
University of Reading
School of Mathematics, Meteorology and Physics

Evaluation of Fractional Dispersion
Models

by

Rachel Pritchard

August 2008

This dissertation is submitted to the Department of Mathematics and

Meteorology in partial fulfilment of the requirements for the degree of Master of

Science



Abstract

The usual second order advection-diffusion equation is known to under predict

dispersion in turbulent flows. It is thought we can replace the diffusion term with

a fractional diffusion term to better predict the dispersion.

The main concern of this work will be the numerical methods used for solving

the fractional diffusion equation. Before we are able to begin with the derivation

of the numerical schemes, an understanding of some fractional calculus is needed,

we will therefore give a disscusion on this and detail the definitions and derivatives

which are needed for our numerical methods.

We notice in the literature that it is mainly finite difference methods that have

been proposed. We shall see that this is perhaps the most obvious and straight

forward numerical method to develop given the definitions for fractional deriva-

tives. Due to the non-local nature of the fractional derivative the finite difference

approach is computationally expensive as it usually requires a large number of

degrees of freedom to obtain an accurate solution. We will therefore be interested

in developing other numerical schemes in particular schemes based on non-local

methods such as the spectral method.
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Chapter 1

Introduction

1.1 Why Fractional Dispersion

The second order advection-dispersion equation is usually used to model disper-

sion in flows. However in complex flows such as turbulent flows this model is no

longer adequate, in fact it under predicts dispersion.

In non turbulent flows the dispersion of a contaminant is driven by the mean flow

velocity and local interactions between particles i.e. particles push each other.

This results in a series of small amplitude, random displacements of the contam-

inant particles and is known as Brownian motion. However, in complex flows

such as flow through porous medium or turbulent flows it is now possible to have

large variations from the mean velocity in the flow. This results in particles of

the contaminant being dispersed large distances in the flow. Brownian motion is

no longer an adequate description for this type of dispersion, we wish to model a



CHAPTER 1. INTRODUCTION 2

butions. Unlike the Gaussian distribution, which is the PDF of Brownian motion,

Lévy distributions have heavier tails and an infinite variance which implies they

allow contaminant particles to be dispersed or jump large distances. Where the

second order advection-dispersion equation is describing Brownian motion, Lévy

motion can be described by a fractional order advection-diffusion equation. There-

fore we wish to use the fractional advection-diffusion equation to model dispersion

in these complex flows, with the purpose that this will give us a more realistic

model of the dispersion.

The fractional advection-dispersion equation only uses a fractional derivative on

the diffusion term therefore it is the diffusion term that will be
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which take into account extreme market volatility. Here instead of modelling par-

ticle jumps price jumps are modelled see [8].

One example from [14] talks about anomalous diffusion in fluids which are par-

titioned into convective cells e.g a steady state atmosphere. Diffusion here is

characterised by two types of motion, one is the fast convective motion within a

convective cell and the other is the random walk behaviour for the crossing of the

convective cells, this type of motion leads to the diffusion behaviour at large scales.

There are also many papers on diffusion through porous media in aquifers see

[2, 13] the ideas developed in this area will be of particular use to us. A specific



Chapter 2

Ordinary Diffusion and Fractional

Diffusion
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Figure 2.1: Particles diffusing between two volumes

This idea leads us to Fick’s Law,

F = −K
∂c

∂x
, (2.1)

which states that the particle flux is proportional to the concentration gradient

acting towards the area of lower concentration [4]. The diffusion equation can then

be obtained by taking changes of the concentration in the volume with respect to

time, this is equal to the negative of the rate of change of the flux from the volume

giving,
∂c

∂t
= −∂F

∂x
=

∂

∂x

(

K
∂c

∂x

)

. (2.2)

The diffusion equation. K is known as the diffusion coefficient.

It is important to see that Fick’s law is a local process, Fig. 2.1, particles are

only transported to other volumes next to their current volume in the flow, which

is caused by the gradient of the concentration between the two volumes. ’Again

from Crank [4] it is stated that Fick’s law is only consistent for an isotropic medium

which is a flow in which its structure and diffusion proper ON
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neighbourhood of any point’. This presents a problem when considering diffusion

in turbulent flows.

In turbulent flows diffusion is due to the random fluctuations in the velocity, this

can randomly transport particles of the contaminant over larger distances i.e be-

yond the local volumes. This is easy to imagine if we consider the analogy of

rotating eddies in a flow, here the velocities in the flow varies greatly. Therefore

we want a method for modelling diffusion that provides a more global process. [13]

provides a discussion on this for the case where velocity variations are produced

by flow through porous medium rather than eddies. To develop this new method

of modelling diffusion we first need to look at Brownian motion which will lead us

on to Lévy motion and the global process.
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Chapter 3

Fractional Calculus

Before we begin to develop any sort of numerical scheme we need to become familiar

with fractional derivatives and how they are defined. If we consult [12] we see that

there are many definitions for the fractional derivative and ways of defining the

derivatives of standard functions.

3.1 Main Definition

Perhaps the easiest way to see where one of these definitions comes from is to first
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Here we are using the notation,

Dα
−

=
dαc

d(−x)α

and

Dα
+ =

dαc

dxα
.

1
2
(1−β) and 1

2
(1+β) gives the probability of whether a particle will jump backwards

or forwards respectively, with −1 ≤ β ≤ 1. The use of the β value allows us to

select whether a particle will diffuse more to the left or to the right. If β = 1 we

just get Eq. (3.2) and if β = −1 we just get Eq. (3.3). We can see from these

definitions that the fractional derivative uses a sum of all values over the domain.



CHAPTER 3. FRACTIONAL CALCULUS 16

which is defined over the domain [x, ∞]. Eqs. (3.5).(3.6) can then be shortened to

the following

Dα
±

f(x) =
(±1)n

Γ(n − α)

dn

dxn

∫

∞

0

ξn−α−1f(x ∓ ξ)dξ, (3.7)

in these cases n is the smallest integer larger than the real number α see [1] for

these definitions.

We can see some equivalence in these definitions as under certain conditions we can

obtain the Grunwald sum from the Riemann-Louiville definition. These certain

conditions are that we tak.21850-k.218h
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as a series expansion if exponentials [12]. If

f =
∑

cje
bjx, (3.9)

the derivative can then be expressed as,

dαf

dxα
≡

∞
∑

j=0

cjb
α
j ebjx. (3.10)

3.3 Standard Derivatives

If we are to develop a spectral method to numerically model the fractional diffusion

equation then we need derivatives for functions such as cos(x), sin(x) and ex.

Firstly we shall look at the fractional derivative for cos(x), [12] gives the derivative

as,
dα

dxα
cos(x) = cos

(

x +
πα

2

)

+
x−2−α

Γ(−α − 1)
− x−4−α

Γ(−α −
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transport of particles further than the immediate points. These weights indicate

that using fractional diffusion could be a good model for diffusion in turbulent

flows.

When it comes to developing our finite difference scheme it is beneficial to use

the same definition of the weights for both fractional and regular diffusion. How-

ever, this presents a problem if we use Eq. (3.16) since the Gamma function is not

defined for negative integers, see Fig. 3.5.

Figure 3.5: Plot of Gamma functions, [16]

To allow us to use the same definition for both cases we use Eq. (3.17) for the

weights as given by Meerschaert and Tadjeran [10].

w0 = 1

w1 = −α

wk =
(−α)(−α + 1).....(−α + k − 1)

k!
for all k ≥ 2, (3.17)

This can be derivived from Eq. (3.16) to do this we use the gamma function

recursion relationship,

Γ(x + 1) = xΓ(x), (3.18)
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and its reflection identity,

Γ(−x) =
−πcosec(πx)

Γ(x + 1)
. (3.19)

To show how this works we will look at a select few cases for k = 0, 1. Taking

k = 0 we get the weight as,

w0 =
Γ(−α)

Γ(−α)Γ(1)

for an integer we have,

Γ(n) =
n!

n

and so we get w0 = 1.

Moving on to k = 1 we have the weight as,

w1 =
Γ(1 − α)

Γ(−α)Γ(2)
,

using the reflection identity Eq. (3.19) we get,

w1 =
Γ(1 − α)Γ(α + 1)

−πcosec(πx)
,

then using the recursion relationship Eq. (3.18) and the reflection identity again

we get,

w1 =
−αΓ(α + 1)(−πcosec(πx))

Γ(α + 1)(−πcosec(πx))
,
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Finite Difference Approximations

The majority of methods to solve the fractional diffusion equation use a finite

difference approach see [10, 9, 15].

4.1 Numerical Approximation

Although the definitions for fractional derviatives suggest a finite difference scheme

should be straight forward to develop, it is important to take make sure the scheme

becomes the usual central difference scheme for a second order derivative

∂2c

∂x2
≈ ci−1



CHAPTER 4. FINITE DIFFERENCE APPROXIMATIONS 24

Our new shifted definitions for the fractional derivative are,

dαf

dxα
≡ lim

∆x→0

1

∆xα

(

∞
∑

k=0

Γ(k − α)

Γ(−α)Γ(k + 1)
f(x − (k − 1)∆x)

)

(4.1)

and
dαf

d(−x)α
≡ lim

∆x→0

1

∆xα

(

∞
∑

k=0

Γ(k − α)

Γ(−α)Γ(k + 1)
f(x + (k − 1)∆x)

)

. (4.2)
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the concentrate for the next time step. We then be repeate for however many

time steps we require, with the chosen boundary conditions being applied at each

stage. Meerschaert, Tadjeran and Scheffler [10, 15] look at implicit and semi im-

plicit methods and the stability regions for the methods. Developed in [15] is an

equivalent Crank-Nicolson method for the fractional diffusion term. We however

will only consider the explicit case for ease of implementation and to allow us to

move on to other methods.

This method is easily extended to two dimensions. Schemes for doing this are

explored by Meerschaert, Tadjeran and Scheffler [9]. The basic way to extend the

scheme we already have is to just use another summation for the y derivative.

Using this fractional approach does not limit us to using the same value for α for

both x and y derivatives, we can use different values that allow us to have a more

variable model for diffusion. Therefore we now want to approximate the equation,

∂c

∂t
= Kα

∂αc

∂xα
+ Dη

∂ηc

∂xη
(4.6)

where 1 ≤ α ≤ 2 and 1 ≤ η ≤ 2 and Kα, Dη are the diffusivity constants for

either the x or y dimension. This is easily done by using the ideas developed in

the previous section giving us our numerical scheme as,

cn+1
i,j = cn

i,j +
Kα∆t

∆xα

(1

2

i
∑

k=0

wkcn
i−(k−1),j +

1

2

N−i
∑

k=0

wkcn
i+(k−1),j

)

(4.7)

+
Dη∆t

∆xη

(1

2

j
∑

k=0

wkcn
i,j−(k−1) +

1

2

N−j
∑

k=0

wkcn
i,j+(k−1)

)

.

Here i denotes the x position, j denotes the y position and n denotes the time
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we can choose the required set of summations to model that particular diffusion.

Further to this, we could also use a modification of our symmetric scheme in one

dimension where we can pick the value of
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This has the exact solution

u(x, t) = e−tx3.

4.2.2 Right Scheme Test

To check the right sided derivative we can modify this example by replacing the

x with 1 − x. This gives us a suitable function that the right sided derivative will

work for. The example we use now becomes,

∂u(x, t)

∂t
= d(x)

∂1.8u(x, t)

∂x1.8
+ q(x, t)



CHAPTER 4. FINITE DIFFERENCE APPROXIMATIONS 28



CHAPTER 4. FINITE DIFFERENCE APPROXIMATIONS 29

at each point squared. This is perhaps best given in the following expression,

error =

(
∫

(ea − en)2dx
∫

ea
2dx

)
1

2

. (4.8)

This is known as the L2 error.

We then fix the time step at 0.0001, change the space step and the calculate

the error Eq. (4.8) for each space step. The results for spaces steps between 1/10

and 1/100 are given in Tab. 4.1.

∆x left error right error

1/10 0.0059 0.0059
1/20 0.0032 0.0032
1/30 0.0022 0.0022
1/40 0.0017 0.0017
1/50 0.0014 0.0014
1/60 0.0011 0.0011
1/70 0.001 0.001
1/80 0.0009 0.0009
1/90 0.0008 0.0008
1/100 0.0007 0.0007

Table 4.1: Error for left and right sided schemes

We only have an analytical solution for one sided problems and so the errors

are calculated using either the left or right sided derivative, however we can see

that both schemes give the same error. If we then plot these results on a log log

scale we can get the convergence rate that is almost linear, see Fig. 4.2.

4.2.4 Stability

We now consider the stability of the schemes, notice that for the error analysis we

used a time step of 0.0001. This allows us to obtain a stable solution for all sizes
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4.3.1 Test of 2D Scheme

The example we use to test our numerical scheme as given in [9] is a follows, the

fractional differential equation we wish to solve is,

∂u(x, y, t)

∂t
= d(x, y)

∂1.8u(x, y, t)

∂x1.8
+ e(x, y)

∂1.6u(x, y, t)

∂y1.6
+ q(x, y, t).

This is defined on a rectangular domain 0 < x < 1, 0 < y < 1 for time 0 ≤ t ≤ 1.

The diffusion coefficients d(x, y) and e(x, y) are given as,

d(x, y) = Γ(2.2)x2.8y/6 = 0.18363375x2.8y,

e(x, y) = 2xy2.6/Γ(4.6) = 0.1494624672xy2.6.
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We set the time step ∆t = 0.001 and the space steps ∆x = ∆y = 0.1 and run

up to a final time of one second. Fig. 4.3 and Fig. 4.4 show the numerical and

analytical solutions to the example.
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4.3.2 Accuracy

To assess the accuracy of the scheme, we use the same method as for one dimension
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space step for the next time step.

cn+1
i,j = cn

i,j + ∆t
(

− u

∆x

(

cn
i,j − cn+1

i,j

)

(4.11)

+
Kη

∆yη

(1

2

j
∑

k=0

wkcn
i,j−(k−1) +

1

2

N−j
∑

k=0

wkcn
i,j+(k−1)

)

)

To get our numerical result we use the domain 0 ≤ x ≤ 10, 0 ≤ y ≤ 10 with the

initial condition of a small section in the middle of the x = 0 axis equal to one and

everywhere else equal to zero. To simulate a dye being continuously introduced

into the tank we set our boundary condition so that it is one for a small section in

the middle of the x = 0 axis and zero elsewhere. What we are doing is setting the

boundary back to its initial value each time step. We do not want to allow to pass

through the horizontal walls of the tank so the boundary conditions for both y axis

are set to zero. To simulate fluid begin able to flow through the far boundary we

use a Neumann boundary condition so ∂
∂x

c(10, t) = 0. In the solutions obtained

∆x = ∆y = 0.2, ∆t = 0.002, the final time is 10 seconds, u = 2 and Kη = 1. See

Fig. 4.17.

These are only preliminary results, further investigation needs to go into checking

there validity. A start would be to calculate the width of the plume for the various

values of η. Although from these we can see that as η decreases we get a result

that looks more linear.
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A numerical scheme using

Spectral Methods

We now wish to develop a spectral method to numerically calculate our solution.

Our idea is that because spectral methods use global data rather than data from

immediate surrounding points, they should be better suited to fractional diffusion.
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5.1 A spectral method for fractional diffusion



CHAPTER 5. A NUMERICAL SCHEME USING SPECTRAL METHODS 45

scheme gives us the following system of ODEs,

∫ 2π

0

ϕl(x)ϕl(x)dx

(

an
l − an+1

l

∆t

)

= K
N
∑

k=0

∫ 2π

0

dαϕk(x)

dxα
ϕl(x)dxan+1

l .

Like the finite element method we can define a mass matrix M as,

Mkl =

(
∫ 2π

0

ϕl(x)ϕl(x)dx

)

δkl

and a stiffness or diffusivity matrix D as,

Dkl =

∫ 2π

0

dαϕk(x)

dxα
ϕl(x)dx.

This leaves us with a matrix system in the form of,

(M − D∆t)an+1
l = Man

l (5.3)

that needs to be solved over time. Then for time steps where the actual solution

is required we substitute the ak(t) into Eq. (3.9). Here we have discritized the

time step implicitly but it can just as easily be solved explicity or using any other

integration scheme.

One other thing to consider is obtaining the initial condition for the ak(t) this

can formulated as so,

∫ 2π

0

N
∑

k=0

ak(0)ϕ
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and again using the orthogonality condition there is only a non zero solution when
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5.2.1 Cosine Expansion Function

For the cosine expansion function we take ϕk(x) = cos(kx) and ϕl(x) = cos(lx)

this gives the mass matrix as,

Mkl =

∫ 2π

0

cos(kx)cos(lx)dx.

For cosine we have the orthogonality condition,

∫ 2π

0

cos(mx)cos(nx)dx =

{

2π if m = n

0 if m 6= n,

this means that the mass matrix only has diagonal entries. The stiffness matrix

can be defined as,

Dkl =

∫ 2π

0

dαcos(kx)

dxα
cos(lx)dx.

Using the definitions for the fractional derivative of cosine we see that the orthog-

onality condition is no longer valid so the derivative involves a shifted cosine wave.

Therefore
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function is not the best choice.

On the positive side we also find that the complex exponential case is valid on

any domain.

5.3 Results and Comparison with Finite Differ-

ence Scheme

To look at a range of results and compare to our finite difference scheme we shall

use the spectral method that uses complex exponential expansion functions. This
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We then evaluate the standard deviation at various times and calculate its evolu-

tion see Fig. 5.4 this gives a very similar result to that displayed in Fig. 4.10.
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Figure 5.5: Comparision of Plume Widths
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Conclusions and Future Work

6.1 Fractional Diffusion

We have determined that Levy distributions are a solution to the fractional diffus-
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Further work can be done to fit the fractional diffusion equation to a real world

example and assess the how well it fits the data over using the ordinary second

order diffusion equation.
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modelling an advecting plume. Again only a few results have been produced here.

Further investigation would allow us to determine whether using the fractional dif-
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