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A one-dimensional model of sediment transport and deposition over a saltmarsh
is developed by simplifying a three-dimensional mass balance equation for the

sediment and integrating the resultant equation over the depth of the flow . The
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Notation

amplitude of tide [m]

height of saltmarsh above mean sea-level [m]
non-dimensionalised b

fractional volume of sediment in fluid

fractional volume of sediment in tidal water
diameter of sediment particle [m]

absolute error in the depth of sediment deposited [m)]
height of water above saltmarsh [m]
non-dimensionalised H

label of space grid points
P

node before z}

node before zg

mode number of fourier decomposition of y

length of saltmarsh [m]

number of space steps

half the number of time steps

exponent or time level

number of time steps in characteristic solving routine
time level in characteristic solving routine

rate of deposition on saltmarsh [ms™]

gradient of line of best fit for graph of error against M
gradient of line of best fit for graph of error against N
depth of sediment deposited on the saltmarsh [m]
approximation to depth of sediment deposited on the marsh at (x;,,) [m]
non-dimensionalised S

tidal period [s]

time [s]

time at which no sediment is suspended above a point on the marsh [s]
non-dimensionalised ¢

time at nth time level [s]

time at pth time level of characteristic solving routine [s]
phase of tide at which water covers the saltmarsh [s]
non-dimensionalised %,

horizontal fluid velocity [ms™!]

non-dimensionalised «

i1



u; fluid velocity components [ms™!]

[uy]?  approximation to uy(z;,t,) [m*s™']

v, particle settling velocity [ms™!]

v, non-dimensionalised v,

Vo settling velocity of single smooth sphere [ms™!]
w vertical fluid velocity [ms™!]

T horizontal coordinate [m]

z’ non-dimensionalised x

Te position of characteristic through zg [m]

P approximation to x.(t,) [m]

a2 (®) - Eth iteration of x? [m]

T position of jth node [m]

g position at which no sediment is suspended above the marsh [m)]
z; components of position vector [m)]

Y height of column of sediment in water
Yy’ non-dimensionalised y

Ye value of y on characteristic x. [m]

Yo approximation to y(z',t,) [m]

yr approximation to y(z;,t,) [m]

z vertical coordinate [m]

o label of characteristics

€ sediment mixing coefficients [m?s™]
n dynamic viscosity of fluid [Nsm™?]

0 parameter in box scheme

A the Courant number

£ amplitude of fourier mode

p density of fluid [kgm ]

o density of sediment [kgm =]

T truncation error

parameter in box scheme
angular frequency of tide [s™!]
At time step [s]
At.  time step in characteristic solving routine [s]
Az space step [m]
Az"  space step for first step in box scheme for ebb tide [m]

v



Ch pter 1

Introduction

1.1 What is a Saltmarsh?

Coastal saltmarshes are relatively flat areas of land which are regularly flooded
by the sea; they occur high in the intertidal zone, mainly in temperate and high
latitudes on low energy coasts [Allen and Pye 1992]. Their occurrence is controlled
by the coastal geography since deposited sediment can only accumulate where
the wave action is small. Hence saltmarshes tend to be found only in sheltered
areas like bays and estuaries or on the lee side of spits and barrier islands. An
exception to this is where a major river deposits fine sediment which forms a large
and shallow region close to the shore which reduces the intensity of the incoming
waves, for example, the Mississippi Delta.
There are several processes which affect the development of saltmarshes. Firstly,

they need a source of sediment: this is usually from the suspended material in
the tidal water which periodically floods the marshes. The sediment will only be

deposited when the fluid velocities are small. Hence a saltmarsh will only develop



near the top of the intertidal region which is only covered at slack water. The

presence of vegetation on the marsh will affect the growth of the marsh in two



farming arable crops.

Until recently however they have been of little interest to coastal engineers,
but in the past few years there has been much attention paid to global warming
and the resultant threat of rising sea-levels and a stormier climate on the lowlying
coastal regions of Britain. The danger of loss of land to the sea has brought about
a need to improve the coastal defences around much of the British Isles.

Traditional coastal defence tactics such as the construction of sea walls can be
expensive and cheaper methods of protecting the land are being considered. One
such tactic is the use of the natural features of the coastline as a defence mecha-
nism. The most important feature of the saltmarsh in this respect is the way in
which they dissipate much of the incoming wave energy so that little remains at
the landward end [Brampton 1992]. This enables the land beyond to be protected
from the sea by a much smaller and therefore cheaper wall. To use saltmarshes
as an effective aid to coastal defence, without damaging their ecological value, re-
quires an understanding of the ways in which the marsh develops and how human
interference may affect this. This project uses a simplified one-dimensional model
of sediment transport over the marsh to simulate numerically the deposition of

sediment on the marsh by the tide.






2.1.1 Settling Velocities

The settling velocity of a single smooth spherical particle in a stagnant unbounded

fluid for small particle Reynolds numbers, Re = p vg/n, is given by Stokes’” Law

1 _ 2
S G 0 (2.2)
18 n

where vg is the settling velocity of the single particle, o is the particle density, p
is the fluid density, ¢ is the acceleration due to gravity, is the particle diameter
and n the dynamic viscosity of the fluid.

Richardson and Zaki(1954) find by experiment that the relationship between

settling velocity for an array of particles and a single particle is given by
v, = vo(l = C)" (2.3)

where n is a positive exponent dependent on the particle Reynolds number.
Maude and Whitmore(1958) find theoretically that 2.33 < n < 4.65 and generate
a curve of the relationship between n and the Reynolds number which agrees well
with the experimental results of Richardson and Zaki, as shown by Allen(1985).

Similarly Hallemeier(1981) suggests a scheme, based on experimental results,
for modifying the settling velocity for non-spherical particles. This scheme has

little effect on settling velocities in low Reynolds number cases.

2.1.2 Fluid Velocity Components

To solve equation 2.1 a knowledge of the fluid velocities is required, these can
be obtained from analytical or numerical solutions of the equations of motion of
the fluid or approximations to them. These fluid velocities will be specific to the

problem being considered.



The sediment mixing coefficients are related to the diffusivities for the momentum
of the fluid. There are many ways of modelling turbulence and calculating diffu-
sion coefficients, based on results from both theory, eg. Prandtl’s mixing length
theory [Graf 1971] or experiments, eg. Rajaratnam and Ahmadi(1981). Once

again these results will be dependent on the problem being considered.

In order to solve equation 2.1 in a finite region boundary conditions must be
specified. These are based on the physical boundary conditions that no sediment
may be transferred across the water surface. A known concentration profile may
be specified at a boundary of the region. At a solid boundary, eg. the bed of the
region, the rate of transfer is defined by the probabilities of a particle reaching
the boundary being deposited and of a particle on the boundary being eroded.
At a vertical boundary it can usually be assumed that there is no transfer of sed-
iment. At the bed of the region the probabilities can be estimated in many ways
James(1987) ignores the possibility of erosion and defines the probability of de-

position by the complement of the erosion probability defined by Einstein(1950).

The saltmarsh is assumed to be horizontal and alongside a body of tidal water, i.e.



transverse direction need to be considered. Figure 2.1 shows the two-dimensional

approximation to the region of investigation.

water surface

‘landward’
H end
saltmarsh
‘seaward’ L .

end

Figure 2.1: The region of investigation

The marsh is bounded at one end, hereafter known as the ‘seaward end’, by
the body of water, which is the source of the sediment and at the ‘landward’ end,
a distance L away, by a vertical barrier. It is assumed that the water surface
remains horizontal across the marsh, this implies that the tide, when it reaches
the level of the marsh, instantaneously covers it. The depth of the water, H, over
the marsh is therefore uniform and a function of time only.

The simplifications made here allow the removal of one of the dimensions
from equation 2.1. The mass balance equation for suspended sediment in two

dimensions is

oc 9 d d oC o [ oC d
T 8_:1;(u0) + @(wc) = 9 (6906_:1;) 5 (QE) + %(vpc) (2.4)

where x is the transverse direction and u and w are the velocities in the x and z

directions, with the origin on the marsh at the seaward end.



In order to simplify the equations to be solved, further assumptions are made



zero terms gives

6t/ Cdz — —C( (1) + ;C/OH“)(U(J) dz — /OH“) ;Z(UPC) d==0. (2.7)

Assuming that at (x,1) the sediment is distributed through a column of height

y with a uniform concentration, i.e.

Co if0<2<
¢ Cotisssy (2.8)
0 ify<z<H
implies
aC
9. —Coé(y) (2.9)

where 6(y) is the Dirac delta distribution. The form of the concentration profile
given by equation 2.8 also implies that at every point except & = 0 the concen-
tration at the water surface is zero, so that for > 0, “LC(H(t)) = 0, which

’dt

means that equation 2.7 becomes

dy 0
o T %(uy) + v, = 0. (2.10)

Equation 2.10 is the continuity equation for the suspended sediment that will
be used in this project to provide a numerical simulation of the deposition of
sediment on a saltmarsh. Only values of ¥ > 0 have any physical significance in

the solution of this problem.

2.2.4 The Velocity Profile over the Saltmarsh

In order to solve equation 2.10 the functional form of the velocity over the salt-
marsh is required. This can be obtained by solving an equation of continuity for

the fluid derived from a consideration of mass balance in the fluid.






time, ¢, is defined such that ¢ = 0 when the water instantaneously covers the

marsh. The marsh will be covered by the tide whilst

T
0<t<——2. (2.16)
w

2.2.6 The Model Equations

In summary, the following equation is used to model the transport of sediment

over the salt marsh,

dy 0
a—l—a—x(uy)—l—vp—() (2.17)

with the boundary condition that

y(0,1) = H(t) Vo<t< 21 1 (2.18)

W

where the velocity and depth of water over the marsh are given by

L—axdH

H(t) = Asin(w(t+ to)) — b. (2.20)

2.3 An Analytic Solution

The model equations given in Section 2.2.6 can be solved analytically for the case
where b = 0, i.e. H = Asin(wt), by the method of characteristics described by
Wood(1993).

From equations 2.19 and 2.20 we have that
u= (L — 2)wcot(wt) (2.21)

and from equation 2.17 we have

oy Iy Ju
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which implies from equation 2.21 that

d
d_?; (weotwt)y = v, (2.27)

Multiplying equation 2.27 by a factor cosec(wt) gives

d Yy v,

dt sin(wt) - sin(wt)’ (2.28)

Given that, for 0 ¢ 7at v =0, a = wt and y = Asina, integration of
equation 2.28 gives

y— Asinwr) 1 2 (2.29)

Aw tan %

where « is given by equation 2.25.

The rate of deposition, R(x,t), of sediment on the saltmarsh is given by

Covp ify>0

R= (2.30)

0 otherwise

so, in order to be able to determine the depth of sediment deposited on the marsh
the time, tg(x), at which y = 0 is needed. The position, xg(t), at which y =0
can be found from equation 2.29 by substituting in an expression for « from

equation 2.25, giving

sin 2 arctan e_f_:tan(%t)
rp(z)=L 1 ) (2.31)

sin(wt)

Rearranging and using trigonometric identities gives

tp(x) = 2 arctan [eﬁ(lm p) 1 : (2.32)
“ [ e (1 %)

Aw
It must be noted that for « > L[1 e *»] the expression does not hold as there

is no time for which y = 0 at these = values.

13






The tidal period over which equation 2.17 from section 2.2.6 is to be solved can be
split into two distinct parts. The first is whilst the tide is rising and water, full of
sediment from the channel, is coming into the region over the saltmarsh. The sec-

ond part is after the tide has turned and the water, with some sediment remaining,



equations numerically.

The saltmarsh is divided into equal sections of length A = with
; = A . The time discretisation is done by using 2 equal time steps,
A =(35 o ,with , = A. The solution ( ; ,) is approximated by

Pand [ 7= (; ,) 7. The depth of sediment deposited, ( ; ,), on the

n

marsh is approximated numerically by 7.

When the box scheme is applied to equation 2.17 the time derivatives are ap-
proximated by a weighted average of the finite difference form at two spatial

points

(L ),k ntl n
A (7 j)+K(j+1 iy (31)

and the space derivatives are replaced by a weighted average of the finite difference

forms at two time levels

7( ) T ?+1 ? ?111 ?H




and

%%)+A2(M(NH(A% (3 4)

respectively.
This gives a finite difference approximation to the continuity equation for the

suspended sediment, equation 2.17 of the form

1 n n n n
u( it j)+A_( R

(lA ! i DI+ 5 [+ =0 (35)

with a truncation error, . given by

:%~%+2%)+%-%ﬁ+22 + (A%+ (A7) (36)

Equation 2.17 can be partially differentiated with respect to t giving

and with respect to x giving

Substituting these into equation 3.6 gives

1 2 2

=51 2)A —+- 2 2




n n 1jkAx
k

n 1jkAz
k
tkAx tkAx

At
Az



equation is linear in y, i.e. the velocity, u, is independent of y, the equation
produced by discretising using the box scheme is linear and can be solved easily.

Equation 2.17 is discretised using the box scheme with the parameters set at

= = 05. Rearranging the finite difference form, equation 3.5 to solve for ?:'11

explicitly gives

RN ek LS (O ) U N S
s [A + (it np)A]
This equation is then solved for 0 1 to step along the region from the
seaward end for each time step 0 1, until the turn of the tide.

A numerical approximations 7% to g( ,) is obtained by using linear interpo-

lation between the two points across which the sign of 7 changes. At each time

n 7? n
E im ig+1 E
n
n JE
E F n n
JE Jje+1
n
J
n . n+1
j P j E
n+1 n (w%—x])Cvat n+1 . n
; j ntl E E
J J rE—Tp J
n
J

Y



small the horizontal velocities are large compared to the settling velocities of the
sediment. This means that for very small the column of sediment in the water
is approximately the same depth, ., as the water. Then, using the expression

for the velocity from equation 2.19 the product , for small t, is given by

- = )= (31

Both these expressions for  were tried for the initial time step in the numerical

scheme applied to the problem described in section 2.3 and the results compared

a) b) ©)
0 i 2 i 0 i
>3 >3 >
5] * 5] * S *
£ 0.25- £ 0.25- £ 0.25-

00— —TT T T 1T 111 00T T T 1T T 71717 00T T T T 1 TT 1717
25 50 0 25 50 0 25 50
x/metres x/metres x/metres
—4
E p
dH

dt



ruled out.

n
n ntl ntl ntl
n+1 J J J J
J+1 ,
Jj+1  n+l
n
M
n
M
n
E
M-1
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the position of % it is more important to have this value accurately evaluated
than to have the height of the column at the end of the region accurately defined
because only values of 0 have any physical significance in this problem and
the value of 7, affects the solution at subsequent time levels only at »; and

therefore does not affect the solution in the interior of the region.

During the ebb tide the box scheme cannot be used quite as simply as during the
flood tide. Since there is no boundary data no values are known at the new time
level and it is therefore necessary to evaluate at least one of the heights, ;“"1, at
the new time level by some other method. If a position towards the landward end
of the region is chosen then this new value can be used like a boundary condition
and the box scheme can be used to step towards the seaward end from this point
in the same way as it is used during the flood tide.

Several things need to be considered when calculating this ‘boundary value’,

the most important of which is that in order to get a complete solution for the

part of the marsh which still has sediment suspended above it, the first value at



negative x direction and that u is negative this gives a scheme,

w1 Yim Ax + ([uy]ioy — [uy]}) AL — v,AzAl
Yi-1 = Az

(3.20)

There are two main problems with this method, firstly the explicit scheme given
in equation 3.20 is only conditionally stable which will mean that Az, At will
have to be varied to provide stability. Secondly, once a value has been obtained
at the new time level a check will have to be made to ensure that the value is
negative and if not a new Az, At chosen to get a negative value.

An alternative method is to trace along the characteristic from a point at the
old time level, n, where the solution is non-positive to the new time level and
evaluate a numerical solution at this new point. This method guarantees that
the value at the new time level will be negative and does not create the same
problems over choice of Az and At. It does however require the characteristic
equation 2.23 to be solved numerically, which may itself create problems with
stability conditions.

The method used in this project is to trace the characteristic from the point
where the numerical solution is zero, 7 to the next time level, n41 by numerically

solving the characteristic equation

dx L —xdH

and to simultaneously update the values of y on this characteristic from the
equation

dy du

by use of a numerical method. To avoid problems with stability the trapezium
rule was chosen because it is unconditionally stable.

23



Equations 3.21 and 3.22 are integrated from ¢, to ¢,41 using P time steps
At. = %. The position of the characteristic through x% is given by x.(t) and is

approximated by z? at a time ¢, = ¢, + pAt.. The trapezium rule then gives
gt = 2P 4 ;Atc w(xP 0 + u(a?,t,) (3.23)
This equation is solved iteratively by making an initial guess
aPLO) = P 4 At u(al,t,) (3.24)
and then using the iteration
PO = b ;Afc (@) 4 u(al, 1) (3.25)

until two consecutive approximations differ by less than a specified tolerance.
If the value of y on the characteristic is approximated by y? then application

of the trapezium rule to equation 3.22 gives

yp—l—l — yg Up —I_ %ygul’(xg7tp) Atc (3 26)
‘ 1+ A (22 1,4

With 2 and y known it is possible to use the box scheme to integrate
along the region towards the seaward end. The first step must be done with a

steplength defined by A "= . where _issuch that ;

C

Jet+1- ThlS

c [

P

C

P

means that an approximation to ( ) is needed also. The value of ( I ) is

approximated by . using linear interpolation between the two calculated values

n

either side of it. If .( ,41) = &( ») then the interpolation is done between

n

n 3 n
and 7}, otherwise 7 and 7., are used.

The box scheme applied to the first horizontal step at each time level becomes

ot _ Lt o OATHT B (8w e (8 an) JIA 2 ,A A

" A (i wn)A]

(3 27)
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For subsequent horizontal time steps the box scheme is given by

wrt _ i w7 =y A+ ([uyli, — [uy)} — [uy]f )AL = 20,AtAa
Yj—1 = (Ax —u(x;_q1,tug1)Al) |

(3.28)
If #(0,%,41) > 0 then the position of 2" and the depth of deposited sediment

are evaluated in the same way as for the flood tide.

If the characteristic being traced goes out of the region, i.e. . < 0 then the
integration of the characteristic equation stops, the time at which x. = 0 and
the value of y. are approximated using linear interpolation between ¢, and #,4,.
In this case or if yo™' < 0 then the method evaluates the time, t,, at which

y(0,1) = 0 by using linear interpolation along the time axis at # = 0, updates the

deposited sediment for the shortened time step, t; — ¢, and stops.

If the numerical solution continues until ¢ = = —2¢, without giving yott < 0 then
the method forces y2¥ = 0 and interpolates between %' ' and zero to evaluate

the deposition for the final time step.

25



The numerical method was tested by using it to solve the problem described in
section 2.3 and comparing the results with the analytic solution given there.

The testing was done with the parameters of the problem set as; =5 , =

—4 -1 -5 -1



S/mm

a)
5.0
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0.0 T T T T T T 1]
0 25 50
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S/mm

o
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x/metres



sanaw/A

50

40

30

20
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x/metres



Error,F,/mm
N | M |v,=3x10""ms" |v,=3x 10" ms"
50 | 50 1.9657 x 1073 7.4086 x 1074
50 | 100 1.1740 x 1073 4.6134 x 1071
50 | 200 8.1780 x 10~* 2.9941 x 10~*
50 | 400 5.9296 x 10~* 2.0041 x 10~*
50 | 800 4.4190 x 10~* 1.3744 x 1074
100 | 50 2.0946 x 1072 6.4394 x 10~*
100 | 100 7.2483 x 1074 3.5656 x 10~*
100 | 200 4.4250 x 10~ 2.0693 x 10~*
100 | 400 3.0412 x 1074 1.2698 x 1074
100 | 800 2.1305 x 1074 7.9361 x 107°
200 | 50 2.3575 x 1072 6.4530 x 10~*
200 | 100 7.0094 x 1074 3.4750 x 10~*
200 | 200 2.6464 x 1074 1.8575 x 1074
200 | 400 1.5609 x 1074 1.0268 x 1074
200 | 800 1.0442 x 1074 5.8160 x 10~°
400 | 50 2.3432 x 107° 6.7564 %< 10~
400 | 100 7.2911 x 1074 3.5625 x 10~*
400 | 200 2.6778 x 1074 1.8822 x 1074
400 | 400 9.2843 x 107° 9.9209 x 10~°
400 | 800 5.3609 x 107° 5.2819 x 107°
800 | 50 2.1998 x 1072 6.8404 x 10~*
800 | 100 7.3507 x 1074 3.6360 x 10~*
800 | 200 2.3386 x 1074 1.9122 x 1074
800 | 400 7.6897 x 1075 9.9516 x 10~°
800 | 800 3.0227 x 107° 5.2401 x 107°

Table 4.1: Error in the numerical solution of the deposited sediment with A = bm,

T =12hrs and C = Cy for v, = 3 x 107*ms™! and v, = 3 x 107°ms~* for varying

values of N and M.
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b)

a)
- M= N V=)
| -7.5
*\f _ e VT
M=100
-7.54¥\ 7\’/ M=200
= . = |
- | M=400 - -10.0— M=800
-10.0 i
— M=800
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In(N) In(N)
Figure 4.3: The variation of the error, ,, with  for fixed values of | with a)

,=3 10 ~ltandb) ,=3 107° '

can be seen that for fixed the error can not be reduced greatly, it at all, by
increasing the value of  beyond that of . Secondly, for a fixed value of

the error improves if  is increased, even beyond the value of , although this



discretisation. Similarly to estimate the order of accuracy in space the data for
N = 800 was used. The estimate was made by evaluating the gradient of the line
of best fit through the data points using the method of least squares.

For N = 800 the gradient, rys, of the line of best fit for In(F;) against In(M)
is ry = —1.5628 for v, = 3x 107 *ms™! and ry; = —0.9282 for v, = 3x 10" °ms~'.

For M = 800 the gradient, ry, of the line of best fit for In(F;) against In(N)
is v = —0.9730 for v, = 3 x 107*ms™!, the data for v, = 3 x 10™>ms~" is not
suitable for a straight line approximation and so was not used.

These results show that the scheme is at least first order in time and space,

i.e.

B~ 0(1)+0(1) (12)
= O(A) + O(Az) (4.3)

The scheme used is first order because although the second order box scheme
is used to solve for y, linear interpolation which is only first order is used to
calculate the approximations to xp and hence the scheme becomes first order

overall.

4.2 Experiments

The model was used to examine how the depth of sediment deposited on the

marsh varies with the parameters A, b,v,, L for a fixed tidal period T' = 12hrs.
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with the boundary condition

y(0,¢) = H'() 0 ¢ g # (4.14)
where
1 2'dH’
u/(x/,t/) = T dt/ (415)
H () = sin(t'+1t;) ¥ (4.16)

From this non-dimensional form of the equation it can be seen that the solution

is dependent on two non-dimensional parameters, and

By holding ., and constant and varying , shows how the depth of sediment
deposited on the marsh depends on the settling velocity. From figure 4.6 it can be
seen that the sediment with small settling velocities is uniformly distributed over
the saltmarsh and that as the settling velocity increases a gradient in the depth
of sediment deposited develops across the marsh and the deposited sediment does
not extend across the whole width of the marsh.

Figure 4.7 shows that increasing the ratio reduces the depth of sediment
deposited on the marsh for a given concentration and also causes sediment of a

given settling velocity to be less evenly distributed over the marsh.

Sediment suspended in tidal water is not made up of particles of a unique size
and settling velocity but particles of many different sizes. This model can be
used to investigate this case because it has been assumed that each particle acts

34



independently and therefore the solution for each particle size is independent of

the others.






Ch pter 5

Conclusions

A simple one-dimensional mathematical model of sediment transport over a salt-
marsh was developed from a generalised three-dimensional mass balance equation
for suspended sediment by making a series of simplifying approximations regard-
ing the flow of the water over the marsh, the suspension of sediment in the water
and the topography of the marsh. Essentially, the marsh was assumed to be flat
and uniform in the along channel direction, the flow was assumed to be non-
turbulent and hence the diffusion of sediment in the fluid was ignored and the
sediment was assumed to be distributed throughout a column of water with a uni-
form concentration. The height of this column of water was used as the variable
to describe the quantity of sediment suspended above the marsh and an equation
governing its variation in space and time was obtained by depth integration of
the simplified mass balance equation. An analytical solution of this equation was
obtained for a saltmarsh at mean sea-level to compare with the solution obtained
from the numerical model.

The model equation was solved numerically by use of the box scheme [Preiss-
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