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1.2 Microscopic de�nition of stress

As we known, force can be exerted externally on a body in two particular ways.

The gravity and inertia can be thought of as body forces since they act directly

on all individual particles in the body. The other type are surface forces which

act only on the surface of a body, but their e�ect is transmitted to the particles

inside the body through the atomic and molecular bonds. In order to de�ne the

state of stress at a point within the body we consider the surface forces acting

on a small cube of material around that point. We de�ne the stress as the ratio

of the force and the cross-sectional area. Both the force and the cross-sectional

area have direction and magnitude(the direction of the cross-sectional area being

described by its normal unit vector), which make the stress a tensor. The ��-

component of the stress tensor is the force applied in the � direction per unit

of the cross-sectional area of a network perpendicular to the � axis from outside.

In most material the stress tensor is symmetric. We will only consider symmetric

stress tensors in this thesis.

� =

0BBB@
�xx �xy �xz

�xy �yy �yz

�xz �yz �zz

1CCCA (1.3)

In the consideration of the mechanical properties of the polymers, it is useful

to divide the stress tensor into its hydrostatic and deviatoric components. The

hydrostatic pressure p is given by

p =
1

3
(�xx + �yy + �zz) (1.4)

and the deviatoric stress tensor �′ is found by subtracting the hydrostatic stress

components from the overall tensor such that

�′ =

0BBB@
(�xx � p) �xy �xz

�xy (�yy � p) �yz

�xz �yz (�zz � p)

1CCCA (1.5)
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The rheological constitutive equations make the predictions of the stress tensor

�. Now we would like to know how to derive the stress of the system from the
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The simplest model of viscoelasticity is the Maxwell model[1], which com-

bines a perfectly elastic element with a perfectly viscous element in series. Since the

elements are in series, the total shear strain 
 is the sum of the shear strain in each

element 
=
e+
v, both of the elements must bear the same stress �=G
e=� d
v

dt
.

The ratio of the viscosity � and the modulus G de�nes characteristic time scale,

called the relaxation time �=�=G.

1.5.2 Stress relaxation after a step strain

When a step strain was applied at time t = 0, the stress relaxation modulus G(t) is

de�ned as the ratio of the stress remaining at time t and the magnitude of this step

strain 
: G(t) = �(t)=
. For viscoelastic solids, G(t) relaxes to a �nite value, called

the equilibrium shear modulus Geq = limt!1G(t). For viscoelastic liquids, the

Maxwell model can be used to understand the stress relaxation modulus. After

solving a �rst order di�erential equation of the time-dependent strain in the viscous

element, the stress relaxation modulus in this case has a simple exponential decay:

G(t) =
�(t)



= G0 exp(�t=�) (1.10)

The relaxation time � is a fundamental dynamic property of all viscoelastic liquids.

Polymer liquids normally have multiple relaxation modes, each with its own relax-

ation time. Any stress relaxation modulus can be described by a combination of

serial Maxwell elements. Most materials have a region of linear response at su�-

ciently small values of applied strain, where the relaxation modulus is independent

of strain.
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If the applied shear rate is too large for linear response, Boltzmann super-

position no longer holds. Most polymeric liquids exhibit shear thinning of the

apparent viscosity at large shear rates, which means that the viscosity decreases

with increasing the shear rate. The apparent viscosity has also been observed to

increase with the shear rate increase for some materials, which is called shear

thickening.

1.5.5 Oscillatory shear

In practice, the simplest linear viscoelastic measurement is oscillatory shear[2].

A harmonic oscillation of strain with angular frequency ! is applied to a sample

in simple shear: 
(t) = 
0 cos(!t). The principal advantage of this technique is

that the viscoelastic response of any material can be probed directly on di�erent

time scale of interest t � 1=! by varying the angular frequency !. If the material

studied is a perfectly elastic solid, then the stress in the sample will be related to

the strain through Hooke’s law:

�(t) = G0
0 cos(!t):



Chapter 1. Introduction to Molecular Rheology 10

By using Boltzmann superposition integral(Eq.1.12),

�(!; t) =

Z t

�1
G(t� t0) _
(t0)dt0

= �
Z t

�1
G(t� t0)
0! sin(!t0)dt0

= Re

�Z t

�1
G(t� t0)
0i! exp(i!t0)dt0

�
= Re [
0G

�(!) exp(i!t)] (1.18)

where the complex modulus G�(!) is de�ned by:

G�(!) = i!

Z 1
0

G(t) exp(�i!t)dt (1.19)

The form of Eq.(1.18) means that the stress will also be oscillatory at frequency

!, but not in phase with the strain. If we write G�(!) = G0(!) + iG00(!), then we

can identify the real part G0, called the storage modulus, as the in-phase part of

the modulus and the imaginary part G00, called loss modulus, as the out-of-phase

part. Assume G(t)! 0 as t! +1.

G0(!) = !

Z 1
0

G(t) sin(!t)dt (1.20)

G00(!) = !

Z 1
0

G(t) cos(!t)dt (1.21)

In general both will be frequency-dependent, crossing over from viscous behav-

ior at low frequencies to elastic behavior at high frequencies. Then Eq.(1.18) can

be written as following:

�(!; t) = Re [
0G
�(!) exp(i!t)]

= Re [
0(G0(!) + iG00(!)) (cos(!t) + i sin(!t))]

= 
0(G0(!) cos(!t)�G00(!) sin(!t)) (1.22)
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According to Eq.(1.17) and Eq.(1.22), the ideal Newtonian 
uids have a shear

stress that is simply proportional to the current shear rate.

�(t) = �
@


@t
= Re [�i!
0 exp(i!t)])

8><>:G
0(!) = 0

G00(!) = �!

(1.23)

At the opposite material extreme, the ideal elastic solids have a shear stress

that is simply proportional to the current shear strain.

�(t) = G0
 = G0
0Re [exp(i!t)])

8><>:G
0(!) = G0

G00(!) = 0

(1.24)

For the single Maxwell model of a2(or)-67s1(ell)-Td [50
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of the Brownian particles are governed by Newton’s law: f=ma =m�r, where a

is the acceleration vector of the particle. f represents the forces acting on the

particle, which can be divided in random force fR and friction force fF . Note

that now the Brownian motion term is used to describe the random motion of

molecules and atoms as well.

1.6.1 Random force

The random force fR acting on a particle is due to many collisions with the other

molecules surrounding it. The collisions take place very fast and are unpredictable

in nature, so we will consider each of them, fRi, to take place in a random direction
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have

fF = ��v = �� dr
dt

(1.26)

1.6.3 Fluctuation-dissipation theorem

Consider a time-dependent external �eld h(t) is applied to a system in equilib-

rium. A physical observable A is called conjugate to the �eld h if the change of

Hamiltonian due to the �eld h can be written as �H = hA. If the �eld is weak,
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On the other hand, if we apply a sudden step �eld on an equilibrium system

at t=0, Eq.(1.27) turns into

hA(t)ih � hA0i = h

Z t

0

�(t0)dt0 (1.31)

From Eqs.(1.28) and (1.31), we can derive

hA(t)ih � hA0i =
h

kBT
(CAA(0)� CAA(t)) (1.32)

=
h

2kBT
h(A(t)� A(0))2i (1.33)

The 
uctuation-dissipation theorem connects the relaxation from a non-equilibrium

state, which is not far from the equilibrium state, i.e. in linear regime, with the

spontaneous microscopic dynamics in the equilibrium system.

So far, we have the following expression for the forces acting on the Brownian

particles:

f(t)dt = (fR(t) + fF (t))dt = �dW � �dr (1.34)

It is usual to work in the limit of strong friction where inertia term m�r can be
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Figure 1.3: Relationship between friction and random forces

From Eq.(1.33) and the property of Wiener process in one-dimension h(dr)2i=

2D dt where dr is the displacement of the particle during dt and D is the di�usion

coe�cient, the following equation can be derived using h
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where � is the friction coe�cient, m is the monomer mass, U(fRig) is the intra-

chain interaction potential, and W i is a Wiener process for particle i.

1.7 Gaussian chains

1.7.1 Gaussian chain model

In the Gaussian chain model, we forget about the local details of the chain, and

assume that every bond ri is actually the sum of many bond vectors, so that the

probability distribution of ri is Gaussian. The assumption is that the di�erent

bonds along the chain are independent of each other, hri � rji = hrii � hrji if i 6= j.

The bond length is not constant. Each bond is 
exible and follows a Gaussian

distribution:

p(r) =

�
3

2�b2

� 3
2

exp

�
�3r2

2b2

�
(1.41)

with hri= 0 and hr2i= b2. The probability distribution of a given conformation

frig = fr1; : : : ; rNg is:

	(frig) =
NY
i=1

p(ri) =

�
3

2�b2

� 3N
2

exp

 
� 3

2b2

NX
i=1

r2
i

!
(1.42)

It has an important property that the distribution function of the vector be-

tween any two beads of the Gaussian chain is also Gaussian with hRi �Rji = 0

and h(Ri �Rj)
2i = ji� jjb2.

p(Ri �Rj) =

�
3

2�b2ji� jj

� 3
2

exp

�
�3(Ri �Rj)

2

2ji� jjb2

�
(1.43)

In Eq.(1.43), if we set i = N and j = 0, the equation turns into

p(RN �R0) = p(Re) =

�
3

2�Nb2

� 3
2

exp

�
� 3R2

e

2Nb2

�
(1.44)
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Figure 1.5: Rouse model for polymers.

1.7.3 Rouse model

Rouse model, which is a cornerstone of polymer dynamics, was originally proposed

by Rouse[4] in 1953. The model is treated as a collection of N+1 beads connected

by harmonic springs(Fig.1.5), which is de�ned by the equation of motion Eq.(1.40)

without inertia with the simplest possible potential

U(fRig) =
3kBT

2b2

N�1X
i=0

(Ri+1 �Ri) (1.45)

Each bead is characterized by its own independent friction force with the fric-

tion coe�cient �. The total friction coe�cient of the whole Rouse chain is the sum

of the contributions of each of the N + 1 beads: �chain = (N + 1)�. We can write

the stochastic di�erential equation for each bead along the chain:

�dR0 =
3kBT

b2
(R1 �R0)dt+

p
2kBT� dW t0 (1.46)

... =
...

�dRi =
3kBT

b2
(Ri+1 +Ri�1 � 2Ri)dt+

p
2kBT� dW ti (1.47)

... =
...

�dRN =
3kBT

b2
(RN�1 �RN)dt+

p
2kBT� dW tN (1.48)
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where W ti is a vector Wiener processes in terms of the bead number i:

hW tii = 0

hWti�Wt′j�i = �ij��� min(t; t0)

hW ti



Chapter 1. Introduction to Molecular Rheology 20

Figure 1.6: The tube model

chain to move freely along its own contour length but not perpendicular to its

contour(Fig.1.6). A piece of chain which escaped from the tube is assumed to

adopt a random orientation independent of surrounding chains. Merrill et al.[9]
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1.8.1 Primitive chain
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Figure 1.7: The relaxation of the primitive chain.

1.8.2 Reptation

Now we can study the dynamics of the primitive chain. In the beginning, the

original primitive chain is trapped in a tube like region(Fig.1.7(a)). After the

primitive chain moves along the contour length back and forward, which is called

reptation, one end of the chain escapes from the original tube and can adopt

any directions, the other end of the tube disappears as it is evacuated (dashed

line in Fig.1.7(b)). As the chain moves back and forward on both directions, the

tube is destroyed from both ends(Fig.1.7(c)). The time correlation function of the

end-to-end vector Re(t) = R(L; t)�R(0; t) is given by

hRe(t) �Re(0)i = Nb2
X
p=odd

8

p2�2
exp(�p

2t

�d
) (1.56)

The time �d is known as the reptation time and is related to the molecular param-

eters by

�d =
�N3b4

�2kBTa2
= 3Z�R: (1.57)

From Eq.(1.56), we can see that the time correlation function of the end-to-end

vector is dominated by the �rst term with p = 1.

We can introduce a mathematical equation for reptation dynamics:

R(s; t+ �t) = R(s+ �s(t); t) (1.58)
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where �s(t) is the distance that the primitive chain moves in a time interval �t

and it is a Gaussian random variable with

h�s(t)i = 0 (1.59)

h�s(t)2i = 2Dc�t (1.60)

But if s + �s(t) is not between 0 and L, R(s; t + �t) should be on a new tube

segment.

Now we can calculate the mean-square displacement h(R(s; t) �R(s; 0))2i of

the primitive chain segment s. The function ’(s; s0; t) is de�ned as following:

’(s; s0; t) = h(R(s; t)�R(s0; 0))2i (1.61)

The time evolution equation of ’(s; s0; t) is

’(s; s0; t+ �t) = h(R(s; t+ �t)�R(s0; 0))2i

= h(R(s+ �s(t); t)�R(s0; 0))2i (1.62)

= h’(s+ �s(t); s0; t)i (1.63)

=

��
1 + �s

@

@s
+

�s2

2

@2

@s2

�
’(s; s0; t)

�
(1.64)

=

�
1 + h�si @

@s
+
h�s2i

2

@2

@s2

�
’(s; s0; t) (1.65)

And then we can get the equation

@

@t
’(s; s0; t) = Dc

@2

@s2
’(s; s0; t) (1.66)

The initial condition is

’(s; s0; t)jt=0 = js� s0ja: (1.67)

The boundary conditions are

@’(s; s0; t)

@s

����
s=0

= �a; @’(s; s0; t)

@s

����
s=L

= a: (1.68)
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From the calculation of Doi et al.[1], the solution of Eq.(1.66) is

’(s; s0; t) = js� s0ja+
2aDct

L
+
1X
p=1

4La

p2�2
cos
�p�s
L

�
cos

�
p�s0

L

�
(1� exp(�tp2=�d))

(1.69)

For t� �d, ’(s; s; t) is dominated by the terms with large p.

’(s; s; t) � 2a
p
Dct=� (1.70)

For t > �d, ’(s; s; t) is dominated by the terms with p = 1.

’(s; s; t) � 2Dct=Z (1.71)

1.8.3 Contour length 
uctuation(CLF)

In previous sections, the primitive chain was regarded as an inextensible string

of contour length L. In reality, the contour length of the primitive path ought

to be continually 
uctuating around its equilibrium length under the in
uence of

thermal 
uctuations, and 
uctuations sometimes play an important role in various

dynamical properties. Since the primitive chain represents a set of conformations

of the Rouse chain, the probability of a certain conformation of the primitive chain

is proportional to the number of the conformation of the Rouse chain which can

be represented by that primitive chain. If we set the polymer as a random walk

con�ned in a tube, the entropy of the primitive chain was calculated as following[1]:

S(L) = S0 � kB
�

3L2

2Nb2
+ �0

Nb2

a2

�
(1.72)

where S0
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simulations of polymer melts, one has to minimize the �nite size e�ects by using

periodic boundary condition.

1.9.1 Periodic boundary condition

Todd and Daivis[11] indicated the e�ects of periodic boundary condition on the

calculation of the stress tensor of the system. If the number of the particles in the

system and the volume are �nite, the stress tensor can be calculated as following:

���(t) = � 1

V

NX
i=1

R�
i (t)f�i (t) (1.73)

or

���(t) = � 1

2V

NX
i=1

NX
j 6=i

r�ijf
�
ij (1.74)

where �; � are Cartesian coordinates, V is the volume of the system, N is the

number of particles in the system, Ri is the position vector of particle i, f i is

the force on particle i, rij and f ij are the distance vector and force from particle

j to i respectively. However the volume of the system is in�nite under periodic

boundary condition. If we map all the particles into a periodic box, the volume is

�nite. But Eq.(1.73
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where the spring constant k = 30"=�2 and the maximum bond length Rmax = 1:5�,

at which the elastic energy of the bond becomes in�nite. The combination of

ULJ and UFENE leads to an average bond length hl2i1=2 � 0:97�. In addition, a

harmonic bending potential is used to introduce some sti�ness into the polymer

chain.

Ubend =
kb
2

N�1X
i=1

(Ri+1 � 2Ri +Ri�1)2 (1.78)

where Ri is the position vector of ith monomer in the chain. In this way the forces

are pairwise and the bending force on the monomer i is

f ibend = 4kb(Ri+1 +Ri�1 � 2Ri)� kb(Ri+2 +Ri�2 � 2Ri)

Thus, our bending potential corresponds to an attractive harmonic spring 4kb

between the neighbouring monomers and a repulsive harmonic spring kb between

monomers with chemical distance 2.

1.9.3 Equations of motion

The velocity Verlet algorithm is used to integrate the equations of motion of the

monomers. The system is coupled to a Langevin thermostat by the standard

equation,

m �ri = �riU(frig)� � _ri + f i; (1.79)

wherem is the monomers mass and � is the friction coe�cient set to be 0:5(mkBT )1=2=�.

The stochastic force f i is given by a �-correlated Gaussian noise source. The fric-

tion constant � and Langevin noise term f i are introduced to control the temper-

ature and to stabilize the system. They are related by the 
uctuation-dissipation

theorem as hf i(t) � f i(t0)i = 6kBT��(t� t0).



Chapter 1. Introduction to Molecular Rheology 29

1.9.4 Other parameters

The simulations are performed with periodic boundary conditions applied in all

three dimensions of the cubic simulation box. The time step �t = 0:012� is used

in all simulation runs, where � = (m�2=kBT )1=2 is the LJ time unit. The usual

simulations of melts are carried out at a temperature T = "=kB and monomer

number density � = 0:85��3.

1.10 Motivation

The rheology of linear monodisperse polymers in equilibrium is the fundamental
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of their creation and destruction. Microscopic molecular dynamics simulations

are a feasible way to derive these parameters. The shear simulation is also an

intermediate step between the experiments and the simple models. We will discuss

the non-equilibrium study in Chapter 3, developing basic methods to produce non-

linear rheology data from MD simulations.

As discussed before the molecular dynamics simulations are used as an exper-

imental tool to understand the behaviour of polymer melts. Due to the limit of

computer power and the large number of particles, we can not simulate a real sam-

ple at the molecular level. This encourages us to use di�erent models at di�erent

scaling levels, which is also called coarse-grained simulations. The advantage of

this method is that if we are only interested in the macroscopic properties of the

polymer, the same result can be derived by using corresponding coarse-grained sim-

ulations correctly with less variables of the system and shorter simulation times. In

chapter 4, we aim to derive coarse-grained variables from microscopic simulations

in a systematic way and reproduce some quantities in microscopic simulations by

using these variables.



Chapter 2

Orientational relaxation and

coupling in equilibrium polymer

melts

2.1 Overview

Slow relaxation in polymer melts has attracted constant attention of theoreti-

cians for the last 40 years, perhaps partly because it is still lacking a general

framework description. Indeed, melts of short chains are called unentangled and

described by the Rouse theory[4]. Relaxation in melts of longer chains is believed

to be dominated by entanglements, and is consequently described by the tube

theory[14][1], which is a mean �eld description of an entangled system. Based

on the tube theory, the terminal relaxation time �d and the zero shear viscos-

ity �0 are proportional to the cube of the molecular weight Mw in monodisperse

melts. Although experimental data show a slightly larger exponent around 3:4,

the tube theory has been regarded as a theoretical triumph. Many modi�cations

like contour length 
uctuation(CLF)[10][15] and constrai0 G4os15(b)27310
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the entanglement segments. Likhtman and McLeish[17] improved the treatment

of contour length 
uctuations using a combined theoretical and stochastic simu-

lation approach which allows them to obtain an expression for the single chain

relaxation function �(t) without any adjustable parameters and approximations.

They then used the scheme proposed by Rubinstein and Colby[16], which pro-

vides an algorithm for calculating the full relaxation function G(t) from the single

chain relaxation �(t), to include the constraint release mechanism. They pro-

duced excellent agreement between theory and experiment in the linear regime.

All these mechanisms from monodisperse melts should be involved in the study of

polydisperse melts, which would include several other mechanisms.

In order to understand the rheology of polydisperse melts, a simple case of

mixtures of long and short chains should be investigated �rst. The concept of

CR becomes very useful and important for binary blends. After the terminal

relaxation time of the short component, short chains move away and release their

constraint on the long probe chain. The entanglements left in the system are the

ones between the long chains. Then a dilated tube constructed by other long chains

can be introduced. However, the tube dilation was not found useful in entangled

linear monodisperse melts although it was applied to describe the dynamics of

branched polymers successfully[19][20]. Following the initial idea of Marrucci[21],

Doi et al.[22] derived the condition under which the long component in a binary

blend would reptate in a dilated tube. They concluded that the relaxation of a

long chain in binary blend would not be faster than the relaxation in the pure long

chain melt if the Struglinski-Graessley parameter rSG = NlN
2
e =N

3
s is smaller than

one. When rSG > 1, Doi et al. suggested that the long chain would reptate in the
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chosen to be smaller than the entangled length Ne to avoid the complication

associated with the entanglements between long and short chains. They also

studied the homo-mixture of long and short chains of polybutadiene, in which the

short chains were longer than the entangled length Ne[26]. In binary blends with a

Struglinski-Graessley parameter smaller than one, they saw a discernable shift of

the terminal relaxation time with the composition, which contradicts the previous

theories of Viovy et al.[27] and Doi et al.[22].

Wang et al.[28] presented extensive molecular dynamics simulations of the dy-

namics of diluted long probe chains entangled with a matrix of short chains. The

constraint release e�ect in the binary blends was investigated by systematically

reducing the short chain length Ns from the monodisperse case of Ns = Nl to

slightly above one entanglement length. The di�usion of the long chains, mea-

sured by the mean square displacements of the monomers and the centers of mass

of the chains, demonstrated a systematic speed-up relative to the pure reptation

behavior expected for monodisperse melts of su�ciently long polymers. On the

other hand, the di�usion of the matrix chains was only weakly perturbed by the

diluted long probe chains.

The aim of this chapter is to investigate the stress and orientation relaxation

of monodisperse and bidisperse melts in both unentangled and mildly entangled

systems, and to �nd out how the dynamics of each component are a�ected by the

composition of the system. In section 2.2, we will introduce the de�nition of stress

and orientation relaxation functions and cross-correlation functions used in this

thesis. In section 2.3, the stress-optical rule in MD simulations is established. In

sections 2.4 and 2.5, the stress and orientational relaxation of monodisperse and

bidisperse melts are investigated respectively. In section 2.6, we will propose a

universal time-dependent orientational coupling parameter for both monodisperse

and bidisperse melts. Using this universal coupling parameter, the total relaxation

function of binary blends can be obtained from the auto-relaxation function of each

component.
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functions of two monodisperse melts and of their 50% blend, together with ori-

entation relaxation, multiplied by 1=�. We found that �=0:0885 and 1:28 for


exible and semi-
exible Kremer-Grest model at monomer density �=0:85��3 re-

spectively. Three important observations are due: (i) indeed the two relaxation

functions become proportional to each other after about 30 Lennard-Jones time

units, and remain proportional to each other with accuracy better than 1%; (ii)

The stress-optical coe�cient does not depend on chain lengths and (iii) it remains

the same for binary blends, in accordance with experiment. In Fig.2.2 we plot

the stress-optical coe�cient times density as a function of density in both 
exible

and semi-
exible systems. The curve from 
exible system is shifted upward by a

factor of 10 to compare with the ones from semi-
exible system. We can see that

the results behave di�erently in two systems. Thus, studying orientation coupling

should provide useful information for the stress relaxation and rheology.
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Figure 2.3: Mean-square dis-
placement of chain ends and middle

for 
exible chains.
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Figure 2.4: Mean-square dis-
placement of chain ends and middle

for semi-
exible chains.

the random walk in the space and do not feel the connectivity at these short times.

Then the plateaus come out for both middle and end monomers which indicates

that the chains are in Rouse regime. After comparing the maximum for middle

and end monomers, we can see that the mean-square displacement of chain ends

is exactly twice of counterpart of middle section, which can be explained by that

the chain ends only feel the connectivity from one side comparing to from both

sides for middle monomers. Now the curves of entangled systems deviate from

the ones of unentangled systems. A negative slope around �1=4 comes out in

entangled systems which indicates that the chain is trapped in a constraint tube

and reptation and CLF are the only mechanisms in this regime. After the time

when chains are totally relaxed, two curves of middle and ends monomers join

each other and have a positive slope around 0:5 which can be interpreted as the

escape time from the tube.

2.4.2 Storage and loss moduli

We �rst present the storage and loss moduli in 
exible and semi-
exible monodis-

perse melts with di�erent chain lengths in Fig.2.5-2.8. The terminal time and

zero-shear viscosity of di�erent chain lengths and sti�nesses are listed in Table.2.1.

The entanglement lengths Ne of 
exible and semi-
exible chains are around 50 and

15 respectively[30]. From Fig.2.5 and Fig.2.7, G0(!) starts to show a plateau with
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Figure 2.5: G0 of monodisperse
melts of 
exible chains.

1 E - 6 1 E - 5 1 E - 4 1 E - 3 0

Figure 2.6: G00 of monodisperse
melts of 
exible chains.
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Figure 2.7: G0 of monodisperse
melts of semi-
exible chains.
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Figure 2.8: G00 of monodisperse

melts of semi-
exible chains.

increasing chain length. After comparing these two �gures, G0(!) behaves similar

if two chains with di�erent sti�nesses have the same number of entanglements. i.e.


exible chain with N=256 and semi-
exible chain with N=75 both have around

5 entanglements. However, G00(!) have di�erent features with di�erent sti�ness

even if both chains have same number of entanglements. The modulus Gc at the

crossing point is de�ned as

Gc = G0(!c) = G00(!c) � G00max:

In the semi-
exible systems, the amplitude of G00max is almost the same for di�erent

chain lengths which is not true in 
exible systems.
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2.4.3 Orientational relaxation

In order to investigate relaxation coupling between di�erent chains, the total and

self orientational relaxation functions of monodisperse melts are measured in 
ex-

ible and semi-
exible systems. The lines and open symbols in Fig.2.9 and Fig.2.10

are the total relaxation functions S(t) and the self relaxation functions A(t) re-

spectively. We use several Maxwell modes to �t the self relaxation functions A(t)

A(t) =
X
i

Gi exp(�t=�i) (2.18)

where Gi and �i are the plateau modulus and relaxation time of mode i. The

terminal relaxation time �d is the largest �i among all the modes. We can see

that the terminal time �d becomes larger with increasing chain length(Table.2.1).

The ratio of �d and the square of molecular weight are shown in Fig.2.11. As

the molecular weight of one entanglement strand Ne in 
exible and semi-
exible

systems are 50 and 15 respectively, we can see that the data for 
exible chains in

Fig.2.11 remains constant when N<100 which obey the Rouse theory(�d�N2) and

then a slope of 1 comes out when N=256. The semi-
exible data points presented

well entangled systems which obey the reptation theory(�d � N3). However, it

seems that the last points in both systems did not follow the reptation theory.

We suppose the reason is that the simulation time is not long enough to obtain

accurate data for such long chains.

Flexible(kb=0) Semi-
exible(kb=3)
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� = 1:05��3. This is because the monomers are trapped in \cages" created by

other surrounding monomers and spend more times in them before escape, and

the bonds are a�ected in a similar way. Now we are going to ask what will

happen if two components with di�erent chain lengths are mixed. Ylitalo et al.[31]

have shown that the concentration of the short component will strongly a�ect the

relaxation of the long component. Now we would like to investigate how the

composition of binary blends a�ect the dynamics of each component.

2.5 Bidisperse melts

2.5.1 Monomer mean-square displacement

In this section, we will investigate the mean-square displacement of monomers

of each component in semi-
exible binary blends. In Fig.2.13, short and long

components have chain lengths N1 =30; N2 =150 which are shown by lines and

symbols respectively. Di�erent colours indicate di�erent composition of binary

blends. Similar features are observed comparing to the mean-square displacement

of monodisperse melts(Fig.2.4). The dynamics of short chains feels little e�ect

from the composition of the blend. However, the long chains’ properties change
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0 . 0 1 0 . 1

Figure 2.13: Mean-square dis-
placement of short(lines) and
long(symbols) components in
semi-
exible binary blends of

N1=30; N2=150.

Figure 2.14: Mean-square dis-
placement of long chains in semi-

exible binary blends with N2 =

150; ’l=90%.

the g1(t) of long component. In Fig.2.14, the length of long component is N2=150,

the lengths of short component are chosen as 30 and 75. The volume fraction of

long chains ’l is set to 90%. We can see that the mean-square displacement of

middle and end section of long component overlap with each other.

2.5.2 Storage and loss moduli of semi-
exible chains

In this section we will concentrate on the relaxation functions of binary blends.

Because the entanglement length Ne is much larger in 
exible system than in the

semi-
exible system, the chain length would be much longer in 
exible system if

the same number of entanglements is required. So we will only investigate the

semi-
exible binary blends in this section. N1=3; 15; 30; 75 and N2=150 are chosen

for the short and long components respectively.

First the binary blend of N1=30; N2=150 will be investigated, whose compo-

nents have big di�erence of terminal relaxation time. G0 and G00 of the binary

blends with di�erent compositions are shown in Fig.2.15 and Fig.2.16 together

with monodisperse melts of each component. In Fig.2.15, G0 has two clear relax-

ation steps in the blends with ’l=10%; 30%. G00 in Fig.2.16 shows more interesting
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Figure 2.15: G
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Figure 2.21: Total orientational
relaxation function in binary blends
of 
exible chains for di�erent com-

positions.
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1 E - 3
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S(t)t/t 0%

Figure 2.22: Total orientational
relaxation function in binary blends
of semi-
exible chains for di�erent

compositions.

chain. However, at longer times total relaxation is governed only by the long

chains’ relaxation as indicated by the shape of the relaxation functions. The termi-

nal relaxation of the whole system is controlled by the slowest relaxing component

in the blends.

Now we turn our attention to di�erent contributions to the total relaxation

function. All six terms in Eq.(2.15) of 
exible and semi-
exible systems are shown

in Fig.2.23 and Fig.2.24 respectively. Surprisingly, the cross-correlation function

between short and long components does not relax until the relaxation time of the

long chains, which indicates that the coupling is an important relaxation mech-

anism at all times. We can also see that Css(t) is not totally relaxed after the

terminal relaxation time of the short component. It is possibly a result of two

short chains being coupled with long chains at the same time, which makes both

short chains a�ected by

int
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Figure 2.23: All components of
orientation relaxation function of

binary blend of 
exible chains.
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Figure 2.24: All components of
orientation relaxation function of
binary blend of semi-
exible chains.

Figure 2.25: As(t)(symbols) and
Es(t)(lines) of short chains. Di�er-
ent colours are for di�erent concen-

trations of the long chains.
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Figure 2.26: Al(t)(symbols) and
El(t)(lines) of long chains. Di�er-
ent colours are for di�erent concen-

trations of the long chains.

terms:

Es(t) = As(t) + ’sCss(t) + ’lCsl(t) (2.19)

El(t) = Al(t) + ’lCll(t) + ’sCsl(t) (2.20)

Summing up these two equations we can see that Stot(t) = ’sEs(t) + ’lEl(t).

Relaxation functions of short component in 
exible systems are presented in

Fig.2.25 together with its auto-correlation function. In these �gures, the e�ect of

long chains in the system is surprisingly strong, producing a dramatic retardation

in the short component relaxation with increasing concentration of long chains.

After comparing Fig.2.21 and Fig.2.25, we can see that the terminal relaxation
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on large scales, making single chain dynamics Rouse-like at large scales. However,

the fact that each individual chain obeys Rouse dynamics does not mean that

the total stress relaxation is also known: this will only be true if cross-correlation

between the chains are negligible, which as we showed in Figs.2.21-2.24 is clearly

not the case.

The tube theory uses an assumption of chain independence twice: each chain

reptates in its tube independently, and the piece of chain which escaped from

the tube is assumed to adopt a random orientation independent on surrounding

chains. Merrill et al.[9] demonstrated a long time ago that if the second assumption

is violated, the relaxation will be slower than expected from the tube theory. Thus,

the validity of both Rouse and tube theories clearly depends on the coupling and

cross-correlations between orientation relaxation of di�erent chains in the melt.

Various experiments suggested that there is a speci�c interaction in polymer

melts called nematic interaction, which orient the surrounding polymer segments

toward the same direction. Doi et al.[33][34] introduced models which account

for the nematic interaction for reptation and Rouse dynamics. In monodisperse

melts, they found that the stress-optical law was valid in this model, and the

stress-optical coe�cient became larger with increasing strength of the nematic

�eld. The theory was also generalized for binary blends, which showed that the

relaxation of the short chains were not independent of the long chains relaxation

due to the nematic interaction.

Experimentally, orientation coupling was investigated by a combination of di-

electric dichroism and birefringence by Ylitalo et al.[31], and by NMR by Graf et

al.[35]. In the �rst group of experiments, one of the components in binary mix-

ture was labeled and its orientation relaxation was measured after a step-strain

experiment. The labeling was achieved by replacing a portion of hydrogens on

the polymer backbone with deuterium and then performing the measurements at

the infra-red wavelength of the carbon-deuterium vibrational absorption. It was

shown that the short component orientation is not fully relaxed until the longest

relaxation time of the long component, and that the relaxation of short component
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coe�cient " � 0:18 was found. They argued that the di�erence can be explained
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Figure 2.29: g(r; �) of the system
with �=0:6��3.
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Figure 2.30: g(r; �) of the system
with �=0:85��3.

Figure 2.31: g(r; �) of the system
with �=1:15��3.
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Figure 2.32: Bonds positions in
the simulation box of the system

with � = 1:15��3.

g(r; �) was calculated in the systems with di�erent densities(Fig.2.29 and Fig.2.30)

and g(r) =
R �=2

0
g(r; �)d�. From these two �gures, we can see the following general

features:
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would be trapped by the surrounding dumbbells and feel di�cult to jump out the

\cage". The coupling e�ect between two dumbbells at short distance becomes

larger with increasing density. The system crystallized if we increase density to

1:15��3 (Fig.2.32), with dominant orientation being � = 60o, which due to the

spheres are close packed. Now we turn our attention to the same e�ect in polymer

chains.

2.6.2 Short-range orientational coupling

Orientational cooperativity in polymer melts can arise due to short-range forces

acting on the segmental level. It was discussed by Doi et al.[33] that the strength

of this interaction can be measured by using the bulk and shorter component

relaxations after short chain’s relaxation time(Eq.2.22).

In our notations, this coupling parameter " can be expressed as following:

"(t) =
Es(t)

Stot(t)

Stot(0)

Es(0)
=

Es(t)

Stot(t)
=
As(t) + Css(t)’s + Csl(t)’l

Stot(t)
(2.25)

It is shown in Fig.2.33 and Fig.2.34 for di�erent composition of the binary blends of


exible and semi-
exible systems. In 
exible systems, short and long components

have chain lengths N1=10 and N2=100 respectively and all " equal to 0:28 after

short component relaxed. However, this coupling parameters are di�erent in the

particular semi-
exible systems with N1= 5; N2=100 in Fig.2.34. The range of " is

from 0:28 to 0:35 depending on the concentration of the short component, which is

caused by the dynamics of the chain ends. If we use longer short chains(N1=30), "

are the same at di�erent compositions(� 0:35). The results from our simulations

are consistent with Baljon’s results[36].

However, Eq.2.25 does not include the cross-correlation function between the

long chains Cll(t), which is an important contribution to the relaxation function

at longer times. This exclusion indicates that " is not an appropriate parameter

to present coupling e�ect at longer times. And this coupling parameter can only
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Figure 2.33: Coupling parameter
" in binary blends of 
exible chains.
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Figure 2.34: Coupling parameter
" in binary blends of semi-
exible

chains.
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Figure 2.44: Coupling parameter
�(t) of soft potential in monodis-
perse melts of semi-
exible chains.
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Figure 2.45: Prediction from
Eq.(2.30)(lines) and the measured
total relaxation(symbols) of binary

blend of 
exible systems.

must be modi�ed accordingly.

2.6.6 Universality of our coupling parameter

The universality of time-dependent coupling parameter �(t) has non-trivial con-

sequences for polymer blends. Indeed, a requirement that �(t) is the same in

monodisperse melts and in their blends can be written as

1� �(t) =
As(t)’s + Al(t)’l

Stot(t)
=

Amonos (t)

Smonos (t)
=
Amonol (t)

Smonol (t)

) As(t)’s + Al(t)’l
Stot(t)

=
’sA

mono
s (t) + ’lA

mono
l (t)

’sSmonos (t) + ’lSmonol (t)
(2.29)

It immediately follows from here that if the auto-correlation functions are the

same in the mixtures as in the monodisperse systems (As(t) = Amonos (t) which

is true for unentangled systems), the simple mixing rule for the total orientation

relaxation

Stot(t) = ’sS
mono
s (t) + ’lS

mono
l (t) (2.30)
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Figure 2.48: �(t) of 
exible and
semi-
exible chains.
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Figure 2.49: Total relaxation
functions(symbols) and the predic-
tion(lines) of 
exible chains from

Eq.2.38.
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kb Figure 2.50: Total relaxation
functions(symbols) and the predic-
tion(lines) of semi-
exible chains

from Eq.2.38.

equations provide a simple relation of our coupling parameter with the Doi’s pa-

rameter:

"(t) =
Es(t)

Stot(t)

=
Smonos (t) + �(t)

2
’l[S

mono
l (t)� Smonos (t)]

’sSmonos (t) + ’lSmonol (t)

� 1

2
�(t) (t > �s): (2.37)
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Figure 2.51: Total relaxation
functions(symbols) and the predic-
tion(lines) of 
exible chains from

Eq.2.39.
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Figure 2.53: Total relaxation
functions(symbols) and the predic-

tion(lines) of 
exible chains.

Figure 2.54: Total relaxation
functions(symbols) and the predic-
tion(lines) of semi-
exible chains.

However, if the long and short chains have widely separated molecular weights

Ms and Ml, the slow relaxation behaviour of the long chain in the blend is similar

to that in a solution having the same volume fraction ’l of these chains[38]. The

molecular weight of solvent is well below the entanglement molecular weight and

the relaxation of the long chain in the solution is only a�ected by their mutual

entanglements. In the binary blends, the short chains are in a slightly entangled

state, and the relaxation of the long chains is a�ected by the entanglements with

the short chains. According to constraint release mechanism, the relaxation of

the long chains is dominated by the CR mechanism if the Struglinski-Graessley

parameter rSG = MlM
2
e =M

3
s is larger than a threshold value of about 0:5. In our

simulations of entangled binary blends, the SG parameters is 1:25 for semi-
exible

chains, which is larger than the threshold value.

Now we are going to check whether the length of the short chain a�ects the

relaxation of the long chain or not in the 
exible systems. N=100 is chosen for

the long chains as in previous runs, and the dumbbells are chosen for representing

the solvent. Auto-correlation function Al(t) of long chains are in good agreement

in these two systems(Fig.2.55). Now we can use the auto-correlation function of

long chain in the solvent to predict the total relaxation function of binary blends.

The predictions and the target relaxation functions are both shown in Fig.2.56.

Thus a qualitative agreement between the solutions and the blends suggest

that in this case the short chains in the blends behave as a solvent in the terminal
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Figure 2.55: Auto-correlation
function Al(t) of long chains in
binary blends(symbols) and solu-

tions(lines).
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Figure 2.56: Total relaxation
functions(symbols) and the predic-

tion(lines) of 
exible chains.
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Chapter 3

Microscopic simulations of melts

in start-up shear

3.1 Overview

In real world, a rheological measurement tells one how \hard" or \soft" the ma-

terial is, which depends on the time scale at which the material is probed. A

rheometer is normally used to measure rheological properties of a complex 
uid as

a function of rate or frequency of deformation. There are two widely used methods

to obtain rheological property of the complex 
uid. One is applying a shear 
ow

on the material and measuring the resulting stress, the other is applying a shear

stress and measuring the resulting shear strain. As mentioned before, the shear

stress �
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fracture[42] and shear banding[43][44]. As a result, very few experimental data

have been published that can be used by the theoreticians.

The Doi-Edwards tube theory[1
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is the dominant contribution to the constraint release. Chain stretching describes

a mechanism that the length of the occupied tube exceeds its equilibrium value. In

the Doi-Edwards model the orientation of the chain relaxes at the reptation time

�d while the chain stretch occurs at a rate determined by the Rouse time �R. These

two time scales are well separated in entangled systems. The e�ect of chain stretch

becomes signi�cant when _
�R � 1. The Doi-Edwards-Marrucci-Grizzuti(DEMG)

theory[47][48][49] adds stretch to the basic DE model. The new theory improves

the transient predictions in start-up of shear. The DEMG model predicts that the

transient overshoots in shear stress and normal stress grow in size with shear rate

and the strain at maximal stress at overshoots grows with shear rate, which were

observed experimentally. However, The DEMG theory is less successful in steady

state of shear. It still predicts a maximum of shear stress.

In this chapter, steady shear is applied to our molecular dynamics simulations

and the properties of the material in both transient and steady states are inves-

tigated. Surprisingly, we observe a shear stress maximum at steady state around

_
 � 1=�d in a su�ciently long chain system, which indicates that a shear banding
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is an acceptable method if one is interested in nano-con�ned 
ows, where the

spacial inhomogeneity is important in the simulations. However, if one is concerned

with bulk properties far away from the surface, the explicit use of the boundary

is inappropriate. An alternative to using \solid" wall boundaries is to drive a 
ow

via a suitable implementation of periodic boundary conditions. The most useful

method is using Lees-Edwards boundary conditions[50] for planar shear 
ow. The

original simulation box is replicated in all directions by periodic images. Monomers

interact via their pair-potential forces under Newton’s second law. The di�erence

between the periodic boundary condition in equilibrium simulations and the one

in non-equilibrium simulations is that the periodic image boxes in di�erent layers

have strain di�erence NLLy _
t in shear direction, where NL is the number di�erence

of the layers, Ly is the length of the simulation box in y-direction, _
 is the shear

rate and t is the shear time.

However, this boundary condition has a serious disadvantage that it takes

time for the e�ects of translation of atoms between boundaries to communicate

throughout the 
uid, which means a linear velocity pro�le will not be imposed

immediately, but will evolve only after a su�ciently long time. The �rst homoge-

neous NEMD algorithms was proposed by Hoover et al.[51] which was based on
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Figure 3.1: 2-dimensional representation of simulation box vectors. As t!1,
�(t)! 0 and jL2j ! 1, whereas jL1j remains the same.

Now we will discuss the implementation of the suitable periodic boundary

condition that are compatible with the SLLOD equations of motion for planar

Couette 
ows in which the fuild 
ows in the x-direction with a velocity gradient _


in the y-direction. As boundaries must be compatible with the imposed streaming

velocity pro�le, we �rst calculate the strain rate tensor:

∇v =

0BBB@
@vx

@x

@vy

@x
@vz

@x

@vx

@y

@vy

@y
@vz

@y

@vx

@z

@vy

@z
@vz

@z

1CCCA =

0BBB@
0 0 0

_
 0 0

0 0 0

1CCCA (3.7)

The evolution of the boundaries is applied by the same equation of motion.
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Figure 3.2: Lagrangian-Rhomboid and Sliding-Brick periodic boundary con-
ditions.
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which creates a problem. If t ! 1, then �(t) ! 0 and jL2j ! 1, which is not

practical. Two equivalent algorithms were introduced to �x this situation. The

�rst of these is to deform the simulation box until it reaches a preset angle �p, at

which time the box is changed back to the original cubic shape. In this method,

the transformations do not happen very frequently and box sides lengths do not

get too large. The second method is to use Lees-Edwards \sliding-brick" periodic
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3.2.2.3 Nos�e-Hoover thermostat

At each time-step, the velocities of all particles are rescaled by an additional

dynamic variable �

_r(t+ �t) = �

�
_r(t) +

f(t)

m
�t

�
(3.12)

_� = C(T � TC) (3.13)

where C is a constant parameter that can be set for optimal results. This method

modi�es the velocities \gently".

3.2.2.4 Berendsen thermostat

Comparing to the constraint method, Berendsen thermostat is trying to correct the

deviations of the actual temperature TC from the prescribed one T by multiplying



Chapter 3. Microscopic simulations of melts in start-up shear 80



Chapter 3. Microscopic simulations of melts in start-up shear 81


uctuation-dissipation theorem, the relations

�2 = 2kBT� (3.21)

and

wR(jrj) =
p
wD(jrj) (3.22)

must hold[57]. The usual choice is

wR(r) =
p
wD(r) =

8<: 1� r=rc; r < rc

0; r � rc
(3.23)

Another choice, which is computationally more e�cient, is

wR(r) = wD(r) =

8<: 1; r < rc

0; r � rc
(3.24)

We use Eq.(3.23) in most of our simulations except when a large shear rate

_
>0:1��1
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Figure 3.3: Velocity pro�le of dif-
ferent chain lengths. np is the num-
ber of the particles in the system.

0

Figure 3.4: Temperature pro�le
of di�erent chain lengths.

Figure 3.5: Velocity pro�le of dif-
ferent number of chains.
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Figure 3.6: Temperature pro�le
of di�erent number of chains.

Figure 3.7: Velocity pro�le of dif-
ferent shear rate.
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Figure 3.8: Temperature pro�le
of di�erent shear rate.

length is, the slower the particle is than it should be, which means the friction term

is overestimated. The temperature pro�les are shown in Fig.3.4. The temperature

near the boundaries is higher than the one in the center, which can be explained

by the shear heating as the momentum exchanged around the boundaries.

We also run simulations with the same chain lengths and shear rates but with
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results as in the previous case (square symbol in Fig.3.11 and 3.12). Constraint

thermostat method is used to keep the temperature to the desired one (star sym-

bols in Figs.3.11 and 3.12). All the results discussed later are obtained from this

combination of Langevin, SLLOD and constraint thermostat method.

As we know, polymer chains will be stretched and oriented under shear, the

size of the long chains will be larger than the length of the simulation box and

the chains will interact with themselves through the periodic boundaries. In order

to eliminate this defect, we need to use non-cubic simulation box. Suppose the

shear direction is along the x-axis, the direction of velocity gradient is along the

y-axis. The �rst method we used is putting all chains into a reshaped box which

has the length ratio on x; y; z equal to 2 : 1 : 1. The simulations run for a long

time around several terminal relaxation time �d of the longest component to make

sure the system is in equilibrium, and then we start to shear the material. The

second method we used is that the con�guration of the chains is obtained from the

previous simulations in equilibrium which has a cubic simulation box. Another

copy of this con�guration is made. And we put this copy next to the original one

along the x
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Figure 3.13: �xy and two normal
stress in di�erent simulation boxes.
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Figure 3.14: �xy in one single run
and averaged over ten jobs.

3.2.4 Averaging methods

As we know the number of particles involved in the MD simulations is ranging from

several hundred to several hundred thousand, which is a small number comparing

to the number of molecules used in experiments. So a careful averaging method is

essential in the simulations. Logarithmic bins in time are introduced. Suppose a

quantity C(t) of the system is measured at time t since the start of shear. A series

of averaging time internals t0i; i 2 Z+ where Z+ is the set of non-negative integer

numbers, is introduced as following:

t00 = D (3.25)

t0i = D M i (3.26)

where D is a constant standing for the �rst time interval, and M is a multiplication

factor. In our simulations, D and M are set to 8dt and 1:1 respectively, where dt

is the simulation time step. Suppose the shear starts from t0, ti = t0 +
Pi�1

k=0 t
0
k,

then

C(ti +
t0i
2

) =
1

t0i

Z ti+t
′
i

ti

C(t)dt (3.27)

With this algorithm we obtain around 25 data points in each decade of time(black

symbols in Fig.3.14). As the system size is quite small(9000 particles), the signal

is not very good in just one single run. We run 10 simulations with the same

parameters except the seed of random force generator, and then average over all

these data(red symbols in Fig.3.14). The curve is much smoother and more reliable
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than the data from the single run. However, the signal is still noisy at short times

as the averaging intervals t0i at short times are much smaller comparing to the ones

at longer times. Note however that the early time behaviour can be obtained from

the G(t) data as demonstrated later, so these data are not essential.

3.3 Monodisperse melts under shear



Chapter 3. Microscopic simulations of melts in start-up shear





Chapter 3. Microscopic simulations of melts in start-up shear 89

0 . 1 1 1 0 1 0 0

Figure 3.21: Shear-stress maxi-
mum as a function of _
N2.

Figure 3.22: Strain at shear-
stress maximum as a function of

_
N2.
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Figure 3.23: Shear stress �xncfunction of e0m Fss2
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Fig.3.23-Fig.3.26. The �rst and second normal stresses increase as the shear rate

increases in all systems. Surprisingly if the �rst and second normal stresses are

plotted as a function of _
N2, all curves pass through a particular point. The ratio

of the second and the �rst normal stresses is about 1=7 at small molecular weight,

which is in good agreement with the Doi-Edwards theory and the experimental

results from Schweizer et al.[59][42]. With increasing the chain length, a negative
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Figure 3.27: �xy(t) of semi-

exible chain with N =150 at dif-

ferent shear rates _
.

1 0 - 1 1 0 0 1 0 1 1 0 2 1 0

Figure 3.28: Cox-Merz rule in
our simulations. Solid symbols are
stress at steady state. lines are
complex viscosity times shear rate

_
.

that the Cox-Merz rule works for the short chain systems, but not for the longer

chains.

3.3.3 Stress-optical law in monodisperse melts

Before doing other analysis, let us check if the stress optical law works in our

shear simulations. Chain lengths N = 30; 150 are chosen for the monodisperse

melt. First, the stress and orientation relaxation functions in the equilibrium

state are shown in Fig.3.29. The stress-optical law works for the time scale larger

than 500� . Now we would like to see whether the stress-optical law works in the

shear situation. The stress and the orientation of the systems divided by the shear

rates are shown in Fig.3.30. In the transient state, both stress and orientation

collapse onto their respective master curves. The power law exponent of stress

is around 0:5. However, the power law exponent of orientation is around 0:8. It

looks like the stress-optical rule does not work at short times. As we know, the

viscosity in shear can be expressed by the integral of the stress relaxation function

G(t) in equilibrium(Eq.3.28). The orientation in shear can also be expressed by the

integral of the orientation relaxation function in equilibrium. As shown in Fig.3.29

stress and orientation behave di�erently at short times. There are oscillations in

the stress relaxation function due to bond 
uctuations, and it is almost constant
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Figure 3.29: Stress and orien-
tation relaxation functions in the
equilibrium where � called stress-

optical coe�cient is 1:28.
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Figure 3.30: Stress �xy(lines) and
orientation Sxy(symbols) as a func-
tion of time at di�erent shear rates,
where � = 1:28 is the stress-
optical coe�cient from the equilib-

rium simulation.

Figure 3.31: Instantaneous posi-
tion(a) and mean path(b) of a poly-
mer chain with chain length equal
to 150 and bending energy equal to

3.

Figure 3.32: Orientation from in-
stantaneous positions is compared
to the one obtained from mean

path.

for orientation relaxation function, which explains why the slope of orientation

in shear is closer to 1. After the overshoot, the stress and the orientation are in

qualitative agreement(Fig.3.30). In conclusion, the stress-optical law works quite

well at small shear rates _
<1=500 and at long time t>500.



Chapter 3. Microscopic simulations of melts in start-up shear 93

3.3.4 Orientation from mean path

We introduce a notion of the mean path which is a collection of the bead coordinates

ri averaged over the time interval �av

r̂i(t) =
1

�av

Z t

t��av

ri(t
0)dt0 (3.31)

Both instantaneous con�guration and the mean path of a polymer chain with chain

length N=150 are shown in Fig.3.31. These con�gurations show that the mean

paths are smoother than the chains and the short time fast 
uctuations are sup-

pressed by the averaging procedure. The averaging time interval should be chosen

with care. In Fig.3.31, the averaging time was chosen to be �av=1200� . Now we

would like to check whether the mean path will keep the property of the orienta-

tion of the original chains or not. The orientation obtained from the instantaneous

positions and the mean paths are both shown in Fig.3.32. The monodisperse melt

with chain length N=93 and bending energy kb=3 was chosen. The result from the

mean paths is in good agreement with the one from the instantaneous positions,

so we can claim that mean paths contains all information about the orientation of

the polymer chains. In the future, we will analyse our system by using mean path

instead of instantaneous positions, which can erase faster 
uctuation e�ects. We

note that orient function S(t) obtained from instantaneous positions stored every

1200� is much noisier than the one shown in Fig.3.32.

3.3.5 Con�guration of polymer chain in transient state and

steady state

DNA tumbling has previously been observed in dilute unentangled solutions[60]

and in entangled solutions[61]. We would like to investigate the tumbling in poly-

mer melts for the �rst time in our simulations.

In Fig.3.33, we can see the evolution of the single chain conformation in a

monodisperse melt. The sample has the chain length N=93 with bending energy
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Figure 3.33: Con�guration of the polymer chain at di�erent state during
shear.

N = 9 3
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ρ=0 . 8 5 σ- 3

Figure 3.34: The corresponding
conformation of the chain during
tumbling in steady state at shear

rate _
 = 0:00032��1.
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Figure 3.35: End-to-end vector
Re of one chain and orientation of

the system in shear.

kb = 3 and density �= 0:85��3. Before the shear starts(t= 0�), the chain is a

random walk in 3D-space. After shearing starts, the chain is stretched in shear

direction(x-axis).

Beyond the stress overshoot, we observed that the chain also spends a small

fraction of the time to tumble as shown in Fig.3.34. In Fig.3.35, we show each

component of the end-to-end vector Re of the chain which was plotted in Fig.3.34.

The black symbols are the orientation of the system. y and z components of Re

are not strongly a�ected by the shear. They both 
uctuate around the average
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Figure 3.36: G0, G00 of PI-
30k(symbols) in experiment and
N=93 with kb=3(lines) in the sim-

ulation.

1 E - 3 0 . 0 1 0 . 1 1 1 0 1 0 0 1 0 0 0
0 . 1
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tandw Si

m N=93

 Exp PI-30k

Figure 3.37: tan � of PI-
30k(symbols) in experiments and
N = 93 with kb = 3(lines) in the

simulation.

G0 and G00 at low frequencies,

1s ) 8300� (3.33)

1Pa ) 1:48� 10�7"=�3 (3.34)

where � , " and � are the units of time, energy and length in the simulations.

The mapping coe�cient between PI molecular weight in the experiment and

number of beads of semi-
exible chains in the simulations is

M exp
e

Ne

= 0:36kg=mol (3.35)

All the parameters of the simulations will be calculated from these three map-

ping coe�cients.
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Figure 3.38: Comparing PI-2k
shear experiments(symbols) with
N = 7 simulation results(lines) ac-
cording to the same Weissenberg

number.
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Figure 3.39: Comparing PI-4k
shear experiments(symbols) with
N=15 simulation results(lines) ac-
cording to the same Weissenberg

number.

Figure 3.40: Comparing PI-14k
shear experiments(symbols) with
N=38 simulation results(lines) ac-
cording to the same Weissenberg

number.
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Figure 3.41: Comparing PI-30k
shear experiments(symbols) with
N=93 simulation results(lines) ac-
cording to the same Weissenberg

number.

simulations is in qualitative agreement with the viscosity from the experiments.

We suppose the reason for some disagreement is that the local structures of PI

and the semi-
exible Kremer-Grest model are di�erent from each other. The semi-


exible KG model is more sti� than polyisoprene. We believe the results from


exible systems can be in better agreement with experiments which is a subject of

future study. Another reason might be inaccurate mapping parameters. We note

that for every new set of parameters new simulations must be performed, which

makes it a very expensive procedure.
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experiments was obtained. We suppose the quantitative disagreement is due to

di�erent sti�ness of PI sample and semi-
exible KG model. In order to obtain

a quantitative agreement with the experiments, we will study the simulations of

more 
exible chains and improve our mapping procedures.



Chapter 4

Coarse-grained simulation of

polymer melts

4.1 Overview

As we explained in chapter 1, the molecular dynamics(MD) simulations are not

suited to the study of phenomena which occur on time and length scales that are
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is the gradient of the free energy of the con�guration of the mesoscopic \blobs".

Second is the dissipative force which indicates that the motion of the mesoscopic

\blobs" is retarded by friction. The last is the thermal force due to the continual

collision e�ect on the mesoscopic \blobs". The dissipative and thermal forces must

be related to each other to ensure that both forces do not alter the equilibrium

ensemble distribution, which is stated by the 
uctuation-dissipation theorem.

As far as static properties are concerned, the determination of e�ective in-
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distribution function of the microscopic system. They introduced �tting parame-

ters �, and minimized a �eld �� with respect to �.

On the other hand, we need information about the dissipative and thermal

forces for the dynamic properties. Normally the dissipative force is taken as a

linear function of momenta for the microscopic particles. However, the friction

coe�cient of mesoscopic particles also depends on the con�guration of particles,

and it is important to account for both time and spatial dependency. Akkermans

and Briels[69] coarse-grained one polymer chain in a melt to a single dimer of

mesoscopic particles, called blobs. By using the projection operator formalism

they separated the total force on the chain into the thermodynamic mean force,

dissipative force and 
uctuation force, and derived the equations of motion for the

dimer. Dimer properties of the microscopic and the coarse-grained model were

shown to be in reasonable agreement.

In this chapter, we only concentrate on the static properties of the polymer

chains, so we make the dissipative and thermal forces of mesoscopic \blobs" in-

dependent of time and space. The whole chain was coarse-grained into a single

\blob", and we aim to study the interaction forces between the blobs rather than
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two molecules.

Suppose monomers i; j are two monomers which belong to two di�erent molecules

a; b respectively. f ij is the force between monomers i and j. Ra;Rb are the coor-

dinates of the center-of-mass of chains a and b. We then de�ne a projection force

fab between blobs a and b as

fab(jDabj) =
X
i;j

f ij �Dab

jDabj2
Dab; 8i 2 a;8j 2 b (4.1)

Dab = Ra �Rb (4.2)

where Dab is the distance vector between blobs a and b. fab and Dab have the

same direction.

In this de�nition, we do not include the case when two monomers are in the

same blob, which means the forces inside the blobs are not considered for this

projection procedure. If we divide the molecules into several subchains and coarse-

grain the monomers in one subchain into a blob, the projection force between these

blobs of subchains will be very di�erent from non-bonded one due to connectivity.

In this work, we will study the projection force between non-bonded blobs �rst.

Bonded blobs are left for the future study. Before using the projection procedure in

Kremer-Grest microscopic simulation, we should assess if this method is reasonable

or not. A Rouse chain is replaced by a blob between two walls and the distribution

function of the center-of-mass of the Rouse chain between the walls in microscopic

simulation is compared to the one from the coarse-grained simulation.

4.3 Rouse model between two walls

In the Rouse model, the excluded volume interaction and the hydrodynamic in-

teraction are disregarded and the interaction potential is written as:

U(fRig) =
3kBT

2b2

N�1X
i=0

(Ri+1 �Ri)
2 (4.3)





Chapter 4. Coarse-grained simulation of polymer melts 105
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Figure 4.1: The center-of-mass
distribution function of the Rouse
chain between two walls in mi-
croscopic(red line) and coarse-
grained(open symbols) simulation.
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Figure 4.2: Projection force func-
tion f(r) of Rouse chain from solid
wall in log-linear(left) and linear-
linear(right) plots. The line is the
best �t data which has the expres-
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0 2

Figure 4.3: The center-of-mass
distribution function of a Kremer-
Grest chain between two walls
from microscopic simulation(red
line) and from coarse-grained sim-

ulation(open symbols).

Figure 4.4: Magnitude of the
projection force function f(r) of
Kremer-Grest chain from solid wall
in log-linear plots. The line is the
best �t data which has the expres-

sion as Eq.(4.8).

4.3.2 Coarse-grained simulation

Now we can use this best �t projection force ffit(x) in the coarse-grained simu-

lation. A single particle is placed between the two walls. The potential from the

wall was changed from Lennard-Jones potential to

U(x) =

Z x

0

ffit(x
0)dx0: (4.7)

The obtained distribution function(open squares in Fig.4.1) is in excellent agree-

ment with the one obtained from the original microscopic simulation. However,

a Rouse chain is a random walk in space and there is no long range interaction

between the beads which have large chemical distance. In next section we would

like to ask whether this projection procedure is also valid for the Kremer-Grest

model.

4.4 Single Kremer-Grest chain between two walls

Similar to the previous section, we place one Kremer-Grest chain with length

N=10 instead of a Rouse chain between two walls separated by a distance of 16�.

The chain is not Gaussian in vacuum due to excluded volume e�ects, and the size



Chapter 4. Coarse-grained simulation of polymer melts 107

of the chain is larger than
p
Nb2. As the beads repel each other and the bonds

can not cross each other, the dynamics of Kremer-Grest model are di�erent from

the Rouse chain.

The distribution function was measured and is shown by red line in Fig.4.3.

The force on the KG chain from the walls(symbols in Fig.4.4) was also measured

by using projection force method. The best �t is shown by red line in Fig.4.4,

where the numerical expressions are

ffit(x) =

8>>>>>><>>>>>>:

exp(�3:2473x+ 7:3307); 0 < x � 1:9

exp(�2:0149x+ 5:0317); 1:9 < x � 4:05

exp(�7:0604x+ 25:329); 4:05 < x � 5:0

0; x > 5:0

(4.8)

Then we applied this best �t projection force ffit(x) to the coarse-grained sim-

ulation. The obtained distribution function(open squares in Fig.4.3) is in excellent

agreement with the one from the original microscopic simulation.

From the previous two sections, we conclude that the local structure of the

polymer chain does not a�ect the validity of this procedure, which indicates that

the force projection method might be useful for reducing the number of degrees-

of-freedom of the system.

4.5 Kremer-Grest model in vacuum

In the previous sections, we were using the force projection method to measure

the force on the chain from the walls. Now we would like to study this method

for pairs of Kremer-Grest chains in vacuum. The pure repulsive Lennard-Jones

potential is chosen for the simulations.

Normally, the mean square internal distance function and the radius of gyration

are the two common objective functions which describe the structure of the chains.

The mean square internal distance function hR2(n)i=n of chain length N =100
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Figure 4.18: Radius gyration as a
function of chain lengths.
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Figure 4.19: Radius gyration as a
function of density of the system.

of di�erent chain lengths are shown in Fig.4.18. Rg(N)=
p
N increases with increas-
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Figure 4.20: Projection force of
N=10 at di�erent densities.

Figure 4.21: Normalized projec-
tion force of N=10 at di�erent den-

sities.
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Figure 4.22: Projection force of
N=20 at di�erent densities.
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Figure 4.23: Normalized projec-
tion force of N=20 at di�erent den-

sities.

After normalizing these projection forces by their maximum in the system

with chain length N=10(Fig.4.21), we can see that all results overlap with each

other more or less at large distances. We suppose that the disagreement at short

distances is due to the irregular shapes of two chains which are close to each other

at low densities. It is clear that the force at density � = 0:05��3(red circles in

Fig.4.21) is consistent with the vacuum projection force(black line in Fig.4.21). We

can also see that the original projection force converges to the vacuum projection

force FVPF (x) with decreasing density of the system(Fig.4.20). However, there

is a small disagreement around r = 1:3
p
N� in normalized forces. We suppose

this disagreement is because the chain size is slightly smaller at high densities

as compared with that at lower densities due to screening of excluded volume

interactions at high densities.
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Figure 4.25: Maximum of pro-
jection force(solid symbols) and
pressure(open symbols) at di�erent
densities. Lines are the best �t of

the projection force maximum.

In the system with N=20, we can see that the normalized projection forces at

low densities are exactly the same as the e�ective force in the vacuum, but it is

not true at higher densities(Fig.4.23). We suppose that the disagreement is due

to the di�erence of the chain size at di�erent densities. After multiplying a shift

factor to the x-axis, we can overlap all these forces onto the vacuum projection

force(Fig.4.24). The shifting factors are 1:157 and 1:09 for � = 0:85��3; 0:6��3

respectively, which are consistent with the radius of gyration of the chain at di�er-

ent densities(Fig.4.19). We can see in Fig.4.25 that the projection force maximum

is proportional to the pressure at large densities. Because the chain size of N=10

does not heavily depend on the density of the system as the other large chain

lengths, it is chosen for all the simulations in the later sections.

4.6.3 Three-body e�ects in the melt
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where r12=0:75�.

Force Matrix: Dist=0.75

Y

X

Figure 4.27: �fmel(r12;x3; y3) in
contour where r12=0:75�.
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Figure 4.28: �fmel(r12;x3; y3)
where r12=1:75�.

Figure 4.29: �fmel(r12;x3; y3) in
contour where r12=1:75�.

where r12 is the distance between the two chains and (x3; y3) is the relative coor-

dinates of the third chain with respect to the center of the other two chains. The

di�erence function �fmel(r12;x3; y3) between) between
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Figure 4.30: �fmel(r12;x3; y3)
where r12=2:75�.
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Figure 4.31: �fmel(r12;x3; y3) in
contour where r12=2:75�.

0

2

4

6

−5
0

5
−1.5

−1

−0.5

0

0.5

1

YForce Matrix: Dist=3312X
Figure 4.32: �fmel(r12;x3; y3)

where r12=3:75�.
Figure 4.33: �fmel(r12;x3; y3) in

contour where r12=3:75�.
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4.7 Coarse-Grained Simulations in Melts

In this section, we will test di�erent pairwise interactions between blobs and then

add three-body e�ects into the coarse-grained simulations. The comparison of the

radial distribution function of the blobs between original microscopic simulations
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Figure 4.42: g(r) from mi-
croscopic(lines) and coarse-
grained(open symbols) simulations
at di�erent densities with N=10 by

using vacuum projection force.
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Figure 4.43: g(r) from mi-
croscopic(lines) and coarse-
grained(open symbols) simulations
at di�erent densities with N=20 by

using vacuum projection force.

4.7.2 Vacuum projection force method

We use the projection force(Eq.4.9) in the vacuum from microscopic simulation

to run the coarse-grained simulations at di�erent densities ranging from 0:01��3

to 0:85��3. Corresponding g(r) are shown in Fig.4.42 and Fig.4.43. From the

microscopic simulations, g(r) is a monotonically increasing function at low den-

sity(black lines in Figs.4.42 and 4.43). The chains tend not to overlap with each

other at short distance. The range of the correlation hole is around 1:5
p
N . If we

increase the density of the system, g(0) is not zero anymore which means that the

chains start to overlap with each other and the maximum in g(r) appears. The

range of the correlation hole becomes smaller with increasing density. At lower

densities, our vacuum projection force can reproduce g(r) in coarse-grained simu-

lations accurately, but g(r) deviates from the one from microscopic simulation at

high density �=0:85��3 as the many-body e�ects start to play an important role.

However, the agreement is quite good comparing to the mean �eld method even

at high densities(Fig.4.41).
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4.7.4 Pairwise force plus three-body e�ects

In this section, we will try to add many-body e�ects into the coarse-grained sim-

ulations. In section 4.5.2, we showed the impact of the position of a third chain

on the force between the two chains(Figs.[4.10-4.16]). We now introduce these

force corrections into the coarse-grained simulations. The monomer density of the

system is 0:85��3. We pre-calculate these force correction tables �fvac(r12;x3; y3)

and �fmel(r12;x3; y3), where r12 = i
2
� 1

4
; i 2 N; i 2 [1; 10]. In the new coarse-

grained simulations, we select all triple chains and add force corrections to every

chain.

f1 = fpair(r12) + �f(r12;x3; y3) + fpair(r13) + �f(r13;x2; y2) (4.14)

f2 = fpair(r23) + �f(r23;x1; y1) + fpair(r21) + �f(r21;x3; y3) (4.15)

f3 = fpair(r31) + �f(r31;x2; y2) + fpair(r32) + �f(r32;x1; y1) (4.16)

�f(r;x; y) is obtained by using linear interpolation of discrete force correction

tables.

�f(r12;x3; y3) =
2i+1

4
� r12

1=2
�fvac(

2i� 1

4
;x3; y3) +

r12 � 2i�1
4

1=2
�fvac(

2i+ 1

4
;x3; y3)

(4.17)

where 2i�1
4
� r12 � 2i+1

4
.

The obtained radial distribution function g(r) is shown in Fig.4.45 if the pair-

wise force and the three-body correction force are derived from vacuum. After

introducing twice more �ne-grained correction tables, we still got the same result.

It shows that our correction force from the vacuum overestimates the many-body

e�ects.

Then we would wonder whether the prediction will be better if we use the

pairwise force and three-body correction force from the melt. The results are

shown in Fig.4.46, demonstrating even larger discrepancy from the microscopic

simulations. As the pressure in the melt is very di�erent from the one in the

vacuum, we would like to erase this e�ect from the melt. We have measured
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Figure 4.48: Projection force
from pure repulsive Lennard-Jones
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Lennard-Jones potential(red line).

the pressure of the system at di�erent densities in section 4.6.2, and derived the

maximal pairwise force fmax(�) as a function of the density. The forces at high

densities can be scaled down to the same amplitude of the force in vacuum. In our

case the scaling ratio is chosen to be fmax(0:01)=fmax
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part. The amplitude of projection force derived from this attractive system is

smaller than in the purely repulsive system (Fig.4.48) and there is an attractive

undershoot around r�1:0
p
N . Furthermore g(r) from both purely repulsive and

attractive Lennard-Jones potentials are almost exactly the same. If we apply this

force to the coarse-grained simulations, the system will be phase separated due to

the attractive force.

We also applied Percus-Yevick and Hypernetted-chain closure to derive the

pairwise potentials. We found that g(r) in coarse-grained simulations using these

potentials are exactly the same as the one from the mean �eld method. Derivation

details are shown in Appendix B.

4.8 Conclusions

In this chapter, we have investigated the coarse-grained modelling of polymer

melts. Blobs were introduced whose positions were de�ned as the center-of-mass

of the whole chain. A procedure called force projection method was proposed to

obtain the direct interaction force between the two molecules. First, we applied

this method between a Rouse chain and two repulsive walls. The distribution of

the chain between the walls and the force on the Rouse chain from the wall were

calculated in microscopic simulations. Then we applied this force into coarse-

grained simulations and obtained the same distribution function of the blobs as in

the microscopic simulations, which indicates that the force projection method is

a valid routine to coarse-grain the microscopic variables to mesoscopic variables.

Then we replaced the Rouse chain by a single Kremer-Grest chain. The same

conclusion was obtained, which means that in these simple situations the force

projection method does not depend on the local structure of the chains.

Then we applied the force projection method to the two chains in vacuum to

measure the direct interaction force between them as a function of their separation,

which was called vacuum projection force in this thesis. This force was applied

to coarse-grained simulations at di�erent densities. g(r) from these coarse-grained
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Appendix A

Normal modes

The main content in this appendix was derived in Doi and Edwards book[1]. In

order to �nd the normal coordinates, we are using the linear transformation of

Rn(t)

Xp(t) =

Z N

0

�pnRn(t)dn (A.1)

We need to choose �pn to make the equation of motion for Xp(t) to have the

same formula as the Ornstein-Uhlenbeck processes

�p
@Xp

@t
= �kpXp + f p (A.2)

From Eq.(1.49) and Eq.(A.2), we can see that

�p
@Xp(t)

@t
= �p

Z N

0

dn �pn
@Rnt) =
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From Eq.(A.9)

hf p�(t)f q�(0)i =
�p�q
N2�2

Z N

0

dn

Z N

0

dm cos
�p�n
N

�
cos
�q�m
N

�
hfn�(t)fm�(0)i

=
�p�q
N2�2

Z N

0

dn cos
�p�n
N

�
cos
�q�n
N

�
2�kBT����(t)

=
�2
p

N2�2
(1 + �p0)N�pq�kBT����(t)

Thus the discrete and continuous normal coordinates for Rouse model are as

follow:

Xp =
1

N + 1

NX
i=0

Ri cos

�
�p(i+ 1=2)

N + 1

�
(A.12)

Xp =
1

N

Z N

0

R(i) cos

�
�pi

N

�
di

� Td [67.615 0  .058 Td [(� Td [67.6:)]TJ/F47 197.(w:)]TJ/F47 11.9552 Tf 100.904 -39.601 T9110.791.9m

(i + 1= 2)

N + 1
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This means that the spectrum of relaxation times is given by

�p =
�p
kp

=
�b2

12kBT
sin�2

�
�p

2(N + 1)

�
; p = 1 : : : N (A.18)

Thus, the longest relaxation time is

�R = �1 =
�b2

12kBT
sin�2

�
�

2(N + 1)

�
� �b2(N + 1)2

3�2kBT
(A.19)

which is also called Rouse time.

Eq.(A.16) describes free di�usion of the center of mass and N independent

Ornstein-Uhlenbeck processes. The formal solution of these equations are

X0(t) = X0(0) +
1

�0

Z t

0

f 0(t0)dt0 (A.20)

= X0(0) +
1

�0

Z t

0

p
2kBT�0 dW

0 (A.21)

Xp(t) = Xp(0) exp(� t

�p
) +

1

�p

Z t

0

f p(t
0) exp(�t� t

0

�p
)dt0 (A.22)

= Xp(0) exp(� t

�p
) +

1

�p

Z t

0

p
2kBT�p exp(�t� t

0

�p
) dW 0 (A.23)

And we can obtain the mean-square displacement of center-of-mass and the modes

correlation function as following:

h(X0(t)�X0(0))2i =
2kBT

�(N + 1)
t (A.24)

hXp(t)Xq

((� t

�

BT
sin�2 t

�

2(N +p �t



Appendix A. Normal modes 133



Appendix B

Percus-Yevick and

Hypernetted-chain closure

B.1 Ornstein-Zernike equation

In statistical mechanics the Ornstein-Zernike equation is an integral equation

for de�ning the direct correlation function. It basically describes how the correla-

tions between two molecules can be calculated.

It is convenient to de�ne the total correlation function:

h(r12) = g(r12)� 1

which is a measure for the \in
uence" of molecule 1 on molecule 2 at distance r12

away with g(r12) as the radial distribution function. In 1914 Ornstein and Zernike

proposed to split this in
uence into two contributions, a direct and indirect part.

The direct contribution is de�ned to be given by the direct correlation function,

denoted c(r12). The indirect part is due to the in
uence of molecule 1 on a third

molecule, labeled 3, which in turn a�ects molecule 2, directly and indirectly. This

indirect e�ect is weighted by the density and averaged over all possible positions

134
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of particle 3. This decomposition can written down mathematically as:

h(r12) = c(r12) + �

Z
c(r13)h(r32)dr3 (B.1)

which is called Ornstein-Zernike(OZ) equation. The total correlation at r12

is the sum of a direct correlation plus an indirect contribution coming from all

surrounding points.
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included, i.e. we write gindirect(r) = expf��(’(r)� u(r))g. Thus we can approxi-

mate c(r) by

c(r) = e��’(r) � e��(’(r)�u(r)) (B.5)

u(r) =
1

�
ln

�
1� c(r)

h(r) + 1

�
(B.6)

which means we can obtain e�ective interaction potential u(r) if h(r) and c(r) are

known.

B.3 Hypernetted-chain equation

Hypernetted-chain equation is also a closure relation to solve the Ornstein-Zernike

equation which relates the direct correlation function to the total correlation func-

tion. By expanding gindirect(r) in the Eq.(B.5) and introducing the function

g(r) = h(r) + 1 = expf��’(r)g (B.7)

we can approximate c(r) by writing:

c(r) = e��’(r) � 1 + �(’(r)� u(r))

= g(r)� 1� ln g(r)� �u(r)

= h(r)� ln g(r)� �u(r)

= h(r)� ln(h(r) + 1)� �u(r) (B.8)

u(r) =
1
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