]]?HP = 0), the system can
be decoupled into the two independent systems8<: HP (�; u; Du) D

�
H(�; u; Du)

�
= 0;

H(�; u; Du) [[HP (�; u; Du)]]?
�

Div
�
HP (�; u; Du)

�
� H�(�; u; Du)

�
= 0:

When H(x; �; P ) = jPj2 (the Euclidean norm onRNn squared), the system (2.1.2)-
(2.1.4) simpli�es to the so-called1 -Laplacian:

� 1u :=
�

Du 
 Du + jDuj2[[Du]]? 
 I
�

: D2u = 0: (2.1.5)
[[D



solutions of (2.1.5) to local minimisers ofu 7! k DukL1(�) in terms of certain classes
of local a�ne variations . This result o�ered new insights to the di�cult problem
of establishing connections of (2.1.1) to (2.1.2)-(2.1.4).

In this paper we generalise the results of [56], characterising generalD-solutions
to (2.1.2)-(2.1.4) in terms of local a�ne variations of (2.1.1). Our main result
is Theorem 2.3.2 that follows and asserts thatD-solutions to (2.1.2)-(2.1.4) in
C1(
 ; RN ) can be characterised variationally in terms of (2.1.1). The a prioriC1

regularity assumed for our putative solutions is slightly higher than the generic
membership in the spaceW 1;1(
 ; RN ), but as a compensation we imposeno con-
vexity of any kind for the hamiltonian H for the derivation of the system.

In special case of classical solutions, our result reduces to the following corollary
which shows the geometric nature of our characterisation1:

2.1.1 Corollary [ C2 solutions of F1 = 0]

Let 
 � Rn be open,u 2 C2(
 ; RN ) and H 2 C2(
 � Rn � RNn). Then,

F1(�; u; Du; D2u) = 0 in 
 ()

(
E1(u; O) � E1(u + A; O) ;

8 O b 
 ; 8 A 2
�
A k;1O [ A ?;1

O
�
(u):

Here A k;1O (u); A?;1O (u) are sets of a�ne maps given by

A k;1O (u) =

8<:A : Rn ! RN

������
D2A � 0; A(x) = 0 and exist � 2 RNand
x 2 O (u) s.t. the image ofA is parallel
to the tangent map of � H(�; u; Du) at x

9=; ;

A?;1O (u) =

8<:A : Rn ! RN

������
D2A � 0 and there existsx 2 O (u) s.t. the
image ofA is normal to HP (�; u; Du) at x
and A>HP (�; u; Du) is divergenceless atx

9=;
and

O(u) := Argmax
�

H(�; u; Du) : O
	

:

This paper is organised as follows. In Section 2.2 that follows we record all the
basic facts needed regarding the concept of ourD-solutions, namely our notion
of generalised solution required to make rigorous sense of (2.1.2)-(2.1.4). We also
include a quick introduction to the analytic setup of so-calledYoung measures, on
which D-solutions are based. We also give two simple auxiliary results which are
utilised in the proof of our variational characterisation. Finally, in Section 2.3 we
state and prove our main result.

1We caution the reader that the statement of Corollary 2.1.1 sacri�ces precision for the sake
of clarity. The fully precise statement is that given in the main result, Theorem 2.3.2.

12



2.2 Young measures, D-solutions and auxiliary
results

2.2.1 Young Measures

Let 
 � Rn be open andK a compact subset of some Euclidean spaceRNn2
. The

set ofYoung measuresY
�

 ; K

�
forms a subset of the unit sphere of a certainL1

space of measure-valued maps and this provides its useful properties, including
sequential weak* compactness. More precisely,Y

�

 ; K

�
is de�ned as

Y
�

 ; K

�
:=
n

� : 
 �! P(K)
��� [� (�)](U) 2 L1(
) for any open U � K

o
;

whereP(K) is the set of Borel probability measures onK. To see how it arises,
consider the separable spaceL 1

�

 ; C(K)

�
of Bochner integrable maps. This space

contains Carath�eodory functions � : 
 � K �! R (namely functions for which
�( �; X ) is measurable for allX 2 K and �( x; �) is continuous for a.e.x 2 
) which
satisfy

k� kL1(
;C(K)) :=
Z






�( x; �)



C0(K)

dx < 1 :

We refer e.g. to [35, 43, 77] and to [56, 57] for background material on these spaces.
The dual space of this space isL1w�

�

 ; M (K)

�
, namely�

L 1
�

 ; C(K)

���
= L1w�

�

 ; M (K)

�
:

This dual Banach space consists of Radon measure-valued maps 
3 x 7! � (x) 2 M (K)
which are weakly* measurable, in the sense that for any open setU � K, the func-
tion x 7! [� (x)](U) is in L1(
). The norm of the space is given by

k� kL1
w� (
;M(K)) := ess sup

x2

k� (x)k ;

where \k � k" denotes the total variation. It thus follows that

Y
�

 ; K

�
=
n

� 2 L1w�
�

 ; M (K)

�
: � (x) 2 P(K); for a.e. x 2 


o
:

2.2.2 Remark [Properties of Young Measures]

We note the following facts about the setY
�

 ; K

�
(proofs can be found e.g. in

[41]):

i) It is convex and sequentially compact in the weak* topology induced fromL1w�.

ii) The set of measurable mapsV : Rn � 
 �! K can be identi�ed with a subset
of it via the embeddingV 7! � V , � V (x) := � V (x).

13



iii) Let V i; V1 : Rn � 
 �! K be measurable maps,i 2 N. Then, up the passage
to subsequences, the following equivalence holds true asi ! 1 : V i �! V1 a.e.
on 
 if and only if � V i ��� * � V1 in Y

�

 ; K

�
.

2.2.3 D-solutions

We now give some rudimentary facts about generalised solutions which are required
for the main result in this paper. For simplicity we will restrict the discussion to
n = 1 for maps u : R � 
 �! RN with 
 an interval. The notion of D-solutions is
based on the probabilistic interpretation of limits of di�erence quotients by using
Young



The above means for any �2 L 1
�

 ; C(K)

�
, we haveZ




Z
K

�( x; X )d[� D1;h�kDu](X ) dx !
Z




Z
K

�( x; X )d[D2u](X ) dx; as k ! 1 :

Note that the set of Young measures issequentially weakly* compacthence
every map as above possesses di�use2nd derivatives.

2.2.3.2 De�nition [ D-solutions to 2nd order systems]

Let 
 � Rn be an open set andF : 
 � RN � RNn � RNn2

s �! RN a Borel
measurable map which is continuous with respect to the last argument. Consider
the PDE system

F
�
�; u; Du; D2u

�
= 0 on 
 : (2.2.4)

We say that the locally Lipschitz continuous mapu : Rn � 
 �! RN is a D-
solution of (2.2.4) when for any di�use hessianD2u of u, we have

sup
Xx2 supp�(D2u(x))

��F �x; u(x); Du(x); X x

��� = 0; a.e. x 2 
 : (2.2.5)

Here \supp�" symbolises thereduced supportof a probability measure excluding
in�nity, namely supp �(#) := supp(#) n f1g when # 2 P

�
RNn2

s

�
.



a) If we have E1(u; O) � E1(u + tA; O) for all t > 0, it follows that

max
z2O

n
HP

�
z; u(z); Du(z)

�
: DA(z) + H �

�
z; u(z); Du(z)

�
� A(z)

o
� 0:

In the above \:" and \ �" denote the inner products inRNn and RN respectively.

b) Let x 2 O and 0< " < dist(x; @O). The set

O"(x) :=
n

y 2 O : H(y; u(y); Du(y)) � H
�
x; u(x); Du(x)

�o�\
B"(x)

(where \ (�)�" denotes the interior) is open and compactly contained in



Let also O(u) be as in Lemma 2.2.4.1. Then,r is convex, r (0) = 0 and also it
satis�es

Dr (0+) � max
O(u)

n
HP (�; u; Du) : DA + H �(�; u; Du) � A

o
;

where Dr (a+) := lim inf
�!0+

r(a+�)�r(a)
�

is the lower right Dini derivative of r at a.

2.2.4.4 Proof of Lemma 2.2.4.3

The result is deducible from Danskin's theorem (see [34]) but we prove it directly
since the 1-sided version above is not given explicitly in the paper. By setting

R(�; y ) := H
�

y ; u(y) + �A (y) ; Du(y) + �DA (y)
�

we haver (� ) = max y2O R(�; y ) � maxy2O R



and the desired inequality has been established. Finally by convexity of H we have
for any x; y > 0 and anyt 2 [0; 1]

r
�
tx + (1 � t)y

�
:= E1

�
t(u + xA) + (1 � t)(u + yA); O

�
� E1(u; O)

� t E1(u + xA; O) + (1 � t) E1(u + yA; O) � E1(u; O)

� tr (x) + (1 � t)r (y)

Let us record the next simple inequality which follows from the de�nitions of
lower right Dini derivative, in the case that H(x; �; �) is jointly convex for any x 2 
.
This is

r (� ) � r (0) � Dr (0+) �; (2.2.6)

for all � � 0.

2.3 The main result of the Chapter 2

Now we proceed to the main result of the paper, the variational characterisation
of D-solutions to the PDE system (2.1.2) in terms of appropriate variations of the
energy functional (2.1.1). We recall that the Borel mappingF1 : 
 � RN � RNn �
RNn2

s �! RN is given by (2.1.3)-(2.1.4) and 
 � Rn is a �xed open set.

2.3.1 Notational simpli�cations and perpendicularity con-
siderations.

We begin by rewriting F1(�; u; Du; D2u) = 0 in a more malleable fashion (see
(2.1.3)). We de�ne the maps

F ?1(x; �; P; X ) := H PP (x; �; P ) : X + H P�(x; �; P ) : P + H Px(x; �; P ) : I ; (2.3.1)

F k1(x; �; P; X ) := H P (x; �; P ) : X + H �(x; �; P )>P + Hx(x; �; P ) (2.3.2)

and these are abbreviations of

F ?1(x; �; P; X )� =
X
�;i;j

HP�iP�j (x; �; P ) X �ij +
X
�;i

HP�i�� (x; �; P ) P�i

+
X
i

HP�ixi(x; �; P ) ;

F k1(x; �; P; X )i =
X
�;j

HP�j (x; �; P )X �ij +
X
�

H�� (x; �; P ) P�i + Hxi(x; �; P ):
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Note that F ?1(x; �; P; X ) 2 RN , whilst F k1(x; �; P; X ) 2 Rn. By utilising (2.3.1)-
(2.3.2), we can now express (2.1.3) as

F1(x; �; P; X ) := H P (x; �; P ) F k1(x; �; P; X ) + H( x; �; P ) �

� [[HP (x; �; P )]]?
�

F ?1(x; �; P; X ) � H�(x; �; P )
�

:

Further, recall that in view of (2.1.4), [[HP (x; �; P )]]? is the projection on the or-
thogonal complement ofR(HP (x; �; P )). Hence, by the orthogonality of [[HP (x; �;P )]]?�
�
�
F ?1(x; �;P; X ) � H�(x; �;P )

�
and HP (x; �; P )F k1(x; �;P; X ), we have

F1(x; �; P; X ) = 0 ; for some (x; �; P; X ) 2 
 � RN � RNn � RNn2

s ;

if and only if8<: HP (x; �; P ) F k1(x; �; P; X ) = 0 ;

H(x; �; P ) [[HP (x; �; P )]]?
�

F ?1(x; �; P; X ) � H�(x; �; P )
�

= 0:

Finally, for the sake of clarity we state and prove our characterisation below only
in the case ofC1 solutions, but due to its pointwise nature, the result holds true for
piecewiseC1 solutions with obvious adaptations which we refrain from providing.
We will assume that the Hamiltonian H satis�es�

HP (x; �; �) = 0
	

�
�

H(x; �; �) = 0
	

; (x; � ) 2 
 � RN : (2.3.3)

We will also suppose that the next set has vanishing measure���nx 2 
 : Brx(x)
\�

h > h (x)
	

is dense inBrx(x)
o��� = 0; (2.3.4)

where rx � dist(x; @
) and h � H(�; u; Du). This assumption is natural, in the
sense that it is satis�ed by all know examples of explicit solutions (see [55, 63{66]).
It is trivially satis�ed if h has no strict local minima in the domain.

Lets examine three examples for conditions (2.3.3) and (2.3.4). For all examples
H(x; �; P ) = jPj2. Clearly (2.3.3) is satis�ed. Remains to show that actually
condition (2.3.4) holds for our three examples.
Example 2.3.1. u(x; y) = jxj

4
3 � j yj

4
3 is well-known explicit solution and let
 =

[� 1; 1]2. The function h � j Duj2 = 16
9

�
jxj

2
3 + jyj

2
3

�
has only one point of local

minimum at origin which means setf h > h (0)g \ Br0(0) is the dense in the ball
Br0(0). Let a point (x,y) be di�erent from origin then it easy to check that set
f h > h (x; y)g \ Brx;y (x; y) is not a dense in theBrx;y (x; y) and as the result we
have (2.3.4).
Example 2.3.2. Let 
 = [0 :1; 1]2 and u(x; y) =

p
x2 + y2 is the conic solution.

The function h � j Duj2 � 1 for any point of 
 . So clearly (2.3.4) is satis�ed.
Example 2.3.3. Using notation eit = (cos t; sint) we have vectorial solution
u(x; y) = eix � eiy on 
 = [ � 1; 1]2 which is Eikonal, namelyjDuj2 = jDxuj2 +
jDyuj2 � 2. So clearly (2.3.4) is satis�ed.

19



Our main result is as follows:

2.3.2 Theorem [Variational characterisation of the PDE
system arising in L1 ]

Let 
 � Rn be open,u 2 C1(
 ; RN ) and H 2 C2(
 � Rn � RNn) a function
satisfying (2.3.3) and suppose that (2.3.4) holds. Then:

(A) We have

F1(�; u; Du; D2



in the D-sense, if and only if

E1(u; O) � E1(u + A; O); 8 O b 
 ; 8 A 2 A k;1O (u)

and also

H(�; u; Du) [[HP (�; u; Du)]]?
�

F ?1(�; u; Du; D2u) � H�(�; u; Du)
�

= 0 in 
 ;

in the D-sense, if and only if

E1(u; O) � E1(u + A; O); 8 O b 
 ; 8 A 2 A ?;1O (u):

We note that in the special case ofC2 solutions, Corollary 2.1.1 describes the
way that classical solutionsu : Rn � 
 �! RN to (2.1.2)-(2.1.4) are characterised.

2.3.3 Remark [About pointwise properties of C1 D-solutions]

Let u : Rn � 
 �! RN be a D-solution to (2.1.2)-(2.1.4) in C1(
 ; RN ). By
De�nition 2.2.3.2, this means that for anyD2u 2 Y

�

 ; RNn2

s

�
,

F1
�
x; u(x); Du(x); X x

�
= 0; a.e. x 2 
 ; 8 X x 2 supp�

�
D2u(x)

�
:

By De�nition 2.2.3.1, every di�use hessian of a putative solution is de�ned a.e. on

 as a weakly* measurable probability valued mapRn � 


RNnx



and an X x 2 supp�
�
D2u(x)

�
. In view of (2.3.1), if HP

�
x; u(x); Du(x)

�
= 0, then,

by our assumption on the level sets of H, we have H
�
x; u(x); Du(x)

�
= 0 as well

and as a consequence we readily obtain

H
�
x; u(x); Du(x)

�
[[HP

�
x; u(x); Du(x)

�
]]?�

�
�

F ?1
�
x; u(x); Du(x); X x

�
� H�

�
x; u(x); Du(x)

��
= 0

(2.3.5)

is clearly satis�ed at x. If HP

�
x; u(x); Du(x)

�
6= 0, then we select any direction

normal to the range of HP
�
x; u(x); Du(x)

�
2 RNn, that is

nx 2 R
�

HP

�
x; u(x); Du(x)

��?
� RN

which meansn>x HP

�
x; u(x); Du(x)

�
= 0. Of course it may happen that the linear

map HP
�
x; u(x); Du(x)

�
: Rn





and r is convex, by inequality (2.2.6) we haver (t) � 0 for all t � 0. Therefore,

E1(u; O) � E1(u + A; O); 8 O b 
 ; 8 A 2 A k;1O (u):

The case ofA 2 A ?;1O is completely analogous. FixD2u 2 Y
�

 ; RNn2

s

�
, O b 
,

x 2 O (u), X x 2 supp�(D
2u(x)) and an A with A(x) ? R

�
HP

�
x; u(x); Du(x)

��
and

DA 2 L
�
x; A(x); X x

�
. By applying Lemma 2.2.4.3 again, we have

Dr (0+) � max
y2O(u)

n
HP (y; u(y); Du(y)) : DA(y) + H �(y; u(y); Du(y)) � A(y)

o
� HP

�
x; u(x); Du(x)

�
: DA(x) + H �

�
x; u(x); Du(x)

�
� A(x):

If HP

�
x; u(x); Du(x)

�
6= 0, then by the de�nition of L

�
x; A(x); X x

�
we have

Dr (0+) � HP

�
x; u(x); Du(x)

�
: DA(x) + H �

�
x; u(x); Du(x)

�
� A(x)

= � A(x) �
�

F ?1
�
x; u(x); Du(x); X x

�
� H�

�
x; u(x); Du(x)

��
= � A(x)>[[HP (x; u(x); Du(x))]]?

�
F ?1
�
x; u(x); Du(x); X x

�
� H�

�
x;u(x); Du(x)

��
and hence Dr (0+) � 0 becauseu is a D-solution on 
. If H P

�
x; u(x); Du(x)

�
= 0,

then again Dr (0+) � 0 becauseA(x) = 0. In either cases, by inequality (2.2.6) we
obtain r (t) � 0 for all t � 0 and hence

E1(u; O) � E1(u + A; O); 8 O b 
 ; 8 A 2 A ?;1O (u):

The theorem has been established.

2.3.5 Proof of Corollary 2.1.1

If u 2 C2(
 ; RN ), then by Lemma 2.2.2 any di�use hessian ofu satis�es D2u(x) =
� D2u(x) for a.e. x 2 
. By Remark 2.3.3, we may assume this happens for all
x 2 
. Therefore, the reduced support of D2u(x) is the singleton setf � D2u(x)g.
Hence, for A k;1O (u), we have that any possible a�ne map A satis�es DA �
D
�
� H
�
x; u(x); Du(x)

��
and A(x) = 0. In the case of A?;1O (u), we have that any

possible a�ne map A satis�es

A(x)>HP

�
x; u(x); Du(x)

�
= 0 ; DA 2 L

�
x; A(x); D2u(x)

�
;

which gives

DA(x) : HP

�
x; u(x); Du(x)

�
= � A(x) �

�
HPP

�
x; u(x); Du(x)

�
: D2u(x) +

+ H P�

�
x; u(x); Du(x)

�
: Du(x) + H Px

�
x; u(x); Du(x)

�
: I
�

= � A(x) � Div
�
HP

�
�; u; Du)

�
(x):
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As a consequence, the divergence Div
�
A>HP

�
�; u; Du

��
(x) vanishes because

DA(x) : HP

�
x; u(x); Du(x)

�
+



Chapter 3

Rigidity and 
atness of the image
of certain classes of mappings
having tangential Laplacian

3.1 Introduction

Suppose thatn; N are integers and 
 an open subset ofRn. In this paper we
study geometric aspects of the imageu(
) � RN of certain classes ofC2 vectorial
solutions u : Rn � 
 �! RN to the following nonlinear degenerate elliptic PDE
system:

[[Du]]?� u = 0 in 
 : (3.1.1)

Here, for the mapu with components (u1; :::; uN )> the notation Du symbolises the
gradient matrix

Du(x) =
�
Diu�(x)

��=1:::N

i=1:::n
2 RN�n ; Di � @=@xi;

� u stands for the Laplacian

� u(x) =
nX
i=1

D2
iiu(x) 2 RN

and for anyX 2 RN�n, [[X ]]? denotes the orthogonal projection on the orthogonal
complement of the range of linear mapX : Rn �! RN :

[[X ]]? := Proj R(X)?:

Our general notation will be either self-explanatory, or otherwise standard as e.g.
in [32, 38]. Note that, since the rank is a discontinuous function, the map [[� ]]?

is discontinuous onRN�n; therefore, the PDE system (3.1.1) hasdiscontinuous
coe�cients . The geometric meaning of (3.1.1) is thatthe Laplacian vector �eld
� u is tangential to the imageu(
) and hence (3.1.1) is equivalent to the next
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statement: there exists a vector �eld

A : Rn � 
 �! Rn



The scalar case ofN = 1 in (3.1.4)-(3.1.5) was pioneered by G. Aronsson in
the 1960s [4{8] who initiated the �eld of Calculus of Variations inL1 , namely
the study of supremal functionals and of their associated equations describing
critical points. Since then, the �eld has developed tremendously and there is an
extensive relevant literature (see e.g. [16{19, 21, 26, 46, 72, 73] and the lecture
notes [15, 28, 54]). In particular, although vectorial supremal functionals began
to be explored early enough, the1 -Laplace system (3.1.4) which describes the
necessary critical conditions inL1 in the vectorial caseN � 2 �rst arose in the
early 2010s in [49]. The area is now developing very rapidly due to both the
mathematical signi�cance as well as the importance for applications in several
areas (see [2, 14, 31, 36, 63], [50, 52, 53, 56{58]).

In this paper we focus on theC2 case and establish the geometric rigidity and

atness of the images of solutionsu : Rn � 
 �! RN to the nonlinear system
(3.1.1), under the assumption that either Du has rank at most 1, or that n = 2
and u has an additively separated form, see (3.1.6). As a consequence, we obtain
corresponding 
atness results for the images of solutions to (3.1.2) and (3.1.4).
Both aforementioned classes of solutions furnish particular examples which provide
substantial intuition for the behaviour of general extremal maps in Calculus of
Variations in L1 , see e.g. [9, 10, 28, 50, 53, 54, 63] where solutions of this form
have been studied. Obtaining further information for the still largely mysterious
behaviour of1 -Harmonic maps is perhaps the greatest driving force to isolate and
study the particular nonlinear system (3.1.1). For example, it is not yet know to
what extend the possible discontinuities of the coe�cients relates to the failure of
absolute minimality.

It is also worth clarifying that, although as it is well-known the Dirichlet prob-
lem over a bounded domain may not in general be solvable for the1 -Laplacian
not even in the scalar-valued case, if one does not prescribe boundary values (and
we do not in this paper) it can be demonstrated that in�nitely many non-trivial
classical solutions do exist, in particular of the form arising in this paper (see for
instance the explicit constructions ofC2 solutions in [50]). Therefore, the results
herein are non-void and numerous solutions as those exhibited herein do exist.

Let us note that the rank-one case includes the scalar and the one-dimensional
case (i.e. when minf n; N g = 1), although in the case ofN = 1 (in which the
single1 -Laplacian reduces to Du 
 Du : D2u = 0) (3.1.1) has no bearing since it
vanishes identically at any non-critical point.

The e�ect of (3.1.1) to the 
atness of the image can be seen through theL1

variational principle introduced in [52], wherein it was shown that solutions to
(3.1.1) of constant rank can be characterised as those having minimal area with
respect to (3.1.3)-(3.1.5). More precisely, therein the following result was proved:
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3.1.1 Theorem [cf. [52, Theorem 2.7, Lemma 2.2]]

Given N � n � 1, let u : Rn � 
 �! RN be aC2 immersion de�ned on the open
set 
 (more generally u can be a map with constant rank of its gradient on 
).
Then, the following statements are equivalent:

1. The mapu solves the PDE system (3.1.1) on 
.

2. For all p 2 [2; 1 ], for all compactly supported domainsO b 
 and all C1

vector �elds � : O �! RN which are normal to the imageu(O) � RN

(without requiring to vanish on @O), namely those for which� = [[D u]]?� in
O, we have

kDukLp(O) � k Du + D � kLp(O):

3. The same statement as in item (2) holds, but only forsomep 2 [2; 1 ].

If in addition p < 1 in (2)-(3), then we may further restrict the class of normal
vector �elds to those satisfying� j@O = 0 (see Figure 1).

In the paper [52], it was also shown that in the conformal class, (3.1.1)expresses
the vanishing of the mean curvature vector ofu(
).

The e�ect of (3.1.1) to the 
atness of the image can be easily seen in the case
of n = 1 � N as follows: since

[[u0]]?u00 = 0 in 
 � R

and in one dimension we have

[[u0]]? =

8<: I �
u0 
 u0

ju0j2
; on f u0 6= 0g;

I; on f u0 = 0g;

we therefore infer thatu00 = fu 0 on the open setf u0 6= 0g � R for some function
f , readily yielding after an integration that u(
) is necessarily contained in a
piecewise polygonal line ofRN . As a generalisation of this fact, our �rst main
result herein is the following:

Figure 1. Illustration of the variational principle characterising (3.1.1).
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3.1.2 Theorem [Rigidity and 
atness of rank-one maps with
tangential Laplacian]

Let 
 � Rn be an open set andn; N � 1. Let u 2 C2(
 ; RN ) be a solution to the
nonlinear system (3.1.1) in 
, satisfying that the rank of its gradient matrix is at
most one:

rk(Du) � 1 in 
 :

Then, its imageu(
) is contained in a polygonal line in RN , consisting of an at most
countable union of a�ne straight line segments (possibly with self-intersections).

Let us note that the rank-one assumption for Du is equivalent to the existence of
two vector �elds � : Rn � 
 �! RN and a : Rn � 
 �! Rn such that Du = � 
 a
in 
.

Example 3.1.3



trivial a�ne ones.

As a consequence of Theorem 3.1.2, we obtain the next result regarding the
rigidity of p-Harmonic maps forp 2 [2; 1 ) which complements one of the results
in the paper [53] wherein the casep = 1 was considered.

3.1.4 Corollary [Rigidity of p-Harmonic maps, cf. [53]]

Let 
 � Rn be an open set andn; N � 1. Let u 2 C2(
 ; RN ) be a p-Harmonic
map in 
 for some p 2 [2; 1 ), that is u solves (3.1.2). Suppose that the rank of
its gradient matrix is at most one:

rk(Du) � 1 in 
 :

Then, the same result as in Theorem 3.1.2 is true.

In addition, there exists a partition of 
 to at most countably many Borel sets,
where each set of the partition is a non-empty open set with a (perhaps empty)
boundary portion, such that, on each of these,u can be represented as

u = � � f:

Here, f is a scalarC2 p-Harmonic function (for the respectivep 2 [2; 1 )), de�ned
on an open neighbourhood of the Borel set, whilst� : R �! RN is a Lipschitz
curve which is twice di�erentiable and with unit speed on the image off .

Now we move on to discuss our second main result which concerns the rigidity of
solutionsu : R2 � 
 �! RN to (3.1.1) for N � 2, having the additively separated
form

u(x; y) = f (x) � f (y) (3.1.6)

for some curvef : R �! RN . Solutions of this form are very important in relation
to the 1 -Laplacian. If N = 1, all 1 -Harmonic functions of this form after a
normalisation reduce to the so-called Aronsson solution onR2

u(x; y) = jxj4=3 � j yj4=3

which is the standard explicit example of a non-C2 1 -Harmonic function with
conjectured optimal regularity. In the vectorial case, the family of separated so-
lutions is quite large. For N = 2, a large class of such vectorial solutions was
constructed in [50] and is given by

u(x; y) =
Z y

x

�
cos(K (t)) ; sin(K (t))

�
dt

with K a function in C1(R) satisfying certain general conditions. The simplest
non-trivial example of an1 -Harmonic map with this form (de�ned on the strip
fj x � yj < �= 4g � R2) is given by the choiceK (t) = t. Our second main result
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asserts that solutions of separated form to (3.1.1) have images which are piecewise
a�ne, contained in a union of intersecting planes ofRN . More precisely, we have:

3.1.5 Theorem [Rigidity and 
atness of maps with tangen-
tial Laplacian in separated form]

Let 
 � R2 be an open set and let alsoN � 2. Let u : Rn � 
 �! RN be a
classical solution to the nonlinear system (3.1.1) in 
, having the separated form
u(x; y) = f (x) � f (y), for some curvef 2 (W 3;p \ C2)(R; RN ) and somep > 1.

Then, the imageu(
) of the solution is contained in an at most countable union
of a�ne planes in RN .

In addition, the proof of Theorem 3.1.5 shows that every connected component
of the setf rk(Du) = 2 g is contained entirely in an a�ne plane and every connected
component of the setf rk(Du) � 1g is contained entirely in an a�ne line.

Note that our result is trivial in the case that N = n = 2 since the codimension
N � n vanishes. Additionally, due to the regularity of the solutions, if aC2

mapping has piecewise a�ne image, then second derivatives must vanish when
�rst derivatives vanish at the \breaking points". Further, one might also restrict
their attention to domains of rectangular shape, since any map with separated form
can be automatically extended to the smallest rectangle containing the domain.

Also, herein we consider only the illustrative case ofn = 2 < N and do not
discuss more general situations, since numerical evidence obtained in [63] suggests
that Theorem 3.1.5 does not hold in general for solutions in non-separated form.

In this paper we try to keep the exposition as simple as possible and therefore
we refrain from discussing generalised solutions to (3.1.1) and (3.1.4) (or (3.1.2)).
We con�ne ourselves to merely mentioning that in the scalar case,1 -Harmonic



to these projections,

Du 
 Du : D2u +
jDuj2

p � 2
[[Du]]k� u = �

jDuj2

p � 2
[[Du]]?� u:

The mutual perpendicularity of the vector �elds of the left and right hand side
leads via a renormalisation argument (see e.g. [49, 52, 53]) to the equivalence of
the p-Laplacian with the pair of systems

Du 
 Du : D2u +
jDuj2

p � 2
[[Du]]k� u = 0 ; jDuj2[[Du]]?� u = 0: (3.1.9)

The 1 -Laplacian corresponds to the limiting case of (3.1.9) asp ! 1 , which
takes the form

Du 
 Du : D2u = 0 ; jDuj2[[Du]]?� u = 0: (3.1.10)

Hence, the1 -Laplacian (3.1.4) actually consists of the two independent systems
in (3.1.10) above. The systemjDuj2[[Du]]?� u = 0 is, at least on f Du 6= 0g,
equivalent to (3.1.1). Note that in the scalar case ofN = 1 as well as in the case
of submersion solutions (forN � n), the second system trivialises.

We conclude the introduction with a geometric interpretation of the nonlinear
system (3.1.1), which can be expressed in a more geometric language as follows:1

Suppose thatu(
) is a C2 manifold and let A (u) denote its second fundamental
form. Then

[[Du]]?� u = � tr A (u)(Du; Du):

The tangential part [[Du]]k� u of the Laplacian is commonly called thetension �eld
in the theory of Harmonic mapsand is symbolised by� (u) (see e.g. [69]). Hence,
we have the orthogonal decomposition

� u = � (u) � tr A (u)(Du; Du):

Therefore, in the case of higher regularity of the image ofu, we obtain that the
nonlinear system

� u = � (u) in 
 ; (3.1.11)

is a further geometric reformulation of our PDE system (3.1.1).

3.2 Proofs

In this section we prove the results of this paper. Before delving into that, we
present a result of independent interest in which we represent explicitly the vector
�eld A arising in the parametric system � u = D u A, in the illustrative case of
n = 2.

We will be using the symbolisations \cof",\det" and \rk" to denote the cofactor

1This fact has been brought to our attention by Roger Moser.
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matrix, the determinant function and the rank of a matrix, respectively.

3.2.1 Lemma [Representation of A]

Let u 2 C2(
 ; RN ) be given, 
 � R2 open,N � 2. The following are equivalent:

1. The mapu is a solution to the PDE system (3.1.1).

2. There exists a vector �eld A :R2 � 
 �! RN such that

� u = D u A in 
 :

In (2), as A one might choose

�A :=

8>>>>>><>>>>>>:

cof
�
Du>Du

�>
det
�
Du>Du

� (Du)>� u; on f rk(Du) = 2 g;

(� u)>
Du Du>

jDu Du>j2
Du; on f rk(Du) = 1 g;

0; on f rk(Du) = 0 g:

A is uniquely determined onf rk(Du) = 2 g but not on f rk(Du) < 2g and any
other A has the form �A + V, whereV(x) lies in the nullspace of Du(x), x 2 
.

3.2.2 Proof of Lemma 3.2.1

The equivalence between (1)-(2) is immediate, therefore it su�ces to show that
�A satis�es � u = D u �A and is unique onf rk(Du) = 2 g. Let A be as in (2). On
f rk(Du) = 2 g, the 2 � 2 matrix-valued map Du>Du is invertible and

�
Du>Du

��1
=

cof
�
Du>Du

�>
det
�
Du>Du

� :

Since Du>� u = D u>Du A, we obtain that A = �A.

The claim being obvious forf rk(Du) = 0 g = f Du = 0g, it su�ces to consider
only the set f rk(Du) = 1 g in order to conclude. Thereon we have 0 Td cu45dja(20sy 0 Td d cu45dja(20sy 0 Td d cu45urea/F41 11 .9552 Tf 5a6)058 0 Td [(f)]TJ/F41 ]TJ/F49 73441 ]-<ritte6(lies)b)-096 033.8Tf ]TJ -300.694 5.978 0 Td [(D)]TJ/F20 11.9552 Tf 8.94 0 Td [(u)]TJ/F41 11.9552 Tf 9.6(map)-326(D)]TJ/F202 11.9552 Tf 9.30 4.339 Td [(2)]TJ/F24 3489552 Tf 12.62 0 Td 0(�)]TJ/F41 11..9552 Tf a.755 0 Td [(u;)]TJ/F41 10959552 Tf 9.8541 0 Td [(N)]TJ/F24 165552 Tf 104.647 0 Td [(f)]TJ/F41 11.9552 Tf 5.977 0 Td [(rk(D)]TJ/F20 11.9552 Tf 24.223 0 Td [(u)]TJ/F41 11.9552 Tf 6.663 0 Td [())-278(=)-277(1)]TJ/F24 11.9552 Tf 26.151 0 Td [(g)]TJ/F20 1189552 Tf 5.977 0 Td [(;)]TJ/F41 91.2.9550 11f -3.087f-327(v8(som0 G
 [-48(non2)-326(nishi25(tg [-48(e)-325a)-327(v)28(ectors2 0 Td 0(�)]TJ/F410 19139552 Tf 9.30 4.339 Td [(u)]TJ/F41 6.9552 Tf 1ertible)-)-367(D)]TJ/F20 1779552 Tf 1a.223 0 Td [(u)]TJ/F41 14.9552 Tf 8.co)9(By)-326(maplac)-35ble)- Du2>u
>1frk(Du �



and hence� � � u = � j� j2 and also� > Du = aj� j2. On the other hand, since

Du Du> = ( � 
 a)(a 
 � ) = � 
 �;
�
�Du Du>

�
� = j� j2

we infer that

A = �a =
�

� u � �
j� 2j

� �
� > Du
j� 2j

�
=

� u> (� 
 � ) Du
j� 
 � j2

= (� u)> Du Du>

jDu Du> j2
Du;

as claimed.

We now continue with the proof of the main results.

The main analytical tool needed in the proof of Theorem 3.1.2 is the next
rigidity theorem for maps whose gradient has rank at most one. It was established
in [53] and we recall it below for the convenience of the reader and only in the case
needed in this paper.

3.2.3 Theorem [Rigidity of Rank-One maps, cf. [53]]

Suppose 
 � Rn is an open set andu is in C2(
 ; RN ). Then, the following are
equivalent:

(i) The map u satis�es that rk( Du) � 1 on 
. Equivalently, there exist vector �elds
� : 
 �! RN and a : 
 �! Rn with a 2 C1(
 ; Rn ) and � 2 C1(
 n f a = 0g; RN )
such that

Du = � 
 a; on 
 :

(ii) There exists Borel subsetf B i gi 2 N of 
 such that


 =
1[

i =1

B i

and eachB i equals a non-empty connected open set with a (possibly empty) bound-
) ansati552 Tf -232.047 -35.157 Td [(and)-224(eac)28(h)]TJ/F20 11.9552 Tf 46.645 0 11.9552 Tf 9.26 0 -274(fis)-386(in)]TJ/F20825 0 1achthat2



the same properties as above if 
 is contractible (namely, homotopically equivalent
to a point).

We may now prove our �rst main result.

3.2.4 Proof of Theorem 3.1.2

Suppose thatu : Rn � 
 �! RN is a solution to the nonlinear system (3.1.1) in
C2(
 ; RN ) which in addition satis�es that rk(D u) � 1 in 
. Since f Du = 0g is
closed, necessarily its complement in 
 which isf rk(Du) = 1 g is open.

By invoking Theorem 3.2.3, we have that there exists a partition of the open
subsetf rk(Du) = 1 g to countably many Borel sets (B i)11 with respective functions
(f i)11 and curves (� i)11 as in the statement such that (3.2.1)-(3.2.2) hold true and
in addition

Df i 6= 0 on B i; i 2 N:

Consequently, on eachB i we have

[[Du]]? = [[( � 0i � f i) 
 Df i]]? = I �
(� 0i � f i) 
 (� 0i � f i)

j� 0i � f ij2
;

� u = ( � 00i � f i)jDf ij2 + ( � 0i � f i)� f i:

Hence, (3.1.1) becomes�
I �

(� 0i � f i) 
 (� 0i � f i)



Supposeu is as in the statement of the corollary. By Theorem 3.2.3, there exists,
a partition of 
 to Borel sets f B igi2N



respectively. Let f � denote the� -component off , � = 1; :::; N .. By subtracting
(3.2.5) from (3.2.6) we get fort 6= 0 that

2
f 00�(z + t) � f 00�(z)

t
=
�

a(z + t; z) + b(z; z + t)
� f 0�(z + t) � f 0�(z)

t

+ f 0�(z)
�

a(z + t; z) � a(z; z + t)
t

+
b(z; z + t) � b(z + t; z)

t

�
(3.2.7)

for � = 1; :::; N: On the set f f 0� = 0g, equation (3.2.7) becomes

2f 000� (z) =
�
�a(z; z) + �b(z; z)

�
f 00�(z) (3.2.8)

as t ! 0. Note also that f f 0� = 0g is closed and its complementf f 0� 6= 0g is open.
Now let us set

C�(z; t) :=
a(z + t; z) � a(z; z + t)

t
+

b(z; z + t) � b(z + t; z)
t

:

On f f 0� 6= 0g, (3.2.7) yields that

C�(z; t) =
1

f 0�(z)

�
2

f 00�(z + t) � f 00�(z)
t

�
�

a(z+ t; z) + b(z; z+ t)
� f 0�(z + t) � f 0�(z)

t

�
:

Fix an index � 2 f 1; :::; Ng, � > 0, an in�nitesimal sequence (tm)11 and consider
the inner � -neighbourhoodO� of the set f f

�0



as m ! 1 along a subsequence of indices (mk)11 . As a result, (3.2.7) becomes

2f 000� (z) =
�
�a(z; z) + �b(z; z)

�
f 00�(z) + f 0�(z) �C�(z) on f f 0� 6= 0g; (3.2.10)

for any � = 1; :::; N: Combining equations (3.2.8) and (3.2.10), we infer that there
exist measurable functionsA; B : R �! R such that

f 000 = Af 0 + Bf 00 a.e. onR: (3.2.11)

The goal in now to show that (3.2.11) implies that the torsion of the curvef
vanishes, at least on a union of subintervals ofR. The idea to project on three-
dimensional subspaces ofRN in order to utilise standard ideas of elementary dif-
ferential geometry of curves.

To this end, let P3 : RN �! RN be the orthogonal projection on a 3D subspace
V3 � P3(RN ) of RN : The choice of 3-dimensional subspaces owes to the fact that
we would like to use the classical formulas of di�erential geometry of curves in the
Euclidean space. Then,P3



Chapter 4

Explicit 1 -harmonic functions in
high dimensions

4.1 Introduction

Let 
 � Rn be an open set andu 2 C2(
) a continuous twice di�erentiable
function. In this paper we study the existence of solutions to the PDE

� 1u :=
nX

i;j=1

Diu Dju D2
iju = 0 (4.1.1)

of the form

u(x) =
nY
i=1

f i(xi);

where f i are possibly non-linear for 1� i � n



utilised (see e.g. [54]).

In this paper all the separated1 -harmonicfunctions are found for n = 2 in
polar coordinates and for alln � 2 in cartesian coordinates. Some of these new
solutions derived herein coincide with previously known classes of solutions. For
instance, the well-known G. Aronsson's solutionu(x; y) = jxj

4
3 � j yj

4
3 which has a

C1;1=3 regularity, described in Remark 4.2.2. Also M.-F. Bidaut-Veron, M. Garcia
Huidobro and L. Veron have found solutions in [20] which coincide with �rst two
solutions of the theorem 4.1.1



following

ln jtj + c =



and

jf j(xj)j = jf j(x0
j )j e

Z xj

x0
j

Fj(t) dt
;

whereFj satis�es

t + c = �
1



Case (A) Let � � A andG � B , then (4.2.3) givesA � B � 0 orA2� A+ B 2 = 0
which can be rewritten as (A � 1

2
)2 + B 2 = 1

4
and as the consequent of substitutions

f (r ) = rA and g(� ) = eB� up to a constants.



Case (D) Let � and G be non-constant functions, then there existr1 6= r2 and
� 1 6= � 2 such that �( r1) 6= �( r2) and G(� 1) 6= G(� 2) satisfying (4.2.3). Thus

r1�( r1)2� r (r1)� � 3(r1)+�( r1)4+2�( r1)2G(� )2+ G(� )2G� (� )+ G(� )4� �( r1)G(� )2 =0
(4.2.8)

r2�( r2)2� r (r2)� � 3(r2)+�( r2)4+2�( r2)2G(� )2+ G(� )2G� (� )+ G(� )4� �( r2)G(� )2 =0:
(4.2.9)

Subtracting (4.2.8) and (4.2.9) we get for any�

G2(� )(�( r1) � �( r2))(2(�( r1) + �( r2)) � 1) = r2� 2(r2)� r (r2) � �( r2)3 + �( r2)4

� r1� 2(r1)� r (r1) + �( r1)3 � �( r1)4:
(4.2.10)

Let's consider two cases.

Case (I) If there existsr1 6= r2 such that 2(�( r1) + �( r2)) � 1 6= 0, then (4.2.10)
gives that G2(� ) is a constant, henceG(� ) is a step function.

Case (II) For any r1 6= r2 we have 2(�( r1) + �( r2)) � 1 = 0, hence �( r ) is a
step function.

For both cases we have a contradiction toC1;� regularity for 1 -Harmonic func-
tions in two dimensions (see [39], [75]), since �(r ) = 1

r
ur
u and G(� ) = u �

u have to
have at leastC0;� regularity.

Finally integrating f 0

f = �
r , g0

g = G and substituting we getjf (r )j = jf (r0)je
Rr

r 0

�( t )
t dt

and jg(� )j = jg(� 0)je
R�

� 0
G(t)dt , which completes the proof.

4.2.2 Remark [The Arronson solution]

Let A = 4
3 in the Theorem 4.1.1ii, thenA2 � A > 0 and function G satis�es

t + c = � arctan
3
4

G(t) +
1
2

arctan
3
2

G(t);

which can be rewritten as

27G3(t) + 54G2(t) tan 2(t + c) + 32 tan 2(t + c) = 0 :

Solving a third degree equation with respect toG(t), we get

G(t) = �
4
3

tan
1
3 (t + c) + tan

5
3 (t + c) + tan( t + c)

1 � tan2(t + c)
:

Therefore

Z
G(t) dt = ln

�
�
�
�
�

�
1 � tan

2
3 (t + c)

��
1 + tan

2
3 (t + c)

� 1
3

�
tan

4
3 (t + c) � tan

2
3 (t + c) + 1

� 2
3

�
�
�
�
�
+ c:
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Hence

e
R �
�0
G(t) dt =

j1 � tan
2
3 (� + c)jj1 + tan

2
3 (� + c)j

1
3

j tan
4
3 (� + c) � tan

2
3 (� + c) + 1 j

2
3

� c(� 0)

=
j1 � tan

4
3 (� + c)j

j1 + tan 2(� + c)j
2
3

� c(� 0)

=
�� cos

4
3 (� + c) � sin

4
3 (� + c)

�� � c(� 0):

We can ignorec(� 0) since if c1u + c2 is a solution thenu is also a solution.

Finally

jg(� )j = jg(� 0)je
R �
�0
G(t)dt

= jg(� 0)j
��� cos

4
3 (� + c) � sin

4
3 (� + c)

���;
jf (r )j = r

4
3 :

Thus, one of the possible solutions is

u(r; � ) = f (r )g(� )

= r
4



4.2.5 Proof of Theorem 4.1.3

We can assume thatu 6= 0 since if u is a solution thenu + c is also a solution then
equation (4.1.4) can be written as

nX
i;j=1

Diu
u

Dju
u

D2
iju

u
= 0: (4.2.11)

Let Fi = Diu
u

then DiFi + F 2
i = Diiu

u
and FiFj = Diju

u
. Thus (4.2.11) becomes 

nX
i=1

F 2
i (xi)

!2

+
nX
i=1

F 2
i (xi)D iFi(xi) = 0 : (4.2.12)

Sinceu(x) =
nY
i=1

f i(xi), then Fi depends only onxi, consequently

DiFi(xi) = F 0i (xi):

Set x1, x2 2 
 such that x1 = ( x1; x2; :::; x1
j ; :::; xn) and x2 = ( x1; x2; :::; x2

j ; :::; xn),
wherex1

j 6= x2
j in (4.2.12) and subtract these two equations. We �nd�
F 2
j (x1

j ) � F 2
j (x2

j )
��

2
X
i 6=j

F 2
i (xi) + 2 F 2

j (x1
j ) + 2 F 2

j (x1
j )
�

+

F 2
j (x1

j )F
0
j(x

1
j ) � F 2

j (x2
j )F

0
j(x

2
j ) = 0 ;

assumingF 2
j (x1

j ) 6= F 2
j (x2

j ), we have

2
X
i 6=j

F 2
i (xi) = �

F 2
j (x1

j )F
0
j(x

1
j ) � F 2

j (x2
j )F

0
j(x

2
j )

F 2
j (x1

j ) � F 2
j (x2

j )
� 2F 2

j (x1
j ) � 2F 2

j (x1
j ): (4.2.13)

LHS of (4:2:13) does not depend onx1
j and x2

j soX
i 6=j

F 2
i (xi) � c

for all xi. Then Fi(xi) = Ai, where Ai is a constant for all 1� i 6= j � n and
hencejf i(xi)j = jf i(x0

i )j eAi(xi�x
0
i ). Thus (4:2:12) gives X

i 6=j

A2
i + F 2

j (xj)

!2

+ Fj(xj)2F 0j(xj) = 0 ;
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consequently

dxj = �
F 2
j X

i 6=j

A2
i + F 2

j

!2 dFj;

hencejf j(xj)j = jf j(x0
j )j e

Z xj

x0
j

Fj(t) dt
, whereFj(t) satis�es

t + c = �
1

2
sX

i 6=j

A2
i

arctan
Fj(t)sX
i 6=j

A2
i

+
Fj(t)

2
�X

i 6=j

A2
i + F 2

j (t)
� ; if

X
i 6=j

A2
i 6= 0:

Otherwise (i.e. if
X
i 6=j

A2
i = 0)

F 4
j (xj) + F 2

j (xj)F 0j(xj) = 0 ;

so
F 2
j (xj) + F 0j(xj) = 0 ; since we assumeF 2

j (x1
j ) 6= F 2

j (x2
j ): (4.2.14)

Solving (4.2.14) we getFj(xj) = 1
xj+c

. Hence jf i(xi)j = ci for all i 6= j and





Figure 4.2: The approximation tou of the Theorem 4.1.1 ii, depending
on the parameterA.

(a) A = 4=3,
min = 0, max = 6

(b) A = 1:15,
min = 0, max = 7

(c) A = 1,
min = 0, max = 10

(d) A = 1=3,
min = 0, max = 3

(e) A = 0:15,
min = 0, max = 1.8

(f) A = 0,
min = 1, max = 39

(g) A = � 0:15,

1

5

,



Figure 4.3: The approximation tou of the Theorem 4.1.1 iii, depending
on the parameterB .

(a) B = � 1=3,
min = 0.12, max = 20

(b) B = � 1=2,
min = 0.04, max = 12

(c) B = 0,
min = 1, max = 40

(d) B = 1=3,
min = 1, max = 163.58

(e) B = 1=2,
min = 1, max = 293.26

(f) B = 1,
min = 1, max = 2304

Figure 4.4: The approximation tou of the Theorem 4.1.2 i, depending
on the parameterA.

(a) A = � 0:5,
min = 0.0067, max = 663

(b) A = � 0:25,
min = 0.0821, max = 76

(c) A = � 0:05,
min = 0.0665, max = 21

(d) A = 0,
min = 1, max = 100

(e) A = 0:05,
min = 0.6065, max = 21

(f) A = 0:25,
min = 0.0821, max = 76
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5.1.1 De�nition [Absolute Minimiser]

Let u 2 W 1;1
loc (
; RN ). We say that u is an absolute minimiserof (5.1.1) on 
 if

8 O b 
 ;
8 � 2 W 1;1

0 (O; RN )

�
=) E1(u; O) � E1(u + �; O): (5.1.2)

In the scalar case ofN = 1, Aronsson's concept of absolute minimisers turns out
to be the appropriate substitute of mere minimisers. Indeed, absolute minimisers
possess the desired uniqueness properties subject to boundary conditions and,
most importantly, the possibility to characterise them through a necessary (and
su�cient) condition of satisfaction of a certain nonlinear nondivergence second
order PDE, known as the Aronsson equation ([3, 13, 15{18, 25{27, 29, 48, 68, 78]).
The latter can be written for functions u 2 C2(
) as

HP (�; u; Du) � D
�
H(�; u; Du)

�
= 0: (5.1.3)

The Aronsson equation, being degenerate elliptic and non-divergence when for-
mally expanded, is typically studied in the framework of viscosity solutions. In
the above, HP ; H�; Hx denotes the derivatives of H(x; �; P ) with respect to the
respective arguments and \�" is the Euclidean inner product.

In this paper we are interested in characterising appropriately de�ned minimis-
ers of (5.1.1) in the general vectorial case ofN � 2 through solvability of associated
PDE systems which generalise the Aronsson equation (5.1.3). As the wording sug-
gests and we explain below, whenN � 2 Aronsson's notion of De�nition 5.1.1 is
no longer the unique possibleL1 variational concept. In any case, the extension
of Aronsson's equation to the vectorial case reads

HP (�; u; Du) D
�
H(�; u; Du)

�
+ H( �; u; Du) [HP (�; u; Du)]?

�
Div
�
HP (�; u; Du)

�
� H�(�; u; Du)

�
= 0:

(5.1.4)

In the above, for any linear mapA : Rn �! RN , [A]? symbolises the orthogonal
projection ProjR(A)? on the orthogonal complement of its range R(A) � RN . We
will refer to the PDE system (5.1.4) as the \Aronsson system", in spite of the fact
it was actually derived by N.Katzourakis in [49], wherein the connections between
general vectorial variational problems and their associated PDEs were �rst studied,
namely those playing the role of Euler-Lagrange equations inL1. The Aronsson
system was derived through the well-known method ofL p-approximations and is
being studied quite systematically since its discovery, see e.g. [49]-[50], [57, 66].
The additional normal term which is not present in the scalar case imposes an
extra layer of complexity, as it might be discontinuous even for smooth solutions
(see [50, 53]).

For simplicity and in order to illustrate the main ideas in a manner which min-
imises technical complications,in this paper we restrict our attention exclusively to

53



regular minimisers and solutions. In general, solutions to (5.1.4) are nonsmooth
and the lack of divergence structure combined with its vectorial nature renders
its study beyond the reach of viscosity solutions. To this end, the theory ofD-
solutions introduced in [57] and subsequently utilised in several works (see e.g.
[14, 31, 56, 57]) o�ers a viable alternative for the study of general locally Lipschitz
solutions to (5.1.4), and in fact it works far beyond the realm of Calculus of Vari-
ations in L1. We therefore leave the generalisation of the results herein to a lower
regularity setting for future work.

Additionally to absolute minimisers, for reasons to be explained later, in the
paper [52] a special case of the nextL1 variational concept was introduced (therein
for H(x; �; P ) = jPj2):

5.1.2 De�nition [ 1 -Minimal Map]

Let u 2 C1(
; RN ). We say that u is an 1 -minimal map for (5.1.1) on 
 if (i)
and (ii) below hold true:

(i) u is a rank-one absolute minimiser, namely it minimises with respect to essen-
tially scalar variations vanishing on the boundary along �xed unit directions:

8 O b 
 ; 8 � 2 RN

8 � 2 C1
0 (O; span[� ])

�
=) E1(u; O) � E1(u + �; O): (5.1.5)

(ii) u has 1 -minimal area, namely it minimises with respect to variations which
are normal to the range of the matrix �eld HP (�; u; Du) and free on the boundary:

8 O b 
 ; 8 � 2 C1(Rn; RN )
with � >HP (�; u; Du) = 0 on O

�
=) E1(u; O) � E1(u + �; O): (5.1.6)

In the above,

C1
0 (O; RN ) :=

�
 2 C1(Rn; RN ) :  = 0 on @O

	
:

=
1





(II) If u has1 -minimal area for (5.1.1) on 
 (De�nition 5.1.2(ii)), then it solves

H(�; u; Du) [[HP (�; u; Du)]]?
�

Div
�
HP (�; u; Du)

�
� H�(�; u; Du)

�
= 0 on 
 : (5.1.9)

The converse statement is true if in addition for anyx 2 
, H( x; �; �) is convex on
Rn � RN�n.

(III) If u is 1 -minimal map for (5.1.1) on 
, then it solves the (reduced) Aronsson
system

A1u := H P (�; u; Du) D
�
H(�; u; Du)

�
+ H( �; u; Du) [[HP (�; u; Du)]]?

�
Div
�
HP (�; u; Du)

�
� H�(�; u; Du)

�
= 0:

The converse statement is true if in addition H does not depend on� 2 RN ,
HP (�; Du) has full rank on 
 and for any x 2 
 H (x; �) is convex inRN�n.

The emergence of two distinct sets of variations and a pair of separate PDE
systems comprising (5.1.4) might seem at �rst glance mysterious. However, it is
a manifestation of the fact that the (reduced) Aronsson system in fact consists
of two linearly independent di�erential operators because of the perpendicularity
between [[HP ]]? and HP ; in fact, one may split A1u = 0 to8<: HP (�; u; Du) D

�
H(�; u; Du)

�
= 0;

H(�; u; Du) [[HP (�; u; Du)]]?
�

Div
�
HP (�; u; Du)

�
� H�(�; u; Du)

�
= 0:

Theorem 5.1.4 makes clear that Aronsson's absolute minimisers donot charac-
terise the Aronsson system whenN � 2, at least when the additional natural
assumptions hold true. This owes to the fact that, unlike the scalar case,the
Aronsson system admits arbitrarily smooth non-minimising solutions, even in the
model case of the1 -Laplacian. For details we refer to [66].

Since Aronsson's absolute minimisers do not characterise the Aronsson system,
the natural question arises as to what is their PDE counterpart. The next theorem
which is our second main result answers this question:

5.1.5 Theorem [Divergence PDE characterisation of Abso-
lute minimisers]

Let u : Rn � 
 �! RN be a map inC1(
; RN ). Fix also O b 
 and consider the
following statements:

(I) u is a vectorial minimiser of E1(�; O) in C1
u(O; RN )1.

1We remind the reader that u 2 C1
g (O; RN ) means u � g 2 C1

0 (O; RN ).
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(II) We have

max
ArgmaxfH(�;u;Du) :Og

h
HP (�; u; Du) : D + H �(�; u; Du) �  

i
� 0;

for any  2 C1
0 (O; RN ).

(III) For any  2 C1
0 (O; RN ), there exists a non-empty compact set

K � K � Argmax
�

H(�; u; Du) : O
	

(5.1.10)

such that, �
HP (�; u; Du) : D ) �



u(x; y) = jxj4=3 � j yj4=3, as well as for any other1 -Harmonic function which is
nowhere Eikonal (i.e.jDuj is non-constant on all open subsets).

We conclude this introduction by noting that the two vectorial variational con-
cepts we are considering herein (De�nitions 5.1.1-5.1.2) do not exhaust the plethora
variational concepts inL1. In particular, in the paper [76] the concept oftight
mapswas introduced in the case of H(x; �; P ) = kPk wherek � k is the operator
norm on RN�n. Additionally, in the papers [14, 56] a concept of special a�ne vari-
ations was considered which also characterises the Aronsson system, in fact in the
generality of merely locally LipschitzD-solutions. Finally, in the paper [12] new
concepts of absolute minimisers for constrained minimisation problems have been
proposed, whilst results relevant to variational principles inL1 and applications
appear in [21, 22, 26, 45, 73, 74].

5.2 Proofs and a maximum-minimum principle
for H (�; u; Du)

In this section we prove our main results Theorems 5.1.4-5.1.5. Before delving into
that, we establish a result of independent interest, which generalises a correspond-
ing result from [52].

5.2.1 Proposition [Maximum-Minimum Principles]

Suppose Letu 2 C2(
; RN ) be a solution to (5.1.8), such that H satis�es

(a) HP (�; u; Du) has full rank on 
,

(b) there existsc > 0 such that�
� >HP (x; �; P )

�
�
�
� >P) � c

��� >HP (x; �; P )
��2;

for all � 2 RN and all (x; �; P ) 2 
 � RN � RN�n.

Then, for any O



5.2.2 Lemma

Let u 2 C2(
; RN ). Consider the parametric ODE system(
_
 (t) = � >HP (�



We will now show that the trajectory 
 (t) reaches@O in �nite time. To this end,
we estimate

kDukL1(O)diam(O) � k DukL1(O)

��
 (t) � 
 (0)
��� �

���� d
dt

���
t̂
� >u(
 (t))

���� t;
for somet̂ 2 (0; t), by the mean value theorem. Hence,

kDukL1(O)diam(O) �

���� d
dt

���
t̂
� >u(
 (t))

���� t
=
���� >Du(
 (t̂)) � _
 (t̂)

��� t
=
���� >Du(
 (t̂)) �

�
� >HP (�; u; Du)

��

(t̂)

���� t
� c0

���� >HP (�; u; Du)
��

(t̂)

���2t
� (c0c2

1) t:

This proves the desired claim. Further, sinceu solves (5.1.8), by (5.2.4) of Lemma
5.2.2 it follows that H(�; u; Du) is constant along the trajectory. Thus, if x 2 O
is chosen as a point realising either the maximum or the minimum inO, then by
moving along the trajectory, we reach a pointy 2 @O such that H(�; u; Du)

��
x

=
H(�; u; Du)

��
y
. This establishes both the maximum and minimum principle. The

proposition ensues.

5.2.5 Remark [Danskin's theorem]

The central ingredient in the proofs of Theorems 5.1.4-5.1.5 is the next consequence
of Danskin's theorem: for anyO b 
 and any u; � 2 C1(
; RN ), we have the
identities8>><>>:

d
dt

���
t=0+

E1(u + t�; O) = max
O(u)

�
HP (�; u; Du) : D� + H �(�; u; Du) � �

�
;

d
dt

���
t=0�

E1(u + t�; O) = min
O(u)

�
HP (�; u; Du) : D� + H �(�; u; Du) � �

�
;

(5.2.6)

where
O(u) := Argmax

�
H(�; u; Du) : O

	
:

Indeed, by [34



This establishes the �rst identity of (5.2.6). The second one follows through the
substitutions � ; � � , t ; � t.



satis�ed at x�. If on the other hand

D
�
H(�; u; Du)

���
x�

6= 0

then @H(x�) is a C1 manifold nearx� and the gradient above is the normal vector
at the point x�. Due to the interior sphere condition, this implies that this is also
the normal vector to the sphere@B�(x) at x�. Thus, there exists� 6= 0 such that

x� � x = � D
�
H(�; u; Du)

���
x�

: (5.2.10)

By inserting (5.2.10) into (5.2.9) and noting that jx� � xj = � , we infer that

2� � >
�

HP (�; u; Du)D
�
H(�; u; Du)

����
x�

= 0:

By dividing by 2� and letting � ! 0, we deduce that (5.1.8) is satis�ed at the
arbitrary x 2 
.

Conversely, suppose thatu satis�es (5.1.8) on 
, together with the additional
assumptions of the statement. FixO b 
 and � 2 C1

0 (O; span[� ]). Without loss
of generality, we may supposeO is connected. Since� = ( � >� )� , for convenience
we set g := � >� and then we may write � = g� with g 2 C1

0 (O). Then, the
matrix-valued map HP (�; Du) is pointwise left invertible. Therefore, by (5.1.8)�

HP (�; Du)
��1

HP (�; Du) D
�
H(�; Du)

�
= 0 on O;

which, by the connectivity of O, gives

H(�; Du) � const onO:

Sinceg 2 C1(Rn) with g = 0 on @O, there exists at least one interior critical point
�x 2 O such that Dg(�x



HP (�; u; Du)> at x. This implies that there exists aC1 extension �� 2 C1(Rn; RN )
such that �� (x) = � and (�� )>HP (�; u; Du) = 0 on the closed ball �B"(x) for some
" 2 (0; � ). By di�erentiating the relation ( �� )>HP (�; u; Du) = 0 and taking its
trace, we obtain

�� � div
�
HP (�; u; Du)

�
+ D �� : HP (�; u; Du) = 0 ; (5.2.11)

on �B"(x). Since u has 1 -minimal area and �� is an admissible normal variation,
by using Remark 5.2.5 and arguing as in the beginning of part (I), it follows that�

�� � H�(�; u; Du) + D �� : HP (�; u; Du)
����

x"
= 0 (5.2.12)

for somex" 2 (B"(x))( u), where

(B"(x))( u) = Argmax
�

H(�; u; Du) : �B"(x)
	

:

By (5.2.11)-(5.2.12), we infer that

�� (x") �
�

div
�
HP (�; u; Du)

�
� H�(�; u; Du)

����
x"

= 0

and by letting " ! 0, we deduce that

� �
�

div
�
HP (�; u; Du)

�
� H�(�; u; Du)

����
x

= 0;

for any � 2 ~N
�
HP (�; u; Du)>

��
x

�
. Hence,u satis�es (5.1.9) at the arbitrary x 2 
.

Conversely, suppose that�e6e2647 -25.675 Td [(Con)3r0-tlvwse (5.1.9





which evidently satis�es supp(�� ) = f �xg � O (u), we obtain�
HP (�; u; Du) : D� + H �(�; u; Du) � �

����
�x

=
Z
O

�
HP (�; u; Du) : D� + H �(�; u; Du) � �

�
d��

= 0;

for any �x 2 O (u). The conclusion ensues with K =O(u).

(III) = )



yields
0 � f 0(0+) � lim inf

s!0+
ps < 1 :



Chapter 6

Conclusions and future work

6.1 Conclusions

We would like to mention that this thesis is a collection of published papers
presented as chapters consist of original results. This work includes new results in
the �eld of Calculus of Variations in L1. The new results are improved previous
theorems by generalising and relaxing some of the conditions. Chapter 2 and
Chapter 5 are joint papers with my supervisor Dr. N. Katzourakis. Chapter 3 is
a joint paper with Dr. N. Katzourakis and Dr. H. Abugirda. While chapter 4 is
single author paper.

The main result of Chapter 2 is that we characterise local minimiser of the
following functional

E1(u; O) := ess sup
O

H(�; u; Du); u 2 W 1;1
loc (
 ; RN ); O b 
 :

for appropriate classes of a�ne variations of the energy as generalised solutions of
associated PDE system which plays the role of Euler-Lagrange equation. Similar
result was proven for H(x; �; P ) = jPj2 in [53]. That makes our result a gener-
alisation of result in [53] since the Hamiltonian function H depends not only on
gradient of the function but also on the function itself and the domain.

Chapter 3 is the joint paper with Dr. N. Katzourakis and Dr. H. Abugirda. The
author of this thesis gave an idea which partly impacted on the proof of the main
result \Rigidity and 
atness of maps with tangential Laplacian in separated form",
which states let 
 � R2 be an open set and let alsoN � 2. Let u : Rn � 
 �! RN

be a classical solution to the nonlinear system

[[Du]]?� u = 0 in 
 ;

having the separated formu(x; y) = f (x) � f (y), for some curvef 2 (W 3;p \
C2)(R; RN ) and somep > 1. Then, the imageu(
) of the solution is contained in
an at most countable union of a�ne planes inRN .
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Chapter 4 investigated with authors own initiative and he found a new classi-
cal 1 -harmonic functions in high dimensions, particularly when domains are two
dimensional in polar coordinates and at least two dimensional in Cartesian coor-
dinates. The challenges were the technical computations and the regularity of the
solutions on uncertain domains which was assumed to be well de�ned.

We have two main outcomes of Chapter 5 which is a joint paper with Dr. N.
Katzourakis. First result \Variational Structure of Aronsson's system" coincides
with the result in [49] when the Hamiltonian function depends only on the gradient
function, namely H(x; �; P ) = jPj2. The result characterisesC2 1 {minimal maps
as solution of the Aronsson system and vice versa. One of the di�culty of proving
this theorem was that we can not di�erentiate

( �� )>HP (�; u; Du) = 0 :

if �� =2 C1(Rn; RN ). We avoided that using reduced nullspace in the de�nition 5.1.3.
The second result \Divergence PDE characterisation of Absolute minimisers" is a
completely new original result. Lets highlight the main di�erences of this theorem
with previous results. Firstly it has been proved forC1 maps and forC1 variations
vanishing on compactly contained boundaries. Secondly we did not use approxi-
mation techniques of theL p space but rather techniques of theL1 space, namely
Danskin's theorem.

6.2 Future work

We believe that the work in this �eld is interesting and there are still many open
problems one can work on, for example:

1. It is common that a solutions to a PDEs might have less regularity than we
require. So it is natural to work on extending the result of the theorem 5.1.5
from C1 to Sobolev spaces orD-solutions.

2. Theorem 5.1.5 gives us characterization of Absolute minimiser only on Argmax
set. One of the methods to �ll the gap is to study vectorialL1-absolute
minimisers on 
 using vectorial L p-absolute minimisers on 
, i.e. for ev-
ery O b 
 if up is minimiser of Ep(u; O) := jjH(�; u; Du)jjLp(O), then one
can study \convergence" ofup to u1 as p ! 1 , where u1 is minimiser of
E1(u; O) := jjH(�; u; Du)jjL1(O).

3. All known explicit solutions have at leastC1;� regularity. So it is challenging
to �nd explicit solutions of the theorem 5.1.5 and �nd out how and/or why
other results have to fail.
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