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ABSTRACT ii

Abstract

A new, uni ed transform method for boundary value problems on linear and integrable
nonlinear partial di erential equations was recently introduced by Fokas. We consider initial-
boundary value problems for linear, constant-coe cient evolution equations of arbitrary order
on a nite domain. We use Fokas’ method to fully characterise well-posed problems. For odd
order problems with non-Robin boundary conditions we identify su cient conditions that may
be checked using a simple combinatorial argument without the need for any analysis. We derive
similar conditions for the existence of a series representation for the solution to a well-posed
problem.

We also discuss the spectral theory of the associated linear two-point ordinary di erential
operator. We give new conditions for the eigenfunctions to form a complete system, characterised
in terms of initial-boundary value problems.
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CHAPTER 1

Introduction
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1.1. Background and motivation

This thesis is concerned with the theory of linear two-point initial-boundary value problems,
the spectral theory of linear di erential operators and the connections between the two elds.
The boundary value problems we study are posed for linear, constant-coe cient, evolution
partial di erential equations in one space and one time variable. One of the best known examples
of such a problem is the heat equation for a nite rod,

Ot = Oxx; X 2[0;1]; t2][0; T

The primary interest in this work is not second order partial di erential equations, such as the
heat equation, but third and higher odd order equations. Indeed we study equations of the form

@ (@)"q=0; x2[0;1]; t2[0;T]; (1.1.1)

for any n > 3, n an odd integer.

To de ne an initial-boundary value problem for the partial di erential equation (1.1.1) one
must specify the initial state of the system, by prescribing q(x;0) to be equal to some known
function, and impose some conditions on the value of q and its x-derivatives at the left and
right ends of the space interval. The problem is then to nd a su ciently smooth function
q:[0;1] [0;T] ¥ C which satis es the partial di erential equation (1.1.1), the initial condition
and the boundary conditions. It is reasonable to ask two questions relating to such problems:

(1) Does a solution exist and is that solution unique?

)
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The wave equation was introduced and solved by d’Alembert [11], albeit under strict re-
strictions on the boundary conditions. The method was re ned by Euler [21]. Bernoulli [2]
introduced the idea that a solution of the wave equation might be expressed as an in nite series
and Fourier [30] studied the heat equation similarly.

A form of Laplace transform method for partial di erential equations was introduced by
Euler in a paper [22], rst presented in 1779 but not published until 1813. The integral Euler
used had inde nite limits. Lagrange [38], originally published in 1759, used a Fourier transform
method with de nite integrals to solve the wave equation. Laplace himself solved a linear
evolution partial di erential equation using his eponymous transform with de nite limits in
Section V of [43], originally published in 1810, where he also derived an inverse transform. A
survey of the history of the Laplace transform is given in [17, 18].

Fokas’ transform method was originally developed for solving boundary value problems for
non-linear partial di erential equations [23] but has been successfully applied to elliptic [60] as
well as evolution [24] linear partial di erential equations. A good introduction to the signi cance
of Fokas’ method is given in [23] but it should be noted that the method was not fully re ned
at this stage. Sections 1.1{1.3 of [24] give a good overview of the method for linear, constant-
coe cient boundary value problems.

Separation of variables

We aim to nd a solution to a partial di erential equation subject to an initial condition and
some boundary conditions. To solve such an initial-boundary value problem using the method
of separation of variables [30] one must make two assumptions: that a solution exists and that
a solution is separable, in the sense that there exist sequences of functions (x), k(t), whose
products k(x) k(t) satisfy the partial di erential equation and boundary conditions, such that
the solution may be expressed as a series with uniform convergence,

X
qix;t) = k k(xt
k2N
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It is trivial to nd the general solutions of these equations in terms of the common spectral
parameter, 2 C. The boundary conditions then restrict to a sequence of discrete points ,
de ning the g, k. Under the assumption that the series (1.1.2) converges uniformly, Fourier
transform methods are used to determine the constants | in terms of the initial datum. It is
well-known that the family of solutions  obtained from particular spectral problems forms an
eigenfunction basis for the x-di erential operator, with eigenvalues [, but for partial di erential
equations of third or higher order with any but the simplest boundary conditions this is not
always true. This connection is critical in our work.

Laplace transform

In the Laplace transform method, separability of the solution is not assumed directly but it
is necessary to assume that the Laplace transform can be inverted. The rst step is to apply the
time Laplace transform to the partial di erential equation (1.1.1). Using the properties of this
transform and the initial datum, this yields an inhomogeneous ordinary di erential equation of
order n in the Laplace transform of g. Solving this equation subject to the boundary conditions
yields an expression for the Laplace transform of the solution.

The nal step is to reconstruct the solution from its Laplace transform. If the domain is semi-
in nite in time, if T = 1, and the boundary data have su cient decay then the transform may
be invertible. An example is given in Appendix C of [28]. However, we study initial-boundary
value problems on a nite domain so the solution at nal time appears in the representation. To
remove the e ects of this function, it is necessary to make arguments similar to those we make
for Fokas’ method. However these arguments are more complex than their equivalents below
because of the presence of fractional powers in the integrands.

Fokas’ uni ed transform method
The rst step of Fokas’ method is to construct a Lax pair for the partial di erential equation.
The term ‘Lax pair’ is usually reserved for nonlinear partial di erential equations, following
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is trivial to nd an integral solution with lower limit at an arbitrary point in the domain of
the original partial di erential equation. In Proposition 3.1 of [24] it is argued that, by taking
the lower limit at each corner of the domain, a sectionally analytic function in the auxiliary
parameter is de ned in the whole complex
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the Laplace transform method uses a transform in only the time variable. Di erent partial
di erential equations and di erent boundary conditions require di erent transforms and nding
a transform that will work for a particular initial-boundary value problem is not a simple task.
It is particularly problematic when the partial di erential equation is of third or higher order,
particularly odd order, or the boundary conditions are complex.

In Fokas’ method, as a simultaneous spectral analysis in both the space and the time variable
is performed, a di erent type of transform is used. This simpli es the process of choosing the
relevant transform as it may be immediately deduced from the Lax pair and is independent of
the boundary conditions. It is therefore unsurprising that such a method should yield novel
results, not only for nonlinear but also for linear partial di erential equations.

One great advantage of the universal applicability of Fokas’ method in the linear, constant-
coe cient context is that for it to produce a solution one only has to guarantee that the problem
is well posed, whereas separation of variables requires an extra assumption on the solution, that
it be separable or that the x-di erential operator admits a suitable basis of eigenfunctions.
This means that, armed with Fokas’ method, question (2) on page 2 may be considered fully
resolved for any initial-boundary value problem posed for the partial di erential equation (1.1.1).
Question (1) may be expressed as the question Is the problem well-posed? This is one of the
major topics of the present work.

Another great di erence between the methods presented above is the representation of the
result. Separation of variables yields a discrete series representation of the solution whereas
Fokas’ method gives the solution as a contour integral. The use of the de nite article to describe
‘the solution’ in the previous sentence is intentional as both of the methods are applied to
problems known to be well-posed. This means that for separable, well-posed problems we now
have two methods which yield two di erent representations of the same solution.

A method for converting the integral representation to a series representation for third
order problems with particular boundary conditions is discussed in [9, 54]. In any attempt
to generalise this argument to higher order problems and those with more exotic boundary
conditions it is certainly necessary to consider another question, supplementary to the two
questions on page 2: Which well-posed initial-boundary value problems have the property that
their solutions may also be expressed as discrete series? The answer to this question is the
second major topic of this thesis.

It is shown in [54] that there is no series representation of the solution for a particular exam-
ple. Algebraic methods are used in [36] to show that some linear partial di erential equations
are inseparable for any boundary conditions but this requires either non-constant coe cients or
systems of constant-coe cient equations. There is an important distinction between the work of
Johnson et al. and our work ] the partial di erential equations we study are all separable because
separation of variables always yields a solution for periodic boundary conditions, it is particular
sets of boundary conditions that may make the initial-boundary value problem inseparable by
preventing the eigenfunctions of the di erential operator from forming a basis.
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1.1.2. Spectral theory of two-point ordinary di er-

ential operators
Birkho [3, 4
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Investigate the existence of a series representation of the solution to well-posed problems
in general, giving both necessary and su cient conditions.

Investigate inseparable boundary conditions by linking the initial-boundary value prob-
lem to the study of the ordinary di erential operator.

Contribute to the spectral theory of degenerate irregular non-self-adjoint two-point
linear ordinary di erential operators.

Chapter 2

As noted above, it is known that one may use Fokas’ transform method to nd a solution to
any well-posed initial-boundary value problem on a linear, constant-coe cient evolution partial
di erential equation on a rectangular domain. In view of this it is perhaps surprising that any
improvement may be made to the means of derivation of a solution but we have some small
contributions in this area beyond the overview of the established method in Section 2.1.

Chapter 2 provides a modest development upon the method in the following way. While it is
established that a system of linear equations for the boundary functions must exist in the method
as presented in [27], we derive that system explicitly and in general. The reduced global relation
is given in Lemma 2.17. Further, we explicitly solve the system to yield, in Theorem 2.20, the
general expression for the solution in terms of the initial and boundary data and the solution
at nal time. Mathematically this is elementary linear algebra but the explicit determination of
these functions is necessary to support the remainder of the thesis.

Chapter 3

Chapter 3 contains a discussion of well-posedness of initial-boundary value problems and
the existence of a series representation of their solutions using only analytic techniques.

We make a pair of assumptions on the decay of certain meromorphic functions, which are the
general analogues of the functions appearing in the integrands of equation (1.1.4). In Section 3.1
we work under those assumptions, removing the e ects of the solution at nal time and obtaining
a series representation for the the solution. The second and third sections are devoted to
discussing those assumptions.

In Section 3.2 one of the aforementioned assumptions is shown to be equivalent to well-
posedness of the initial-boundary value problem. This new condition of well-posedness is at
once much simpler to check than the characterisation by admissible functions of [27] and more
general than the result for simple, uncoupled boundary conditions of [53] and [55]. We also give
the nal result of Fokas’ method in Theorem 3.29, an integral representation for the solution
involving only the initial and boundary data. In the case of odd-order problems with non-Robin
boundary conditions, we give a pair of conditions su cient for well-posedness and demonstrate
their use for a variety of examples.

For well-posed problems, it is shown that the other decay assumption is equivalent to the
existence of a series representation of the solution in Section 3.3. We also give a pair of su cient
conditions for a well-posed odd-order problem with non-Robin boundary conditions to have a
solution that admits representation by a series. These conditions mirror those in the previous
section.
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In order to discuss complete, biorthogonal and basic systems of eigenfunctions it is necessary
to understand the established theory of these concepts in Banach spaces. We give an overview
of the essential de nitions and a few theorems in Section 4.4, following the construction in [15].
More complete treatments of the subject are given in the excellent two-part survey article [56,
57] and the lecture notes [58]; these sources have large bibliographies containing the original
research upon which they draw.

Chapter 5

In Chapter 5 we present two examples, one of which has degenerate irregular boundary
conditions. We prove that the eigenfunctions of this operator do not form a basis, following
a method of Davies [14, 15]. Indeed, we show that certain projection operators, de ned in
terms of the eigenfunctions, are not uniformly bounded in norm. The exponential blow-up
of these norms is of the same rate as the divergence of the meromorphic function from the
initial-boundary value problem.

Chapter 6
In the nal chapter we draw together some conclusions and present some directions for
further work.
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Initial-boundary value problems

11



2.1. FOKAS’ TRANSFORM METHOD 12

In this chapter we give an account of Fokas’ uni ed transform method for solving initial-
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for the function (x;t; ), where cj( ) are the functions de ned in equations (2.1.6).

Proof. We take the x partial derivative of equation (2.1.8),

2 3
x
0«8 = a 4@ + (i) 1@lgd
j=1
2 3
- X - i i
= a"g+i + (i) 1045; (2.1.10)
j=1

the latter equality being justi ed by equation (2.1.9). Similarly, we take the t partial derivative
of equation (2.1.9),

00x =0 q+i @ (2.1.11)

(2.1.11)
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Following Proposition 3.1 of [24] we choose the the points (x?;t?) to be the four corners of
de ning the functions vy (x;t; )forY 2fD ;E ¢:
Zx Ly R >
-0t )= e O Vgy;dy+e'* e 27D ()
0

0 =0
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D* Mt )= e X ZtXc-( G()
1 1 .l J
j=0
E* E*
> > M(x;t; )=e
E E
. ,, X
5 MGt )= e & D "t ci()gi( )

j=0
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initial datum, go(X), and nal function, gt (X) = q(Xx; T). We de ne these Fourier transforms as
Z, z
()= e "Tg)dx= e ' *go(X) dx 2¢;
0 R
Z 1 .
()= e 'Xq(x;T)dx; 2C:
0
Now we derive the global relation.

Lemma 2.3 (Global relation). Let g : T R be a formal solution to an initial-boundary
value problem speci ed by the partial di erential equation (2.1.1) and initial condition (2.1.2).
Then the functions €y, ¢r de ned above and the functions f§ and gj, given by (2.1.6) satisfy

M i n
Gi() Ki() e 'g() =d() € Tar() 2C: (2.1.16)

j=0

Proof. For (x;t)2 and 2C let

H n H n M H
Xt )=e ' X2 g(x;1); Yoot )=e XA g ()edgxb):
=0
Then
eX (Gt ) =e ' @ "+ @906 b);
_ . > _
BYOot )=e "0 400 6 ()ek(xt)
=0
hence
2 3

@X OxY)xt )=e X" 4@ "+ @)+ (i @) c( )@LSq(x;t)
j=0
2 3

=e X T4@ " a(ig)M) a(i 60 (i) IVelSqxb;
j=0

using the di erential equation (2.1.1) and the de nition of the polynomials cj,

=e T (N (g™ " () "8Y) q(xb)
=0:
If wZe apply Green’s Theorem B.1 tg then we see that

@X  OY)(XE Ydxdt= (Y dt+ X d92dFRIaFER T RDQIICEI CHEISIFIFF12] TILA703
@
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where f§, gj are de ned in (2.1.6), from which the result follows.

The global relation is useful because of the particular form of the spectral transforms of the
boundary functions. The transformed boundary functions may be considered as functions not of
but of M. This means that the transforms are invariant under themap @ 1 | for I = e
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By examining the de nitions (2.1.21) we see that the transformed boundary functions are func-
tions of 2. This means that they are invariant under the map @ , that is

B )=H() e )=el); 2122
B )=f() el )=ea()

Since the global relation (2.1.20) is valid for any 2 C, evaluating it at we obtain
i B ) el )+ B( ) ea( ) =al ) e TTer( )
which, by equations (2.1.22), is

i B() eg() + B() eea() =d( ) e "ar( ) (2.1.23)

The global relation equations (2.1.20) and (2.1.23) may now be written in matrix form

O

fi( ) ' 1
g () § w() e O o128
() () &C )
i 8o()
where
1 el 1el

B()=
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for each k = 0;1;2. The global relation equations (2.1.28) may now be written in matrix form

()
o) 1 o) 1
S E o a0 ()
BOB o) =Bao )X e TBao X (2.1.29)
2;0( & e0?) or(1? )
2go( )
where o _ _ _
1 e ! 1 e ! 1 e !
B( ):51 e !t 1 e it 12 12 i1 X:
1 e 92 a2 i q o ge it

Equation (2.1.29) corresponds to Corollary 2.4.
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2.1.5. A classi cation of boundary conditions

In De nition 2.7 we provide a rough classi cation of boundary values. We classify the
boundary conditions in terms of the representation used in Locker’s work [47] on di erential
operators.

Definition 2.7 (Classi cation of boundary conditions).
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Example 2.8. The boundary conditions
x(0:t) = ax(1;t)  q(0:t) =q(;) =0

may be expressed by specifying the boundary data h; = h, = h3 = 0 and boundary coe cient

matrix o 1
001 100

A:50000105:(:
000 O 01

Hence these boundary conditions are homogeneous and non-Robin but coupled.

Example 2.9. The boundary conditions
WO =tT t) aq@t)=q(l;t)=0

may be expressed by specifying the boundary data hy = t(T  t), h, = hs3 = 0 and boundary

coe cient matrix o 1
001000

A= 80 0 001 Og:
0 00O0O0T1
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into the two vectors V. and W. The entries in W are the transform, f§ or g;, of a boundary
function that is, in equation (2.1.32), multiplied by a pivot of A, where the entries in V are the
other entries in the vector (2.2.1) and overall we preserve the order of the entries in the original
vector (2.2.1).

2.2.1.1. Developing some notation

Notation 2.12. Given boundary conditions de ned by equations (2.1.32) and (2.1.33) such
that A is in reduced row-echelon form, we de ne the following index sets and functions.

b =1j2f01
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Example 2.13. If n = 3 and the boundary conditions are speci ed by equation (2.1.32)
where

o 1
001 100
A:(%o 00 0 1 0X (2.2.2)
000 0 01
thenca( )= ai,ci()=a,co( ) =ai 2
o 1 o 1
() @)
W()=Be)% and V()= Be(OX:
8o( ) e1( )

Indeed, comparing equations (2.1.33) and (2.2.2) we see that

(@) 1 O 1
12 12 11 11 10 10 001 100
8 22 22 21 21 20 2og:80 00 0 1 Ogi
32 32 31 31 30 30 000 0 01
The pivots in this boundary coe cient matrix are 11, 20 and 3o SO
b =f0;1g; b =fog;
F* = f2g and P =f1;20:
Following through Notation 2.12 in order we see that
J = 12;4;5¢; J' = f0; 1; 3g;
Qi)j=1 = 5:4;2); @93, = (3;1;0);
O 1 (0 1
() fi()
V() =Be( )X and w()=BROK:
g1( ) go( )

We also note that, de ning the sequences

8
T2 ifj=0;

b= P =3forj=0;
21 ifj =1

J
the pivots in A are

LS

Gy el D2 T I8

v 1y, = 20 and 0 = 30
) 1=z 93 D=2 PJ%=ZJ3-2

Indeed the aim of the de nition of sequences (~pj+)j2j>+ and (b
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2.2.1.2. The main lemma

We may now state the result.

Lemma 2.14. Let g : [0;1] [0;T] ¥ R be a solution of the initial-boundary value prob-
lem speci ed by the partial di erential equation (2.1.1), the initial condition (2.1.2) and the
homogeneous, non-Robin boundary conditions (2.1.32). Assume the matrix A, whose entries are
de ned by equation (2.1.33), is in reduced row-echelon form. Then the vectors V and W from
Notation 2.12 satisfy

(0) 1
Vi( ) O 1 () 1
A( )EVZ( )E g § ”Tg and (2.2.3)
in 1 in 1
Vo) SORS SRS
(@) 1 (@] 1
Wi( ) Vi()
sz( )E R Va( )g (2.2
Whn() Vn()
where
8
2100 10 2K Do () J;

Akj( )—
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with the simple, homogeneous boundary conditions

LY

o1
1
0 ?,_2
KB'E =0 (2.2.8)
01
o

Jdo

@]
o

Qm
1S)
o o o

o

o O -

o O O

o O
o

(BN

Then, as in Example 2.13,
o 1 o 1
f() ()
W()=BR()X and V() =Be()K:
go( ) g:( )

The boundary conditions (2.2.8) may be rewritten
O 1 O 1

1 1)
I3 Bfog + 03 892& =0;

Jo 01
where I3 is the 3 3 identity matrix and O3 is the 3 3 zero matrix, which yields
(0] 1
fi(t)
fo(t)g =0 t2[0;T]:
do(t)
Applying the t-transform (2.1.30) entrywise we see that
(@] 1
()
w()=Be()x=0; 2C (2.2.9)
go( )

This corresponds to the reduced boundary conditions (2.2.4) in the lemma.

The fact we have exploited here is that, because it is in reduced row-echelon form, the
boundary coe cient matrix has I3 as a maximal square submatrix. This allows us to break the
boundary coe cient matrix into two parts: the identity and the rest of it, which we call the
reduced boundary coe cient matrix. In this example the reduced boundary coe cient matrix
is the zero matrix. This need not be the case but, provided the boundary conditions are non-
Robin, this matrix must be diagonal. Of course, this process will work for any regularised
boundary coe cient matrix, the only requirement being that the boundary coe cient matrix
has the identity as a maximal square submatrix, which is guaranteed by the reduced row-echelon
form it is assumed to take.

We still have to nd the other three boundary functions, those that appear in the vector
V. To do this we will make use of the global relation in the form of Corollary 2.4. The partial
di erential equation (2.2.7) studied in this example de nes n = 3 and a = i so the corollary may



2.2. THE REDUCED GLOBAL RELATION 29

be written
(@) 1
()
Ol g | i ie i 2 2¢ i 1Be()
81 e ' Tj liel! 122 j22, it % f()
1 e i 12 12 o i1? 12 g 2 012 2&;
8o( )

O 1 (@) 1
®(O) &0
=Ba )X ¢ B )X;
w12 ) (1)

the right hand side of which is the right hand side of the reduced global relation (2.2.3) from
the lemma. The left hand side must be simpli ed. Substituting the reduced boundary condi-
tions (2.2.9) into the global relation gives
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entries in W in terms of the entries in V hence in terms of the Fourier transforms of the initial
datum and nal function.

2.2.1.4. Proof of the main lemma

Using Example 2.16 as a model, we give the full proof of Lemma 2.14.

Proof. Because A is in reduced row-echelon form it has the n  n identity matrix, I, as a
submatrix. That submatrix is the one obtained by taking all n rows of A but only the columns
which contain pivots. These are the columns of A indexed by 2n  j, where j 2 J'. Any such
column multiplies the boundary function f; 1y-> or gj=», for j odd or j even respectively, in the
boundary conditions (2.1.32). The columns of A not appearing in the identity submatrix are
those indexed by 2n  k for k 2 J. Any such column multiplies the boundary function f 1=,
or gy=2, for k odd or k even respectively, in the boundary conditions (2.1.32). The sequences
(.Jj)]f‘zl and (.JJQ))JUZl simply ensure the entries in the vectors V and W appear in the correct
order. We may now break the n  2n matrix A into two square matrices, rewriting the boundary

conditions in the form O 1 O 1
Y1 X1
Y X
LB ‘&+RE ‘E=o0 (2.2.11)
Yn Xn
where s 8
< < 0
f3. 1= Jj odd, f30 1= Ji odd,
Xj=_ @ D2 yj=_ G v (2.2.12)
03,22 Jj even, " 03=2 Jj even,

and R is initially de ned as the square matrix given by
8

<
. 1= Jj odd,
/ij _ k@ 1)=2 Jj

" k=2 Jj even.
If Jj is odd then there does not exist k 2 f1;2;:::;ng such that 3, 1)=2 is a pivot of A.
Because the boundary conditions are non-Robin, this implies
k@; p=2=0 8k2fL;2;:::;ng; 8] odd.

If Jj is even then there does not exist k 2 f1;2;:::;ng such that  j,-, is a pivot. If it happens
that there does exist some k 2 f1;2;:::;ng such that ;= is a pivot, that is Jj +1 2 J°
hence J;=2 2;
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column in A whose entries are given by powers of I multiplied by the sum of exponential powers
of and a constant (type (3)) then that is the only column with those powers of I.

Consider boundary conditions that are all speci ed at the end x = 1, that is the boundary
coe cient matrix has the form

0100
1

(0] 1
o 00

Ao_go 0 0 o 0 Og_
o 001

0 00O

Then $* =10;1;:::;n 1gand $ = ; so A’ is a Vandermonde matrix which has rank n, as is

shown in Section 1.4 of [50]. This matrix contains all columns of type (1) that may appear in

any A, so given any A the columns of the corresponding A of type (1) are linearly independent.
If instead the boundary conditions are all speci ed at x = 0, that is

(@) 1
1 000 ::: 0O
AOO_EO 010 ::: 0 Og_
10

0 00O

then the determinant of A” is equal to the determinant of the same Vandermonde matrix. This
matrix contains all columns of type (2) that may appear in any A, so given any A the columns
of the corresponding A of type (2) are linearly independent.

Other columns of any A, that is a column of type (3), can be written as the sum of two
columns: one of type (1) and one of type (2). But we have already established that neither of
these may appear in A and neither may be written as a linear combination of columns that do
appear in A. This establishes that the column rank of any reduced global relation matrix is
n.

2.2.2. General boundary conditions
In this subsection we state and .J/F150435 -2132(oundary)-3750435 -df 8.0 -3 df 8.8(y)- 8.Lemmay
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reduced row-echelon form. Then the vectors V and W from Notation 2.12 satisfy

L 0 1
°
12 ; ¢r ()
AOBP Sy e ”Tg : § and (2.2.15)
n 1
Vn( ) ér (! )
0 1 0
Wi() fg( )
ng( )E Ehz( )

Wn( )
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where X and Y are given by equations (2.2.12) in the previous proof and the reduced bound-
ary coe cient matrix, R, is de ned by equation (2.2.20). Now the t-transform (2.1.30) may
be applied to each line of equation (2.2.21) and by the linearity of the transform we obtain
equation (2.2.16).

We may rewrite equation (2.2.16) in the form

> > _

£ =Ap() 5 B0 5o () for j 2 ¥* and (2.2.22)
28+ r2%
= = _

g () =Ry () 5 RO s @()  forj2d: (2:2.23)
28+ r2¥

Corollary 2.4 may be rewritten as the system of linear equations

CJ( )!(n 1 J)rﬁ() e it CJ( )!(nX
j=0 j=0
j=0
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hence
2 3
. x X
ﬁ( )4Cj( )!(n Lor j{("jck( )!(n 1LRr o it j)kjck( )!(n 1 Krg
i2$r 5 K29+ o b
X
K
i2# k2p+
3
e inr x 5 jCk( )!(n 1 Krg
> > k2p -
= o) G () + e Mg Ry () e Tar(rT )
jodr ] 123) f]
J

for r 2 0;1;:::;n 1g. Taking a factor of c¢j( ) out of each square bracket and using the
identity

k()

— (i Vi ke
&) iy =

we establish

2

£ )ej( y4rn 1L pn 1
j23
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into two matrices
8 >< ’
%C(JJ 1= )!(n 1 [95 1=2)(k 1) "o 1):2Cr( )!(n 1 Nk 1) J; odd,

xkj — x I’Zj""

= W

36
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and
O . T
1 e ! ie!
poE ( ):det(%l e ! e X
1 e i12 12§ e i12

in accordance with the following De nition 2.19. Indeed ; may be found from j by replacing
6o with ¢r. Applying Theorem B.2 to the reduced global relation (2.2.10) and observing that
the reduced boundary coe cient matrix is 03 we obtain

£()= 20 e Th().

ppE ( )
i 3T

gz():bZ() e "The( ).
pDE ( )
i 3T

() =i b() e b3();
poE ()

A()=%H()=8()=0:

Substituting the abovhe
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We de ne further

8 8
¢ p-20)8C)  Jj odd, %ouj p=2( k() Jj odd,
)= c3,2( )8 () Jj even, 0 cy;=2( )y ( ) J; even,
J - J -
¢y, p=20)BC) I, odd, 00; o 0200850 9, odd,
oy 20)8C) 3 even, ey =2()B() ), even,
(2.3.2)

for 2 C, where the monomials cx are de ned in equations (2.1.5). De ne the index sets
J* =1fj :J; oddg [ fn +j : J] oddg;
J =fj:Jjeveng[fn+] :Jj0 eveng:
Also let
poe () =detA( ); 2C: (2.3.3)

Note that, for homogeneous boundary conditions, the ;j are simply the j with ¢; replacing
with 6.

Now by Lemma 2.17 and Cramer’s rule, Theorem B.2, we may obtain expressions for the
boundary functions:

8
Ry, p=2()  Jjodd,
B() e "Th() _ “ey=2() Jj even,
e() BRye() 9 0ud
"8y =2() Jj  even,
hence s
%C(Jj n=2( JR3; 1=2() Jj odd,
j() € nT i) _ CJj:Z( )QJJ-:Z( ) Jj even, (2.3.4)
poe (1) %C(JJ? . p=2( )ﬁJg Lo1=2() Jj , odd,
“cyp =20 )8y =2() 3} even,
and
X () e? nT ()
G()R() = 1 PDE()J ;
j=0 j2J+
> >x<X . ea "T .
GOgO)= A0S0,
j=0 j23 PDE

This establishes the following theorem, the main result of this chapter.

Theorem 2.20. Assume that there exists a unique g : [0;1] [0;T] ¥ R solving the initial-
boundary value problem speci ed by the partial di erential equation (2.1.1), the initial condi-
tion (2.1.2) and the boundary conditions (2.1.32). Then q(Xx;t) may be expressed in terms of
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contour integrals of transforms of the boundary data, initial datum and nal function as follows:

z z n
2 git)y= e * @ gy( )d exan oS 30 @50
R @D+ j23+ poE ()
z n
ei x 1) amt > j( ) et T j( )d : (235)
@D . PDE()

j23
where D =C \f 2C:Re(a ") <0g.

Example 2.21. We give another example to illustrate De nition 2.19 and Theorem 2.20.
The boundary value problem we consider is the same is in Example 2.13; n = 3, a =i and
the boundary conditions are given by equation (2.1.32) with h; = 0 and a boundary coe cient
matrix






CHAPTER 3

Series representations and well-posedness

42
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While Chapter 2 is concerned with deriving an integral representation for the solution to a
well-posed initial-boundary value problem, the present chapter is devoted to investigating well-
posedness of such a problem and the related question of nding a discrete series representation
of its solution. We continue in the general setting of Chapter 2 with a partial di erential
equation (2.1.1) speci ed by its order n > 2 and the parameter a. The form of our results
depends upon the value of a; we present them in the three cases a =i, a= i and Re(a) > 0.

Theorem 3.1. Let the homogeneous initial-boundary value problem (2.1.1){(2.1.3) obey As-
sumptions 3.2 and 3.3. Then the solution to the problem may be written in series form as

follows:
a0t = 5 Res © %0 7T )+ Res =20 77 ()
kok+ < PPEL o5 k2K K PDER o,
[KP' [KE" [KP [KE
[KE[fog
(3.0.6)
If nisodd and a= i,
. > Pl xt) X . > b 1) X<
Ay =1 Res — %0 7T ()5 Res = %0 77 ()
kok+ ¢ PPEUJiogs k2K Tk PDER Vo
[KP" [KE" [KP [KE
[KE[fog
(3.0.7)
If nis even and a= i,
' > Pl xt) X . > b xp) X<
Ay =1 Res LD TR 00 Res 6D Ty
o~k pPoE( )j23+ oK =« ppE( )jZJ
[KP" [KE™ [KP [KE
[KD Kz
P X
+%R_eg 1 >
=0  ppE( )j2J+)
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assumptions, once stated, are considered to hold throughout Section 3.1. Particular examples
are not discussed as, for any but the most trivial examples, a lengthy calculation of bounds on
zeros of certain exponential polynomials is required in order to perform any meaningful simpli -
cation of the general de nitions or argument. Instead, the de nitions and subsequent derivation
are broken up depending upon the value of the parameter a.



3.1. DERIVATION OF A SERIES REPRESENTATION 45

3.1. Derivation of a series representation

In this section we apply Jordan’s Lemma B.3 to deform the contours of integration in the
integral representation given by Theorem 2.20. We do not investigate whether the conditions of
Jordan’s Lemma are met, instead we assume that they are met and show that this implies we
may perform a residue calculation, obtaining a series representation of the solution. Sections 3.2
and 3.3 are concerned with investigating the validity of these assumptions.

Consider the same initial-boundary value problem studied in Chapter 2. That is, we wish to

nd g which satis es the partial di erential equation (2.1.1) subject to initial condition (2.1.2)
and boundary conditions (2.1.32) where the boundary coe cient matrix A, given by equa-
tion (2.1.33), is in reduced row-echelon form. We assume throughout this section that such a
function q exists and is unique hence the initial-boundary value problem is well-posed. The
criteria for Theorem 2.20 are now met.

Definition 3.4. Let the functions P;® : C ¥ C be de ned by
P(;xit)=e X 2™  and  B(;xt)=e A N alt
We shall usually omit the x and t dependence of these functions, writing simply P ( ) and B( ).

The aim of De nition 3.4 is that we may write the result of Theorem 2.20 in a way that
emphasises the -dependence of the integrands, instead of their dependence on x and t. Indeed
as x and t are both bounded real numbers they are treated as parameters in what follows.

We also de ne the ve integrals

L= P()®()d; (3.1.1)
Z R Z
1, = p() SO 4. = per SO g
, aD+ i23+ poE () Z@D+ j20+ poE ()
aD i23 poeE ( ) @D i23 poE ()

where j, j, ppe,J" andJ are given in De nition 2.19. We may now rewrite the result of
Theorem 2.20 in the form

2 q= I: (3.1.2)

3.1.1. The behaviour of the integrands

We put aside 11 for this subsection and investigate the behaviour of the integrands in the
other four integrals in the regions to the left of the contours of integration. The results of this
subsection are summarised in the following lemma.

Lemma 3.5. Let q be the solution of the well-posed initial-boundary value problem studied in
this section. Under Assumptions 3.2 and 3.3 the following hold:
1 within E™.
1 within B™.

The integrand of I, is analytic within E™ and decays as
The integrand of I3 is analytic within B* and decays as
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The integrand of 14 is analytic within E and decays as

The integrand of Is is analytic within © and decays as
The open sets B ; E

1 within E .
1 within B .

46
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2*/3:2:; "3

Figure 3.1. The bounds on "y

B( ;") \B( j;"j) is empty for j & k. Also, for k > 0, the closed disc B( ;"k) does not
touch any part of @D except, when k 2 K* [ K [ KX, the half line on which  lies. Choosing
such small " is not necessary for this subsection but it is useful for simplifying the residue
calculations of Subsection 3.1.3. Figure 3.1 shows the suprema of "y given some particular ;
the shaded regions are the discs B( k; "k).

The de nition must be split into two cases, depending upon the value of a. In either case
it is justi ed as we know that ppg is holomorphic on C so its zeros are isolated. For each
k 2 KX we de ne a small disc around | that is wholly contained within X. This disc is labeled
B( k;"k), using the \ball" notation to avoid confusion with the notation D, representing the
subset of the complex plane for which Re(a ") < 0.

Definition 3.8 (k). Leta= i. For each k 2 N we de ne "¢ > 0 as follows:
For each k 2 K* [ K [ KR, we select "y > 0 such that

3" <j «isin(z) and B( «;3")\F j:j2Ng=F \q:
For each k 2 KP" [ KP [ KE" [ KE we select "« > 0 such that
3"k <dist( x;@D) and B( ;3"«)\T j:j2Ng=F \q:
We de ne " > 0 such that
B(0;3") \ T j:j 2Ng=F og:
Leta=¢e' for some 2 ( 5;5). Foreach k 2 N we de ne "x >0 as follows:
For each k 2 K* [ K [ KR, we select " > 0 such that
3 <j uisin(i(; D) and B( k3" \F j:j2Ng="F g
For each k 2 KP" [ KP [ KE" [ KE we select "« > 0 such that
3"k < dist( ;@D [R) and B( ;3"«)\f j:j2 Nog = f 0
We de ne "y = 0 such that
B(0;3") \ T j:j 2Ng=F og:

The next de nition uses De nitions 3.6, 3.7 and 3.8 to de ne subsets of D and E on
which the functions I



3.1. DERIVATION OF A SERIES REPRESENTATION 48
Definition 3.9. We de ne the sets of complex numbers

C_ L _
B =D n B(k"k)andE =E n B( «k;"k);
k2NO k2NO

and observe that —— is analytic on E and —— is analyticon B .
PDE PDE

Because the positions of the zeros of ppg are a ected by the boundary conditions, the sets
B ,E depend upon the boundary conditions. This is in contrast to the sets D and E which
depend only upon the partial di erential equation (that is upon n and a) and are independent
of the boundary conditions.

To complete this subsection, we give an example for which Assumptions 3.2 and 3.3 hold.

Example 3.10. Consider the initial-boundary value problem of Example 2.21; n = 3, a
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Definition 3.11. We de ne the index sets

KE = fk 2 N such that 2 R\ @D* \ @E g;
KE = fk 2 N such that 2 R\ @E* \ @D g;
KE = fk 2 N such that , 2 R\ Eg:

Note that in De nition 3.11 we do not de ne a set KB as such a set is guaranteed to be
empty. This is because a & e' for 2 (5;3-).! Itis also clear from the de nition and the fact
that D and E are open sets that the index sets KP, K§ and KE are disjoint with union K%.

Definition 3.12. Let ( k)kon be the PDE discrete spectrum of an initial-boundary value
problem, and "k be the associated radii from De nition 3.8. We de ne the following contours,
whose traces are circles or the boundaries of semicircles or circular sectors. Each is oriented
such that the corresponding  lies to the left of the circular arc which forms part of the contour;
so that they enclose a nite region.

For k2 KP" [KE" [ KP [KE we de ne the contour

k =@D( ;")
Fork2 K* [K [KP [KE we de ne the contours
D k=0D( k;"k),

P =0(D( k;"x) \ D) and
© K =0(D( k") \E).
For k 2 KE we de ne the contours
k =0D( «; "),
r =0(D( ;")\ C*) and
ok =0 ;")\NC ).
We de ne the contours
0o =@D(0;"0),
& =0(D(0;")\ DY),
5 =0(D@0;"0) \E"),
§ =@(D(;")\D ),
§ =0(D(0;")\E ),
o =@(D(0;"o) \ C*) and
0o =0@(DO0;")\C ).

Some of the contours in De nition 3.12 are shown in Figure 3.3. In this example 1 2 KP™
and 2 2 KE and the partial di erential equation is the heat equation, gy = gxx. We do not
claim that there exists any particular set of boundary conditions for the heat equation such that
these particular 1 and , are in the PDE discrete spectrum; the gure is purely to illustrate
De nition 3.12. The contours associated with 0 and , are shown slightly away from these
points for clarity on the gure but they do pass through the points. Indeed §+ and § each
self-intersect at 0.

lgee Figures 3.4, 3.5 and 3.6.
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D+

E+
D+
E* 0
57/\;/\ 5 [ .
E E N
E +
3 E

Figure 3.3. Some contours from De nition 3.12

The rst step is to rewrite the integrals I for k 2 2;4g found in equations (3.1) as

Z Z > )
l, = + P() _ N7
R OEY j2a+
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E* D*

D* D" E* E*
E E D D
D E
n=3 a=Ii n=3 a= i

Figure 3.4. TheregionsD and E fornoddanda= i

Using De nition 3.12 we may rewrite equations (3.1.5){(3.1.8) as
8
3z Z

+

:? “ E

)
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D* E* E™ D*

ET D* D* E*
D E E D
E D D E
n=4a=i n=4a= i

Figure 3.5. TheregionsD and E forn=4anda= i

Hence KE = K2 = ; and K2 = K&. The right of Figure 3.4 shows the positions of D and
E fora= iwhenn=3.
3. n even, a=i. Then statement (3.1.13) holds hence KE = ;, KE = fk 2 K& such that
k > 0g and KE = fk 2 K¥ such that < 0g. The left of Figure 3.5 shows the positions of
D and E fora=1iwhenn=4.
4. neven, a= n
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Figure 3.6. The regions D and E for n even

If nis odd and a=1,

i X P X i X P X
q(xlt)zé F\ies()() J()+1 _es()()
kok+ < PPEL/jo5e k2K — < PDEL Vo,
[KD' [KE" [KP [KE
[K*[fog
8
<x?Z

iC)
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If nis even and a= i,

L X P > LX< b >
a0 =+ Res — 0 ()4, Res — 0 ()
kok+ < PPEV o5+ k2K Tk PDEL o,
[KP [KE" [KP [KE
o< [
i 1 <
T3 ppe '(0) it
a j23+[3 o
L SxZ 7 71 2 (7 Z.=
+ = += - 4
2 = 2 0 2 = o -
k2KP K 0 k2KE K 0
1
P() ———— 1 H()d (3118)
poE ()
If nis even and a=¢' for some 2( 5;3),
LX< P =< LX< b >
a0 =+ Res — 0 )+, Res — 0 ()
kok+ < PPEV o5+ k2K Tk PDEL 4o,
[KP'[KE™ [KP [KE
[KE[fog
8 1)
<=2 z z= .
1 + + _P() ——— 1 H()d; (3119)
2 0% e ., R> poE ( )

The proofs of these theorems are mathematically simple but, partly due to the range of
values of a, take a large amount of space. For this reason, they are relegated to the Appendix
Section B.2.

3.2. Well-posed IBVP

In this section we investigate Assumption 3.2. Speci cally, we give a su cient condition for
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and reduced boundary coe cient matrix
(@) 1

00
/&:80002:
00 0

Following De nition 2.19 we calculate

h : :
poe( ) =(1% Dc(Je() ' e ')+ 1"

e ")+12e

i12

i12

56
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is decaying as ¥ A from within B; because, as noted above, the exponentials e (! ® and
el 0 %) are decaying for x 2 (0;1). Hence the ratio

1()

poE ()

also decays as ¥ 1 from within B;. The same calculation can be performed to check the

other ;. Indeed the dominant terms in the ratio PZD(E( y have ratio

1 Zin _ )
1el 1 x) eI! 1 x) QT( )(X)dX

2
1z 1

and the dominant terms in the ratio PZ(E)( ) have ratio

1 Zain _ o)
el 1 x) eI! 1 x) QT( )(X) dX,

12 1

0

both of which decay as ¥ 1 from within B;.
We do not present the calculation for B, or B3 or for a = i but it may be checked in the
same way, case-by-case.

Remark 3.15. Although in Example 3.14 the full calculation is not presented for each case
it is not true that

k()

¥ 0as ¥ A from within B,
PDE( )

a0 ¥ 0as ¥ 1 from within By )
PDE( )

for any j; k; p;r and it is not true that if Assumption 3.2 holds for a particular initial-boundary
value problem then it holds for the initial-boundary value problem with the same boundary
conditions but with a di erent value of a. Speci ¢ counterexamples are given in Example 3.16
(see Remark 3.17) and the uncoupled example of Chapter 5.

Example 3.16. We consider the 3" order initial-boundary value problem with a = i and
boundary conditions speci ed by the boundary coe cient matrix
(@) 1

000100
A=80 00 0 1 oX:
000001

This gives reduced global relation matrix

(@) . 1
c2( ) c2( )e ! c1( )

A =Be() () 10X
ca() 2 )e T 12¢()

and reduced boundary coe cient matrix

o) 1
000
&:80 0 0X:

00O
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Following De nition 2.19 we calculate

X Lk
poe( ) =12 N)c3( ()  tke T
k=0
X 1k
1()=c3( () 1R e M gr(aktt)

k=0

X
20)= (Y2 D)) ey
k=0

itk

X
s()= c()e() e ekt

k=0

jrk+1

i!k+l

ar(1c ) ;

¢ (1% ) and

58
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so, provided gr is not identically zero, the numerator approaches in nity hence

3(i) 44

| asj @ A:
PoE ( j) !

Hence the ratio (3.2.1) is unbounded for 2 B;.
This establishes that Assumption 3.2 does not hold.

Remark 3.17. Although Assumption 3.2 does not hold in Example 3.16, it may be seen
that the ratio

2()

poE ()

is bounded within B3 and decaying as ¥ 1 from within B3. Clearly the ratios

a() . 6()

PDE(), PDE()

both evaluate to 0 and J = 12;4,6g so

P
jiza i0) _ 20)

poe( )  ppe()

so it is possible to make the necessary contour deformations in the lower half plane, that is in
B3, just not in the upper half plane, that is B; and B,. This is not particularly interesting in
this example, except to give one of the counterexamples for Remark 3.15, as the problem is still
ill-posed but a similar fact may be exploited in the uncoupled example of Chapter 5 to give a
partial series representation of a solution to a well-posed problem; see Remark 5.9.

3.2.1. n odd, homogeneous, non-Robin

Asu cient condition for homogeneous, non-Robin boundary conditions to specify a problem
that satis es Assumption 3.2 may be written as two conditions of the form:

(1) There are enough boundary conditions that couple of the ends of the interval and, of
the remaining boundary conditions, roughly the same number are speci ed at the left
hand side of the interval as are speci ed at the right hand side.

(2) Certain coe cients are non-zero.

More precise formulations of these conditions are given below.

3.2.1.1. The rst condition

To formally give the rst condition we require the following:
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Notation 3.18. De ne

L=ifi: +;=08rgj The number of Ieft-—hand boundary funct.ic-)ns (3.2.2)
that do not appear in the boundary conditions

R=jfi: r;=08rgi The number of righjc—hand boundary func'ti-ons (32.3)
that do not appear in the boundary conditions

- . The number of boundary conditions that couple the
C=jfj:9r: rj; rj&0gj y ) P (3.2.4)
ends of the x interval
Indeed, there are C boundary conditions that couple the ends of the interval, L boundary
conditions prescribed at the right end of the interval and R boundary conditions prescribed at

the left end of the interval. Clearly n =L + R+ C. We now state the rst condition.

Condition 3.19. If a =i then the 2 1 boundary conditons are such that
R6 6R+C
and if a= 1 then the 2 1 boundary conditons are such that
R 6 16R+C

where R and C are de ned by (3.2.3) and (3.2.4).

The remainder of this subsubsection is devoted to showing the relevance of the above con-
dition. Consider the ratio

i() .
poE ( )
The denominator is an exponential polynomial, hence it is a sum of terms of the form

i P
Z( )e r=1

(3.2.5)

>
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. S,
Ifa= ithen D= ;_, Dj where
Dj=f 2C: -2 1) <arg()<z2jg
For concreteness, let a=i. If 2 D;j then, forall 2 S, and for all k 2 f1;2;:::;ng,

o 1

>4 X
Re @ 1I"A > Re 1
r=1 j r=1

with equality if and only if K = and the rst entriesin are some permutation of (1 J;2
g j) (modulo n). Hence the exponential

el =1t (3.2.6)

e i 1
and all functions of the form
Z,
. P . .
Z() el ! Qg ixt ©Vo 0 dx:
0

Hence, if the exponential (3.2.6) multiplied by some polynomial appears in  ppg ( ) then As-
sumption 3.2 must hold. The conditions are necessary and su cient for this exponential to

appear in - ppe ( ).
By Lemma 2.14, we know that we may express the matrix A in the form

8
N _2!(n L0 UK Do y,() Jj odd,
ki ( )_> 10 1 J=2)(k 1) () e TN J: even
- =: Jj=2 jJJ*jzzszz ] '

but we may express this in terms of the three possible kinds of columns that A may contain.
Indeed, using Notation 3.18, A has L columns of the form

Cn 1 ()@ M i DyT
R columns of the form
cn 1 p( ) et; He i H D itT T
and C columns of the form
e pOC 1+ ) M ™+ i VO DE T )T

where j ranges over L, R and C values within f0;1;:::;n 19 respectively.
Hence ppe( ) =detA( ) has terms

|:>R+I 1 (r)

P (e ! =
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foreach 1 2 f0;1;:::;Cgand 2 S, where P, are polynomials and X is some ( xed) integer.
The terms appearing in () are
Z, p
ifL>1 2L () el =t Qe Txg0gdx 1260,1;:0:;Cg
AN
ifR>1 2R (1) e’ = 'Pe T xg00dx  12f0,1;:::;Cg
_ Zol P
ifC>1 Zig (1) el MM Qe T gigdx 12f0,1:05C  1g
0

foreach 2 S, where Ry ,L; and C;, are polynomials and Z; , 2. and Z, are integers.

Remark 3.21. It should be noted that the polynomials P, and R; and the integer 2,
depend not upon  but upon the 90831
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is nonzero if k > 1 or the expression

sgn( )! m2r F(m)m mac  c(m)m m2L  I(m)m (3.2_9)

ZSn:
8 M2R 9 p2R:
jrm)= r(p)
is nonzero if k = 0.
Note that in the case € = for all j 2 C expression (3.2.8) simpli es to

> P P P
sgn( )1 mzr MM moc oMMz H(m)m. (3.2.10)

2Sn: 9 2S¢
(;92s, . o
J
The set Sk o, the functions I, r and ¢ and their domains L, R and C are given in De ni-
tion B.7 and Lemma B.8.

This condition is checked for particular boundary conditions in the examples of Subsubsec-
tion 3.2.1.4.

3.2.1.3. Su cient conditions for Assumption 3.2

Theorem 3.23. Assume n is odd. If the boundary conditions of initial-boundary value
problem (2.1.1){(2.1.3) are homogeneous and non-Robin, and obey Conditions 3.19 and 3.22,
then Assumption 3.2 holds.

Proof. If the boundary conditions obey Condition 3.19 then 0 6 k 6 C in Condition 3.22
so the set Sy ; o and the relevant expression (3.2.8) or (3.2.9) are all well de ned.
Fix j 2 f1;2;:::;ng and let 2 B;. Then the modulus of

y2y * (3.2.11)
is uniquely maximised for the index set
Y=f 1,;::5;j 1+R+Kk 1g:

By Condition 3.19 and Lemma B.8, ppge( ) has a term given by that exponential multiplied
by a polynomial coe cient given by the right hand side of equation (B.3.6) if k > 1 or equa-
tion (B.3.7) if k = 0, with  replaced by ;. These expressions are monomial multiples of
expressions (3.2.8) and (3.2.9) respectively. As 2 Dj, 6 0so the coe cient is guaranteed to
be nonzero by Condition 3.22.

As 'Y uniquely maximises the exponential (3.2.11) this exponential dominates all other terms
in  ppe( ). But it also dominates all terms in j( ), that is those of the form
Zy

7 i P i 1°°%
()e p2P e gr (X) dx
0

where P C 0;1;:::;n  1g and p’ 8 P. Hence the ratio (3.2.5) is bounded in B; for each
J 211;2;:::;ng and decaying as ¥ 1 from within B;.
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3.2.1.4. Checking Assumption 3.2 for particular examples

We now give three examples of how Theorem 3.23 can be used to check that a particular set of
boundary conditions speci es a problem in which Assumption 3.2 holds. The rst, Example 3.24,
shows the necessity of checking Condition 3.22 by describing a class of pseudoperiodic boundary
conditions for which Condition 3.19 holds but Condition 3.22 does not. This is the only known
3" order example.

Example 3.24. Let n = 3 and the boundary coe cient matrix be given by

1
& 0 0 0 0
16 0 0X; (3.2.12)

1
A = 5o
0000 18

0
0
for € 2 R n f0g so that the problem is pseudoperiodic. Indeed the boundary conditions are
Uxx(0; 1) + E30xx(1; 1) = 0;
gx(0; t) + ©€,0x(1;t) = 0 and
q(0; 1) + Gq(L;t) =0

We check for which values of ej Assumption 3.2 holds, rstifa=1iand thenifa= 1.

All three boundary conditions couple the ends of the space interval so L = R =0and C = 3.
This ensures that, for a = i, Condition 3.19 holds.

We adopt the notation of Condition 3.22, with ¢’ the identity permutation on f1;2;3g and
c¢(m) =4 m on the same domain, hence jc(m)=m j. We simplify expression (3.2.8) to

> P, Y
sgn( )1 m=am G m € oimy (3.2.13)
(; 92s, ;0 m=k+1
for each j.
Assume rst a =i, hence k = 2 and expression (3.2.13) simpli es further to
X P,
sgn( )1 m=rM @ mMe o (3.2.14)
(; O)ZSZj 0

The de nition (B.3.4) of S, ; o simpli es here to ( ; H2s, ; o ifand only if
f cd® Y(p):p2FL;299=F jed’ "(p) : p 2 F1; 299
. f@ ‘(:p2flgg=~fl j2 jg
. ¢ '@)=3 j
. '} =4 '3 )
so the ; equivalence class of ( j; °) is shown in Table 1.
Using this characterisation of S, ; o we see that expression (3.2.14) does not evaluate to 0

provided
& +€+ €660 (3.2.15)
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so that
c()e ' 1) ci()e ' 1) co( ) ' +2)
AOY=8 ()™ 1 ta()e™ 1) 1%()eE " +2)K:
ca()e 1) 1%()e T 1) teo( ) T +2)
We calculate

h
poe( )= 19c()ei( )eo( ) 9+ (@2 2)( +e!' +e'”)

1
+(1 4 +e ' +e i) ;

as expected, the failure of Condition 3.22 causes the coe cients of el to cancel one another
for each j,
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for each j, where s
<<

k =

As Risempty ( ; ") 2Sc; oifand only if
fod "(p):p2FL;2;::kgg =F joc' U(p) 1 p 2 F1;2;::0kgg
. F(n+1 ") :p2FL;2;::kgg=FL ;2 jiii:k g (3.2.20)
butif (; ) 2Sk; othen (; ¥) 28, oifand only if
8q2F1;2;:::;kg9p2F1;2;::::kg: "(@) = Yp)
. 8gq2fk+1,k+2::::ng9p2Ffk+1:k+2:::::ng: Yq) = '(p):

Hence, for any given 2 S, there exists a ° for which ( ; !) 2 Sy ; © but the choice of such a

" does not a ect the product
h'd
© om)
m=k+1

in expression (3.2.19) and there are k!(n k)!' = !( 1)! choices of . So any particular choice
of Ywill su ce, provided we multiply by !(  1).. Given 2 S, de ne '2S, such that

m+1 'en=p i

It is clear that ( ; °) satis es condition (3.2.20) but as is a bijection we may obtain an explicit
expression

"P)=n+1 o )

Expression (3.2.19) may now be simpli ed to

X P, h'd
I( 1)] Sgn( ) 1 m=1M (n+1 m) en+l (m J) (3221)
2Sn m=k+1
Making the substitution (m)= (m j), forwhich (n+1 m)= (n+1 m) jand
sgn( ) = ( 1) Visgn( ) =sgn( ), expression (3.2.21) may be written
> P, 1 Y
(1) sgn( )1 m=amC O+l om) ) Cir1  (m): (3.2.22)
25n m=k+1

Expression (3.2.22) evaluates to zero if and only if

x P, 1 h'd

sgn( )1 m=m S(0+1om) Crl (M) (3.2.23)
25n m=k+1

evaluates to zero. By Theorem 3.23, a su cient condition for Assumption 3.2 to hold is that

expression (3.2.23) is nonzero for
8
<
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Example 3.27. Let the boundary conditions be simple (hence uncoupled and non-Robin)

and such that s
; = 1 a=i
R=_ L= _ (3.2.24)

- 1 - a= I

A

Note these conditions on R and L are precisely those proven to be necessary and su cient for
well-posedness of the boundary value problem in [53].
Clearly Condition 3.19 holds. To show these boundary conditions satisfy Condition 3.22 we

must show that expression (3.2.9), that is

> P P
sgn( )! mzr MMM o I(M)mM (3.2.25)

2Snh:
8 mM2R 9 p2R:
jirm)= r(p)
does not evaluate to zero for any j.
By de nition (3.2.7) of j, the requirements on the 2 Sy indexing the rst sum in expres-

sion (3.2.25) are equivalent to

2Sh:8m2f1;2;:::;Rg9p2R:m j= r(p):
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3.2.2.1. Assumption 3.2 implies well-posedness

Theorems 3.1 and 3.13 give an explicit representation of a unique solution to the initial-
boundary value problem in terms of only known data provided Assumptions 3.2 and 3.3 both
hold. It remains to be shown that Assumption 3.3 is not necesary.

Without Assumption 3.3 the expressions for 1, and 14 in equations (3.1.5) and (3.1.7) are
not valid hence we must replace their representations in equations (3.1.9) and (3.1.11) with

8 2 3 2 39
37 Z Z -~ Z Z - Z 5=
I, = +§ é+§ + Z P() i0) d;
= r e N 