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Abstract

Two height averaged expanding Lagrangian mesh models are developed of a lava dome vol-

cano and it’s attached talus slope; the first is a simple slab geometry while the second is

axi-symmetric. The models are developed in C++ using an object orientated class frame-work.

The Rheology of the lava is modelled in the dome and the talus is fixed by geometric

geological observations. Material is extruded into the dome from a volcanic conduit and the

model allowed to calculate the expansion of the Lagrangian cells based on the rheological flow

of the lava. A conservation law determines the amount of material distributed into the dome

and the talus iteratively for each time step.

The slab model is seen to produce results which are compatible with geological observations

and previous studies, these however, do not include a talus. The radial model is observed to

require further work; several suggestions are made.
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Figure 1.1: Photograph of the Soufrière Hills Volcano, Montserrat, showing the talus slope
surrounding the lava dome.

of geologists examining the volcano with an array of ingenious sophisticated apparatus. But

these observation are only able to infer what is occurring deep on the inside of the lava dome.

Computer models are a safe way1 to obtain an insight into the internal dynamics of the volcano.

To produce a mathematical model of the internal workings of a volcano some knowledge

of the fluid dynamics of lava must be known. Experimentation is not easy as lava cannot be

produced in the laboratory, nor can it be collected and manipulated as it tends to melt or ignite

what ever it comes into contact with. However, historical experiments with analogous fluids

have given an insight into the behavior exhibited by lava.

The term Rheology was coined by Eugene Bingham in 1920 and is the study of stress induced

flow in materials, which is now a sub-branch of fluid dynamics and is generally regarded as the

study of non-Newtonian fluids. Normal fluids, like water, are categorised as Newtonian fluids

and have a fixed viscosity. A non-Newtonian fluid’s viscosity is a function of the strain rate

1Neglecting mouse induced repetitive strain injuries to the wrist.
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applied to the fluid, there are thus two types: shear-thinning and shear-thickening. Lava, along
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1.3 Description of this Document

In this dissertation two models of a lava dome volcano and talus slope were developed. Both

are height averaged and use a variable Lagrangian mesh to track the expansion of the lava

dome. A slab model was produced first as a proof of concept and simplifies the volcano to a

cross sectional slab, removing the axi-symmetry of the true system. The radial model was then

developed. The models were written in object orientated C++ code.

Chapter 2 derives the equations needed for the Lagrangian cells in the slab geometry and

then explains the algorithm used to evolve the system in time. Then Chapter 3 repeats the

procedure for the axi-symmetric model explaining all of the differences induced by the change of

geometry to the equations and the algorithm. Chapter 4 explains how the models were run and

related to the geological observables while Chapter 5 presents all of the results, observations

and conclusions as well as making suggestions about how to improve the radial model. In the

final Chapter, the conclusions are summarised and ideas for further future work are presented.



Chapter 2

The Slab Volcano

The Rheological approach of [3] which this mathematical model is based on, was developed for
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2.1 The Mathematical Model

2.1.1 Rheology Equations

From the paper by Balmforth et al. [3], the axi-symmetric rheology equations are rewritten in

a one-dimensional slab form;

∂h

∂t
+

∂U

∂x
= ws(x), (2.1)

where ws(x) is the source term for the lava extrusion as a function of the x co-ordinate, h is

the height of the lava dome, and
∂U

∂x
is the change of the rheology term U of the lava with x.

The rheology term

U =
−n

n + 1

∣∣∣∣∣∂h

∂x

∣∣∣∣∣
1
n

−1

Y 1+ 1
n

[
h − nY

2n + 1

]
∂h

∂x
Θ(Y ). (2.2)

is taken from the paper, where n is an integer which defines the non-Newtonian nature of the

lava fluid; n = 1 is a pure Newtonian fluid, n < 1 is a shear thinning fluid, and n > 1 is a shear

thickening fluid. Θ(Y ) is the heavyside function with respect to Y ,

Θ(Y ) =


0 Y ≤ 0

1 Y > 0
,

where Y is defined to be

Y = h − B∣∣∣∣∣∂h

∂x

∣∣∣∣∣
,

and B is the Bingham number of the lava, defined by

B =
τpH

ηV
=

τpL

ρgH2
.
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Substituting for h(I, t) gives

VT (t) =
1

2
(xT (t) − xI(t))2 tan θ, (2.5)

and rearranging produces

xT =

√
2VT

tan θ
+ xI .
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say. Equations (2.8) and (2.9) are combined into

ci =
∫ xi(t)

xi−1(t)

h(x, t)

VD(t)
dx. (2.10)

Since ci is independent of time, ċi = 0, hence

d

dt

∫ xi(t)

xi−1(t)

h(x, t)

VD(t)
dx = 0.

Using the chain rule for total derivatives,

dA

dt
=

∂A

∂t
+

∂A

∂x

∂x

∂t
,

gives

∂

∂t

∫ xi(t)

xi−1(t)

h(x, t)

VD(t)
dx +

[
∂

∂xi

∫ xi(t)

xi−1(t)

h(x, t)

VD(t)
dx

]
∂xi

∂t
= 0,

and via integration of the second term

∫ xi(t)

xi−1(t)

∂

∂t

[
h(x, t)

VD(t)

]
dx +

[
h(x, t)

VD(t)

∂x

∂t

]xi

xi−1

= 0,

which is

∫ xi(t)

xi−1(t)

∂

∂t

[
h

VD

]
dx +

1

VD

∫ xi(t)

xi−1(t)

∂ (hẋ)

∂x
dx = 0,

where the partial derivative
∂x

∂t
is now written as ẋi since the cell boundaries are only functions

of time. By the quotient rule

∫ xi(t)

xi−1(t)

VDht − hV̇D

V 2
D

dx +
1

VD

∫ xi(t)

xi−1(t)

∂ (hẋ)

∂x
dx = 0,
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and multiplying by VD

∫ xi(t)

xi−1(t)

[
ht − hV̇D

VD

+
∂ (hẋ)

∂x

]
dx = 0.

Substituting from equation (2.1) for ht and equation (2.10) for ci gives

−V̇Dci +
∫ xi(t)

xi−1(t)

[
ws(x) − ∂U

∂x
+

∂ (hẋ)

∂x

]
dx = 0.

Integrating, we get

−V̇Dci +
∫ xi(t)

xi−1(t)
ws(x) dx − Ui + Ui−1 + hiẋi − hi−1ẋi−1 = 0,

but this can be summed for all prevTd[(V1.955 T9 6.20 12Aw Tf 5g3d[(D)(V1.95,27(tegriv962 5 Tf 7.283 1.793 Td112 0 Td[(:)]TJ/F17 11.955 Tf -227.366 -43.693 Td[(�)]TJ/F17 11.955 Tf 12.386 3.022 Td[(˙)]TJ/F24 11.955 Tf -3.087 -3.022 Td3(V)]TJ/F25 7.97 Tf 6.824 -1.794 Td[BT
/F30/F24 11.955 Tf 1.799752 0 Td[(c)]TJ/F25 7.97 Tf 5.038 -1.794 Td[3i)]TJ/F17 11.955 Tf 6.038 1.794 Td[9+)]TJ/F1 9.963 Tf 11.761 14.058 Td[(Z)]TJ/F25 7.97 Tf 9.963 -3.155 Td[(x)]TJ/F26 5.978 Tf 4.767 -156 0 Td[(1)]TJ/F22 7.97 Tf 4.151 1.215 Td[(()]TJ/F25 7.97 Tf 3.294 0 Td[(t)]TJ/F.058 0 Td[())]TJ/F06(for)-326(all)-326(pm
BT
[(�951)]TJ/F24 11.955 Tf 1.799 72 0 Td[(c)]TJ/F25 7.97 Tf 8.368 -1.794 Td[3Td[(@)]TJ/F17 11.955 Tf 8.822 0 Td[(()]TJ/F24 11.955 Tf 4.552 0 Td[(x)]TJ/F17 11.955 Tf 6.652 0 4d[())]TJ/F24 11.955 Tf 8.455 02Td[(dx)]TJ/F27 11.955 Tf 15.391 0 Td[(�)]TJ/F24 11.955 Tf 11.955 0 T[(c)]TJ/F25 7.97 Tf 5.038 -1.794 Td[3i)]TJ/F17 11.955 Tf 7.389 1.794 Td[(+)U0)]TJ/F25 7.97 Tf11.9155 0 T[(c)]T00
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where ẋi, the rate of change of the ith cell boundary, are the i unknowns to be found for

i = 1, 2 . . . I. Also, combining equations (2.3) and (2.7) gives

V̇D =
∫ xc

0
ws(x) dx − tan θ (xT − xI)(ẋT − ẋI),

which is inserted into equation (2.12) to yield

Ci tan θ (xT − xI)(ẋT − ẋI) − Ci

∫ xc

0
ws(x) dx +

∫ xi(t)

0
ws(x) dx − Ui + hiẋi = 0. (2.13)

Notice here that the interval of existence for the extrusion function is

ws(x) ∈ [0, xc],

since material is only extruded from the conduit, thus

∫ xi

0
ws(x) dx =

∫ xc

0
ws(x) dx xi ≥ xc. (2.14)

Notice also that

CI =
I∑

j=0

Vj

VD

=
VD

VD

= 1,

which together with equation (2.14) produces three distinct cases: xi < xc, xi > xc, and xi = xI .

Equation (2.13) is now valid only for the case where xi < xc. In the xi > xc case we obtain

Ci tan θ (xT − xI)(ẋT − ẋI) + (1 − Ci)
∫ xc

0
ws(x) dx − Ui + hiẋi = 0. (2.15)

In the xi = xI case CI = 1 causing cancellation of the extrusion term

tan θ (xT − xI)(ẋT − ẋI) − UI + hI ẋI = 0,
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and since hI
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3. Discretise the dome into Lagrangian cells, finding: xi; hi; Vi; ci; Ci ∀i.

4. The extrusion function ws(x) is chosen from geological observations.

5. Use a difference method to estimate the height gradient, (hi)x ∀i.

6. Calculate the Rheology term, Ui and its derivative (UI)x ∀i via a difference scheme.

Once the system is set up the time evolution can begin:

1. Find the cell boundary rates, ẋi ∀i.

2. Calculate the new cell edges for the time step, xi using an IVP method.

3. Given the new interface boundary position, iterate the relative dome and talus volume

growth until the interface condition for (hI)x is satisfied and thus calculate the new talus

end position.

4. With the volume of the talus found via iteration, calculate the interface height, hI .

5. Use back recursion to calculate all of the remaining dome heights, hi, from hI .

6. Find the new values of (hi)x; Ui; (Ui)x.

7. Move to the next time step.

This algorithm is implemented into an object orientated frame work using C++.

2.3 Setting Up The System

2.3.1 The Dome and Talus Geometry

Geological observations show that: the volcanic talus slope is at a constant angle, θ, to the

horizontal, and is fixed regardless of the volcano’s size; there is a smooth transition between
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the talus and the dome, i.e. h and hx are continuous; when the dome is small it is roughly

hemispherical. The initial function of dome height h(x, 0) is therefore taken to be a circle, thus

h(x, 0) =
√

h2
0 − x2, (2.23)

where h0 is an initial central maximum dome height at x=0 given from observation; it is acting

in this case as the radius of the hemispherical dome. The interface point, xI , is determined

from the geometry of the model to be the point at which the tangent to the dome forms an

angle θ to the x axis; thus, from the above

h2 = h2
0 − x2.

Differentiating implicitly gives

2h
dh

dx
= −2x,

so that

dh

dx
=

−x√
(h2

0 − x2
I)

.

At the interface the gradient is equal to the talus slope, − tan θ, therefore

tan θ =
xI√

(h2
0 − x2

I)
.

Rearranging gives

xI =
h0 tan θ√
1 + tan2 θ

, (2.24)
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is h0; the dome region is constrained by the points (0, 0), (0, h0), (xI , hI) and (xI , 0); construct

a radius from (0, 0) to (xI , hI) splitting the dome into two sections; a triangle, constrained by

the points (0, 0), (xI , 0) and (xI , hI); and a ‘slice of pie’, constrained by the points (0, 0), (0, h0)

and (xI , hI). The triangle’s area is given by
1

2
hIxI , while the slice of pie has an area given by

φ

2
h2

0, where φ is some angle between the two radii (0, 0), (0, h0) and (0, 0), (xI , hI), which needs

to be determined. Consider now the talus slope which is the tangent to the circle at the point

(xI , hI), which is, by definition, perpendicular to the radii (0, 0), (xI , hI). Then by elementary

geometry φ=θ the angle of the talus slope to the horizontal, therefore,

VD(t0) =
1

2

(
hIxI + θh2

0

)
. (2.25)

Recalling that associated to each cell there is a constant normalized volume, ci, and a sum

of the normalized volumes, Ci, given by equations (2.9) and (2.11), respectively; these must

also be determined and are done so as follows. From (2.9) and (2.11)

Ci =
i∑

j=1

Vj

VD

, (2.26)

where the sum of all the cell volumes upto i needs to be determined and can be done so by the

same method that VD(0) was in equation (2.25). However, it is not possible to use φ = θ here

since, the new region’s boundary point (xi, hi) is not the location of the talus tangent to the

curve h(x). Instead φ is determined through geometry to be

φ = tan−1
[
xi

hi

]
, (2.27)

thus, from equations (2.25-2.27) the following expression is obtained for the sum of normalised

cell volumes upto i,

Ci =
j=1∑

i

cj =
1

2VD

(
h2

0 tan−1
[
xi

hi

]
+ hixi

)
.
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If the Ci are calculated sequentially for increasing i then the individual cell normalised volumes,

ci can be calculated using

ci = Ci − Ci−1,

which completes the discretisation of the volcanic dome into Lagrangian cells at t = 0.

2.3.3 The Extrusion Function

Material is extruded from the conduit deep inside the volcanic dome. The conduit edge is

at some distance xc from x = 0, which is estimated from geological observations shortly after

a major collapse of the volcanic dome and talus; this essentially wipes the crater floor clean

exposing the volcanic conduit momentarily. What the exact form of ws(x) is inside the vent is

relatively unknown, but the simplest form that it could take would be a constant step function,

ws(x) =


ws x ≤ xc

0 x > xc

, (2.28)

as clearly material is only emitted from inside the conduit. ws(x) is a vertical velocity distri-

bution such that
∫ xc

0
ws(x) dx is the total extruded volume rate V̇E. The approximation to a

flat velocity distribution is seen to be reasonable from studies of bubble shapes in pyroclastic

volcanic pumice [2]; pumice is solidified lava with internal bubbles. Usually bubbles are spher-

ical, however when the lava is emitted close to the conduit walls there is a very high velocity

gradient which forms long thin stretched bubbles. This is evidence for a viscosity-driven sig-

moid velocity distribution near the conduit edge rather than a step; the step function is used

for simplicity. Thus the integral can be found, giving the total extruded volume rate to be

V̇E = wsxc.
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2.3.4 Rheology and Difference Methods

The rheology term U
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time step δt,

x′
i = xi + ẋiδt,

where x′
i is the new position of the cell boundary.

The problem with the Euler method is that it is not stable nor very accurate. Ideally a

better time step method should be used, the Backward differentiation scheme with a Runge-

Kutta predicting the initial points, would be superior. This will produce an unconditionally

stable, accurate implicit time step method. However, Newtons method will need to be used to

predict the root of the implicit equation.

2.4.2 Finding hi Using Back-Recursion

The procedure to find the time-evolved dome heights for each Lagrangian cell is actually used

after the talus/dome volume balance iteration presented below, but for this iteration to work

the penultimate cell height hI−1 needs to be found by the back recursion formula which is be

presented here.

The Lagrangian normalized cell volume ci is defined to be a constant and is given by an

integral in equation (2.10). The approximation of this integral using the trapezium rule is

ci ≈ (hi−1 + hi)(xi − xi−1)

2VD(t)
,

rearranging for hi−1 yields

hi−1 =
2ciVD(t)

xi − xi−1

− hi (2.31)

which is a backward recursive formula to obtain all of the hi given the height at the interface, hI .

The interface height is found using equation (2.33), for the iterated talus volume, as described

below.



CHAPTER 2. THE SLAB VOLCANO 27

2.4.3 Talus/Dome Volume Balance Iteration

Equation (2.3) is the conservation law which tells us that the lava extruded in one time step is
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thinned to the correct degree to allow the derivative condition to be satisfied; (hI)x will be

shallower than required.

Conversely, consider a 100% increase in the dome volume so that the talus volume remains

unchanged. If the talus volume is unchanged then the interface height will also be unchanged.

Even though the cell edges will have moved to increase the width of the cells, the volume of

the cell will also increase to match the dome’s volume change, and thus the hI−1 will have to

increase substantially. Since hI has not changed then (hI)x will now be steeper than it was

previously, which is incorrect. It is clear that the correct gradient will occur somewhere between
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2.4.4 Time Step Results

Once the iterative method has found the dome and talus volumes, hI is calculated from equation

(2.33) and the cell heights hi are then found back recursively by equation (2.31). The important

parameters of the model are the cell boundaries and the cell heights, so they are stored. (hi)x is

calculated from the difference method given in equation (2.29), which is then used to calculate

the lava rheology term Ui using equation (2.2). The left handed difference in equation (2.30)

is used to find (UI)x. Thus, all of the new values for the time step have been found and it is

possible to move onto the next one.



Chapter 3

The Radial Volcano System

Now that the slab system has been derived and understood it is possible to move onto the more

realistic axi-symmetric model, which correctly represents the cone geometry of a lava dome

volcano. The derivation follows a similar rout but there are added complications due to the
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and

Y
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= 2π tan θ
∫ rT

rI

(rT r − r2) dr,

= 2π tan θ

[
rT r2

2
− r3

3

]rT

rI

=
π

3
tan θ

[
r3

T − 3rT r2
I + 2r3

I

]
. (3.3)

The talus volume rate is found by implicit differentiation with respect to time, since rT and rI

are both functions of time;

V̇T = π tan θ
[
r2

T ṙT − 2rT rI ṙI − ṙT r2
I + 2r2

I ṙI)
]

. (3.4)

Similarly the initial volume of the dome, which is bounded by the arc of a circle, needs to be

found via

VD
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3.1.3 Lagrangian Mesh

Consider now the constant normalised volume Lagrangian cells, such that the rate of change of

ci with time is zero as before. As with the slab model it is possible to sum all of the cells upto

i, therefore we can take

dCi
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where
∂ri

∂t
is rewritten as ṙi. Use of the quotient rule on the first term and then multiplying

through by VD results in

2π
∫ ri

0

[
rht − rhV̇D

VD

]
dr + 2π hiri ṙi = 0.

Equation (3.1) and the integral form of Ci are substituted for the first and second terms,

respectively, giving

2π
∫ ri

0

[
rws(r) − ∂

∂r
(rU)

]
dr + 2π hiri ṙi = CiV̇D.

and then performing the integration

πwsr
2
i − 2πUiri + 2π hiri ṙi = CiV̇D,

which gives i equations for the i unknowns ṙi. Equation (3.2) is substituted for V̇D, the unknown

rate of change of dome volume,

πwsr
2
i − 2πUiri + 2π hiri ṙi = Ciπwsr

2
c − CiV̇T . (3.7)

Since V̇T , the rate of change of talus volume, is given by equation (3.4) we realise here that

each of the i equations also contains the unknowns ṙI and ṙT , which can be removed as follows.

3.1.4 Formation of the Last Equation

Consider ṙT : The rate of change of the interface height due to the talus is given by equation(2.17)

(with x → r), which rearranges to give

ṙT =
1

tan θ

∂hI

∂t
+ ṙI .



CHAPTER 3. THE RADIAL VOLCANO SYSTEM 35

However,
∂hI

∂t
is not known, though differentiating equation (3.1) by the product rule allows it

to be eliminated, together with the observation that ws(rI)=0, this yields

∂hI

∂t
+

UI

rI

+
∂UI

∂r
= 0,

therefore

ṙT = ṙI − 1

tan θ

[
UI

rI

+
∂UI

∂r

]
. (3.8)

Now consider ṙI: If we recall that for the I th equation in (3.7)
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3.1.5 Equations as a Matrix System

The i equations in i unknowns given in equation (3.7) form the matrix system

Kr = f,

where K is an I×I matrix

K =



K1 0 0 0 M1

0 K2 0 0 M2

0 0
. . .

...
...

0 0 · · · KI−1 MI−1

0 0 · · · 0 MI


,

and r and f are the vectors

r =



r1

r2

...

rI


and f =



f1

f2

...

fI


.

The system can be rewritten

D∗r∗ + Mr = f,

where D is a diagonal matrix and the ∗ denoted a size of (I − 1) and

M =



0 0 0 0 M1

0 0 0 0 M2

0 0
. . .

...
...

0 0 · · · 0 MI−1

0 0 · · · 0 MI


.
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Thus

D∗r∗ + rIm∗ = f ∗,

where m∗ is now a column vector. The I th equation is now simply

rIMI = fI ,

thus the matrix system

D∗r∗ = f ∗ − fI

MI

m∗

can now be solved. From equation (3.7) and (3.10) we can identify

Ki = 2hiri,

Mi = Ci tan θ(rT − rI)2,

MI = tan θ(rT − rI)2 − 2hIrI ,

fi = Ciwcr
2
i + 2Uiri − wir

2
i + Ci

(
r2

T − r2
I

)(UI

rI

+
∂UI

∂r

)
,

fI = 2UIrI +
(
r2

T − r2
I

)(UI

rI

+
∂UI

∂r

)

noticing that the factor of π has cancelled.

3.2 The Algorithm

Equations (3.7) and (3.11) provide a way to find the rates of change of the Lagrangian cell

boundaries in the radial geometry; however, as before what is really required is the evolution

of the dome height and growth of the talus slope with time. The algorithmic method to find

these is similar to the one given for the slab model and is given briefly here;

Set up the system at t = 0:

1. Chose an initial height distribution for the dome and talus, h(r, 0), from geological ob-
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servations.

2. Given the interface condition for (hI)r and the initial function h(r, 0), find the talus end

point rT , the interface location, rI and the total dome volume, VD.

3. Discretise the dome into Lagrangian cells, finding: ri; hi; Vi; ci; Ci ∀i.

4. Use a difference method to estimate the height gradient, (hi)r ∀i.

5. Calculate the Rheology term, Ui and its derivative (UI)r ∀i via a difference scheme.

Once the system is set up the time evolution can begin:

1. Find the interface boundary rate ṙI and us it to calculate the talus volume rate, V̇T .

2. Find the remaining cell boundary rates, ṙi for i=1, 2...(I−1).

3. Calculate the new cell edges for the time step, xi using an IVP method.

4. Given the new interface boundary position, iterate the relative dome and talus volume

growth until the interface condition for (hI)x is satisfied

5. Calculate the new talus end position from the new talus volume using Newtons method.

6. Calculate the interface height, hI from the talus end position.

7. Use back recursion to calculate all of the remaining dome heights, hi, from hI .

8. Find the new values of (hi)x, Ui, and (Ui)x.

9. Move to the next time step.
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3.3 Setting Up The Radial System

3.3.1 The Dome and Talus Geometry

The method of setting up the initial dome and talus geometry is identical to the one presented

in Section 2.3.1 for the slab geometry (with x replaced by r), since it is simply based on the

cross sectional geometry through the volcano from r=0 to r=rT .
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3.4 Time Step Evolution of the System

3.4.1 Lagrangian Cell Boundaries

When the radial volcanic system has been initialised then the rate of change of the talus/dome

interface with time can be found from equation (3.11), which is used to calculate the rate of

change of the talus volume from equation (3.9). This allows all of the remaining cell boundary

rates of change to be found from equation (3.7). The Euler method is used to find the new cell

boundaries from the rates in the same way as it was for the slab model.

3.4.2 Talus/Dome Volume Balance Iteration

The bi-section iteration for the dome and talus volumes using the interface condition (hI)r =

− tan θ as a constraint runs exactly as laid out in Section 2.4.3. However, here the equation for

the rate of change of the volume of the talus is now given by (3.4) which is a cubic polynomial

in rT , the end of the talus slope. Calculation of rT for each iteration of the bi-section method is

not possible directly, as it was for the slab model; Newton’s method must be used. The cubic

polynomial in rT is

f(rT ) = r3
T − 3r2

IrT + 2r3
I − 3VT

π tan θ
.

Newton’s method to find the primary root of f(rT ) is

rn+1 = rn − f(rn)

f ′(rn)
, (3.13)

where f ′(rT ) is the differential of f(rT ),

f ′(rT ) = 3r2
T − 3r2

I ,
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3.4.4 Time Step Results

Once the iterative method has found the dome and talus volumes, all of the hi are calculated

from the back recursion equations. The important parameters of the model are the cell bound-

aries and the cell heights, so they are stored. (hi)r, Ui and (Ui)r are calculated from difference

methods and thus, all of the new values for the time step have been found and it is possible to

move onto the next one.



Chapter 4

Running the Models

Once the models have been translated into object orientated computer code they can be run

to generate results for the evolution of the slab and radial volcanic dome and talus systems. It

is not a case of simply inserting the parameters observed by geologists, presented below, into

the models to obtain meaningful results. Non-dimensionalisation of the system must be used

and will be discussed below, before moving on to present the specifics of running the models.

Results and subsequent discussions are then presented in the next Chapter.

4.1 Geological Observations of The Volcanic system

Geological observations [10] of a typical lava dome volcano on the island of Montserrat were

made between 15th November 2005 and 20th May 2006, which correspond to days 3642 - 3839

measured from the beginning of lava extrusions ten years previously. The observations are:

• The gradient of Talus remains constant at approximately 35o. The slope is 37o on the

uppermost parts and 32o on the lowermost.

• After a major dome collapse event the volcanic conduit can be seen on the crater floor,

it is estimated to be 30 meters in diameter.

• The volume of the entire volcano was estimated approximately once a month and from

43
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that the volume of material extruded was calculated. The extruded volume rate is seen

to be dynamic over the six months of observations; an average estimate is V̇E =6m3/s.

• Measured from the crater floor, h0, the dome’s central maximum height grew from 55

meters to 326 meters between the above dates.

• At the end of the measurement period the talus slope was 930 meters from the centre of

the conduit, rT .

4.2 Non-dimensionalisation

Non-dimensionalisation is the process of removing units from a system of mathematical equa-

tions by substitution of variables. The essence of this process is to obtain a system where

all variables are less than unity and are all approximately the same size, which releases the

dynamic dependence of terms with one another as the model evolves rather than the possible

situation where one term dominates the evolution and thus the results. The recipe used here

is described in detail in [3] but is summarised here for clarity.

The characteristic horizontal and vertical lengths, H and L, are chosen to represent the

volcanic system. From these a characteristic horizontal velocity, V is chosen to be

V =
ρgH3

ηL
,

where ρ is the lava density, g is the acceleration due to gravity and η is the lava’s viscosity.

The new system variables (represented by the tildes) are as follows:

r̃ =
r

L
, h̃ =

h

H
, w̃ =

wL

V H
, (4.1)

where w is a vertical velocity, i.e. the extrusion velocity of the lava, ws.
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The paper then derives the Bingham number of the lava fluid to be

B =
τpH

ηV
=

τpL

ρgH2
,

where τp is the yield stress of the fluid. Values of the variables are given to be

τp = 105Pa, ρ = 2600kgm−3, η = 109Pas,

with g = 10ms−1 as usual.

To perform the non-dimensionalisation in this case, L and H need to be chosen. Starting

with the information that at the beginning of the observation period the maximum height of

the dome was 55 meters, and using the dome/talus set up procedure described in Section 2.3.1

the end of the talus is found to be 95 meters. The characteristic dimensions are taken to be

ten times larger than these parameters; L = 950 and H = 550 to force the requirement that

r̃ and h̃ be smaller than unity, while allowing large growth before reaching the characteristic

values. The rest of the values are as follows:

r̃ = 0.1, h̃ = 0.1, V = 4.55m/s, B = 0.01.

w̃s, is found from the volume extrusion rate given by the geological observations. The velocity

will not be the same for the slab and radial models due to the different geometry. For the

slab system V̇E = 2xcws thus, ws = 0.2m/s and w̃s = 0.076. While for the radial system

V̇E = πwsr
2
c , thus ws = 0.0085m/s and w̃s = 0.0032.

There also exists a characteristic time, T =
L

V
which gives a non-dimensional unit of time

as

t̃ =
t

T
= 0.005. (4.2)
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4.3 The Slab Model - Choosing δt and I

Initially it is very difficult to choose a good time step size, δt, and number of Lagrangian cells,

I, that will allow an accurate stable evolution of the volcanic system, due to the complex nature

of the model. The initial time step size was chosen to be the non-dimensional time found above,

since this is the natural unit of time for the system; the number of cells chosen was 30. The code

was run repeatedly with various time steps and cell number to observe the models behavior.

The model was deemed to run successfully if it reached one million time steps without failing

and did not have appreciable oscillations in the final solution of the height.

Model I δt Nsteps Comment/failure
A 30 0.005 40903 Convergence - oscillations
B 30 0.01 0 Convergence failure
C 30 0.0025 66465 Convergence - oscillations
D 30 0.001 125163 Convergence - oscillations/-ve(52-694)
E 30 0.0005 201228 Convergence - oscillations/-ve(131-323)
F 30 0.00025 322592 Convergence - oscillations/-ve(37-1870)
G 30 0.0001 600338 Convergence - oscillations/-ve(32-3515)
H 30 0.00005 958726 Convergence - oscillations/-ve(30-0d9 0 m
0.11 39nen8726
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recovered from it and a discontinuity in the gradient at the interface was seen to grow. For this

reason the first failure of the bi-section algorithm was taken as the ultimate point of failure of

the model. However, studies suggest that there are two underlining reasons for the convergence

failure: either growth of oscillations in the height; or negative cell boundary velocities; see

Section 5.1.

Figure 4.1 shows the input parameters of several models which were run and their outcome.

From the starting value of δt in model A, the time step was then increased in size to 0.01 and

the model failed on the first iteration, this would appear to be a good estimate of the maximum

time step allowed for the system to remain stable for several iterations. From here the time

step is reduced until a successful outcome is achieved in model J. Subsequent models had their

number of cells increased, the time step was seen to require further reduction to again obtain

a long lasting stable solution.

4.4 The Radial Model - Choosing δt and I

Theoretically, the radial model is a more realistic representation of reality than the slab model,

as already discussed, because it reproduces the axi-symmetric geometry of a real volcano.
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Model I δt Nsteps Comment/failure
A1 30 0.005 0 Total convergence failure
B1 30 0.0025 24 Convergence -ve ẋi

C1 30 0.001 60 Convergence -ve ẋi

D1 30 0.0005 86 Convergence -ve ẋi

E1 30 0.00025 104 Convergence -ve ẋi

F1 30 0.0001 116 Convergence -ve ẋi

G1 30 0.00005 121 Convergence -ve ẋi

H1 30 0.000025 123 Convergence -ve ẋi

J1 30 0.00001 125 Convergence -ve ẋi

K1 30 0.000005 125 Convergence -ve ẋi

A2 40 0.005 0 Total convergence failure
B2 40 0.0025 16 Convergence -ve ẋi

C2 40 0.001 56 Convergence -ve ẋi

D2 40 0.0005 76 Convergence -ve ẋi

E2 40 0.00025 86 Convergence -ve ẋi

F2 40 0.0001 90 Convergence -ve ẋi

G2 40 0.00005 91 Convergence -ve ẋi

H2 40 0.000025 92 Convergence -ve ẋi

A3 50 0.005 0 Total convergence failure
B3 50 0.0025 16 Convergence -ve ẋi

C3 50 0.001 150 Convergence -ve ẋi

D3 50 0.0005 94 Convergence -ve ẋi

E3 50 0.00025 79 Convergence -ve ẋi

F3 50 0.0001 76 Convergence -ve ẋi

G3 50 0.00005 75 Convergence -ve ẋi

A4 20 0.005 0 Total convergence failure
B4 20 0.0025 13 Convergence -ve ẋi

C4 20 0.001 81 Convergence -ve ẋi

D4 20 0.0005 123 Convergence -ve ẋi

E4 20 0.00025 153 Convergence -ve ẋi

F4 20 0.0001 175 Convergence -ve ẋi

G4 20 0.00005 184 Convergence -ve ẋi

H4 20 0.000025 189 Convergence -ve ẋi

H4

i

xi
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Model I δt Nsteps Comment/failure
A5 15 0.005 0 Total convergence failure
B5 15 0.0025 9 Convergence -ve ẋi

C5 15 0.001 99 Convergence -ve ẋi

D5 15 0.0005 207 Convergence -ve ẋi

E5 15 0.00025 240 Convergence -ve ẋi

F5 15 0.0001 252 Convergence -ve ẋi

G5 15 0.00005 259 Convergence -ve ẋi

H5 15 0.000025 263 Convergence -ve ẋi

J5 15 0.00001 264 Convergence -ve ẋi

Figure 4.2: Running the radial model failed to find one that was successful and stable.

The first values of δt and I were taken to be the same as they were for the slab model.

Then, δt was decreased and I increased in the hope of finding a stable model evolution. None

were found; all of the attempts are displayed in Figure 4.2. All of the models exhibited the

same behavior: the cells started with positive ẋi for several iterations; with each consecutive

iteration ẋi decreases until eventually the last one, ẋI , becomes negative; the rest then swiftly

follow within a few iterations; eventually the cell boundaries cross over producing negative

heights and the model terminates shortly afterwards. No models recovered or ran for long once

negative velocities had emerged. Thus, the final number of iterations displayed in Figure 4.2

was the point at which the model developed negative ẋi.

Eventually II



Chapter 5

Results and Discussion

5.1 The Slab Model

Of the seventeen versions of the slab model presented in Figure 4.1 three are carefully selected

and presented here to demonstrate the main three types of behavior displayed:

Model A is chosen first because it is one of the few that runs without negative values of ẋi

appearing, it also forms height oscillations which are visible after 40000 iterations as shown in

Figure 5.1.

Model M is selected because it is one of the few runs which fails while it has negative values

of ẋi. It is also unusual that it starts with negative call boundary velocities before moving

into a fully positive phase before returning to negative ones again. It quickly develops large

oscillations, demonstrated in Figure 5.2, and thus ultimately fails to converge.

Model T is chosen because it was the most stable solution found after running many versions

of the code and carefully selecting the input parameters between each run. It was one of only

two models which ran to one million iterations but it had smaller oscillations than model J.

If the model is run for half a million time steps then there are no oscillations; as displayed in

Figure 5.4. However, the volcano has grown so much relative to the original that it is difficult

50
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Figure 5.1: Model A - δt = 0.005 I = 30: the initial geometry at t = 0; 10000 iterations; and
the termination of the model at 40903 iterations.

to compare the two, for this reason two plots are made using this model, both of which contain

the height distribution after 50000 steps, for comparison.

Generally, as the models in Figure 4.1 were run, the time step and cell widths were decreased,

this means that the later models will be more stable and accurate; which is why they ran

successfully for a greater number of iterations.

Model A (Figure 5.1) did not undergo a period of negative cell velocities and for this reason

the evolution of the model rapidly moves horizontally. Between zero and 10000 iterations there

is substantial height increases too. However, from 10000 to the termination of the model at

a little over 40000 steps it is noticed that beside the growth of oscillations, the height of the

interface has grown only very slightly. It is observed that the oscillations in the height start at

small x and grow in height, as they grow they also move along the solution to larger x, until

eventually they reach the interface and grow further. Ultimately the model fails because the bi-

section iteration cannot find a volume fraction for the dome and talus which allows the gradient

condition to be satisfied. This model is clearly unstable and will generate a less accurate height
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Figure 5.2: Model M- δt = 0.0005 I = 50: the initial geometry at t=0 and the termination of
the model at 4125 iterations.

evolution than ones with smaller δt and larger I; it is thus discarded when drawing conclusions

relating to reality.

Model M (Figure 5.2) undergoes two periods of negative growth with positive growth for

several thousand iterations in between. The first period contains negative ẋi for the cells

nearest to x = 0 and starts with only a few cells, grows upto eight negative cells and then

decays back to positive growth, this period appears smooth and well structured. The second

period however, displays different characteristics, with alternate cell edges being positive and

negative throughout the cell range on one time step and then all positive on the next time step;
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Figure 5.3: Model T- δt = 0.00001 I = 75 :the initial geometry at t
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This model is also discarded as it is unstable.

Model T (Figures 5.3 and 5.4) is stable for half a million iterations and only small oscillations,

in the region of 0.1%, developed after a total of one million steps. For this reason it is felt that

this is the most accurate model. It is noticed that the first 9816 steps have some negative cell

velocities, investigation shows that it is several cells at small x and the number of them swells

and decays rhythmically upto a maximum of about twelve cells before eventually returning

to an entirely positive state. The plot after the first 10000 steps shows that the talus/dome

interface has actually moved to the left but grown in height substantially, it is only after this

period that all of the cells acquire positive velocities and the interface moves to the right.

At first this would seem counter intuitive, as surly the volcano must simply grow if material is

extruded into it. Well, if we examine equations (2.20-2.22), which are responsible for producing

the cell edge velocities, we see that Ci is constant and that the amount of material extruded

into a cell will not change by much if the cell width changes only slowly; which it must do as

the negative values of ẋ
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Then the dome slows its vertical growth and enters a period dominated by horizontal growth

which pushes the talus outward, the talus volume growth slows because (hI)t is smaller.

It would be interesting to compare this model with the rate of pyroclastic flows, which form

the talus, to see if they decrease as the volcano grows, echoing the slowing of the talus volume

increase. However, it may be that the frequency of pyroclastics with certain start locations

changes from the top of the dome to lower down the slopes as a function of volcano size, this

would occur as the talus is pushed out by the expanding dome and restructuring itself internally

rather than having new material distributed onto its surface.

However, it must be realised that the slab model is not entirely physical, as already discussed.

5.2 The Radial Model

Figure 5.5: Model J5 - δt = 0.00001 I = 15: the initial geometry at t = 0 and after 264
iterations when the model failed.

Figure 5.5 shows the resultant height distribution after the 264 time steps of radial model

J5. Even though this model has only had positive cell boundary velocities the cell edges are
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seen to have changed little, with the majority of the dome’s growth going into the height of the

cells. The first sign of oscillations has appeared at small x but they do not get the opportunity

to manifest the entire distribution before some ẋi become negative, which for the radial model

is terminal. However, we recall that for the most accurate and stable slab model run (T) there

was a period when several cells had ẋi <0 and this was deemed to be satisfactory behavior. It

would thus appear plausible that the radial model should follow a similar path of initial vertical

growth followed later by horizontally dominated growth. The radial model would thus appear

to be initially producing good results before premature termination.

The observation that the model fails earlier when more cells are included can be explained

by the fact that the cell boundary velocities are not dependent on the width of the cell but

its upper edges location relative to the origin and the conduit, and via incorporation into Ui,

the height and its x derivative. Thus, when there are more cells it takes less time for the

boundaries to cross one another, if the time step is not reduced appropriately. However, given

the observation that the first appearance of negative velocities stablises to a fixed number of

iterations as δt decreases then it is clear that the model will fail sooner when I increases if the

time step size is at this limit; as displayed in Figure 4.2.

We conclude that two investigations need to be launched: the first should further examine

the causes and behavior of the appearance and growth of negative ẋi from the interface via

comparisons with the slab model; the second should look at the counter intuitive failure of the

model to run for more time steps for smaller δt and larger I.

There are some initial criticisms of the way that the radial model is structured which should

be improved, however, whether these are the responsible for the failings highlighted above is

unclear.

The first is that when the slab model was built the Lagrangian cells were split into equal

widths and thus had normalized volumes, ci, of roughly the same magnitude. In the radial model

the x separation of the cell edges has not changed, however, now the volumes are annular rings

and thus the volumes are not of similar magnitude. The cell widths should be changed to
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obtain volumes of approximately the same size, i.e. ∆r ∝ 1

r
. Exactly what effect this feature

will have is unclear, but it could well be equivalent to having a variable stability across the

dome as the cells change in magnitude; which clearly is not ideal.

The second is that there is a subtle approximation occurring when the bi-section method

finds the dome and talus volume rates. The algebra will produce a different value based on

terms from the previous time step, which is then used to calculate ẋi. This will be correct to

first order but it would be better to implement some form of iterative approach to update values

so that the algebraic and iterative volume rates are the same; a suitable method needs to be

found. Of cause it could also be that the best way to include the interface gradient condition

of (hI)x = − tan θ is not through an iterative approach, as it may prove possible to include it

algebraically, this should also be investigated.

5.3 Re-Dimensionalisation

Once the models have been run it is straight forward to return the system to real units using

equations (4.1) and (4.2). Slab model T displayed after 50000 time steps in Figure 5.3 can be

calculated to have grown from 55 to 330 meters in height and from 95 to 880 meters in length

in a time of 100 seconds; which is substantially faster than the reality displayed in Section 4.1.

However, the height is very close but the talus a little short.

5.4 Comparisons With Previous Work

As far as is known this is the first study of lava dome volcano growth to incorporate the talus

slope. This means that the results presented here are not directly compatible with the results

of previous work. Also, it is ideally the radial model which should be compared with other





Chapter 6

Conclusions and Future Opportunities

6.1 Summary of Conclusions

Two height averaged expanding Lagrangian mesh models were developed of a lava dome volcano

and it’s attached talus slope; the first used a simple slab geometry while the second was axi-

symmetric. The models were developed in C++ using an object orientated class frame-work.

The following observations were drawn:

• An accurate and stable solution of the slab model was found with 75 cells and a time step

of δt = 0.00001 which ran for one million iterations.

• No stable solution could be found for the radial model.

• Models which failed did so due to lack of convergence of the bi-section method of obtaining

dome/talus volume balance at the interface.

• It was discovered that there were two reasons for this: oscillations in the height distribu-

tion; and negative cell boundary velocities.

• Unstable slab models eventually suffered from oscillations in the height distribution, while

all radial models eventually suffered from negative cell velocities.

59
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• Oscillations of the height solution in the slab model are believed to arise from the Euler

time step method and the trapezium rule estimate of the back recursion height calculation;

these need to be improved.

• Features leading to the failure of the radial model need further investigation, though
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6.2 Future Opportunities

6.2.1 Improvements to the Radial Model

Immediate improvements to the radial model should be:

• Better selection of the Lagrangian cell widths to obtain similar normalized volumes for

all cells.

• Replacement of the Euler time step, with a backward differentiation method using a

Runge-Kutta to find the first few steps will produce an unconditionally stable time step-

ping method.

• An improvement of the back recursion via the trapezium rule needs to be found.

• Investigate the appearance and spread of negative cell boundary velocities.

• Improve the implementation of the interface boundary gradient condition.

• Production of a version of the model without the talus.

6.2.2 Improvements to the Talus Representation

In the models presented here, the talus is simply represented by a slope who’s size is governed

by constrains based on geological observations. the dynamics of what is occurring inside the

granular structure of the slope is not included; ideally this should be represented.

There are many studies of talus slope structures [11]-[15], ranging from observational sta-

tistical sorting of debris to experiments on sand piles to rigorous Navier-Stokes fluid dynamical

models. It would be premature to consider the statistical sorting of rock sizes throughout the

talus due to the dynamics of their deposition by descent. The Navier-Stokes approach is a

recent competitive model to the well established Savage-Hutter model, [16] and [17], which has

invoked great interest in the literature as shown in a recent review [18]. Even though it was

originally developed for snow avalanches the Savage-Hutter model would appear to be the most
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promising way forward. Briefly summarised, this model consists of the hyperbolic partial differ-

ential equations of a depth averaged down-slope velocity u and local avalanche layer thickness

h:

∂h

∂t
+

∂

∂t
(hu) = 0; (6.1)

∂

∂t
(hu) +

∂

∂t

(
hu2 +

βx

2
h2

)
= hsx; (6.2)

where sx is a dynamic driving force and βx is a dynamic pressure/friction coefficient. Applica-

tion of these equations to the talus slope as Lagrangian cells need to be investigated as well as

the interaction at the dome/talus interface with the Rheological lava equations. This method

should make it possible to obtain an expression for the velocity of the end of the talus slope,

which would remove the need for an iterative approach to finding the volume rates of the dome

and the talus.

It could also prove feasible to recreate the pyroclastic deposition of material onto the talus

as a shock like event by using conservation law schemes [19].

6.2.3 Moving to Two Dimensions

At this stage it is not clear if it is possible to represent the dome and the talus as a two

dimensional Lagrangian grid. However, if it is feasible, then this will allow the talus to take on

a non-triangular shape as the interface will be able to flex freely, rather than being a vertical

line; this would be a better representation of reality.

Ultimately but probably much further into the future it would hopefully be possible to build

a full two-dimensional finite element model of the talus slope and add it onto the lava dome

models presented in [1] which are currently being developed further [20]. However, due to the

nature of the expansion of the volcano, the finite element method will need to incorporate a

moving mesh, thus it may well be beneficial to investigate the implementation of the appropriate
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talus dynamics within a Lagrangian framework first.
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