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for x > 0,

(6) erfc(z) =
hze� z2

�

1X

k= �1

e� k 2 h2

z2 + k2h2 +
2H(�=h � x)

1 � e2�z=h
+ E (h):

Here the �rst term is the trapezoidal rule approximation to (
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\is very accurate, provided for given z and N the optimal step size
h is selected. It is not easy, however, to determine this optimalh a
priori."

Our recommendations address this issue, detailing which approximation formula and
what step sizeh should be used for eachN and z.

The bounds we obtain in carrying out ii) prove that the absolute error in our
approximation for w(z) tends to zero exponentially with N , uniformly in the complex
plane. This is a substantial improvement on the existing bound (7) which blows up
when x = �=h , and does not capture the additional truncation errors due to replacing
in�nite by �nite sums in the approximations (6) and (9).

Concretely, our proposed approximation tow(z), for z = x + i y, with x; y � 0, is

wN (z) :=

8
><

>:

wM
N (z); if y � max (x; �=h ) ;

wMT
N (z); if y < x and 1=4 � ' (x=h) � 3=4;

wMM
N (z); otherwise;

(10)

where ' is de�ned by (8), N 2 N0 := N [ f 0g,

h :=
q

�
�

(N + 1) ;(11)

w
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Indeed, we have previously used, in the restricted case arg(z) = �= 4, an approxima-
tion resembling wMM

N (z) when approximating Fresnel integrals [6], proving results in
the spirit of Theorem 1.1.

Let us summarise the rest of the paper. In the largestx2 we derive the above
formulae and error bounds. In x3 we review the existing, alternative approximate
methods for computing erfc(z) and w(z) for complex z, for none of which has an error
bound been proved, similar to Theorem 1.1. Inx4 we carry out numerical experiments
that con�rm the accuracy of wN (z), showing that its absolute error is < 2 � 10� 15

throughout the complex plane with N = 11, and that the same bound holds for the
relative error in the upper half-plane. We also show that our new approximation is
competitive in accuracy and computing times with the methods that we survey inx3,
speci�cally those of [24, 27, 26, 2].

We note that this paper is based, in signi�cant part, on Chapter 3 of the �rst
author’s thesis [4].

2. The proposed approximation and its error bounds. In this section we
derive the approximation given by (10) based on modi�ed trapezoidal rules. We
also derive the error bounds of Theorem 1.1 that demonstrate that the absolute and
relative errors in wN (z) both decrease exponentially asN increases.

2.1. The contour integral argument and its history. Given any f 2 C(R)
that decays su�ciently rapidly at in�nity, let

I [f ] :=

Z 1

�1
f (t) dt;

and, for h > 0 and � 2 [0; 1), de�ne the generalised trapezoidal rule approximationto
I [f ] by

(17) I h;� [f ] := h
X

k2 Z

f ((k � � )h):

We note that I h;� [f ] = I h; 0[f � ], where f � (t) := f (t � �h ) for t 2 R, and that I h; 0[f ] is
the trapezoidal rule approximation to I [f ] and I h; 1=2[f ] its composite midpoint rule
approximation.

The approximation (17) for I [f ] converges exponentially when the integrand is
analytic in a strip surrounding the real axis and has su�cient decay at �1 . The
derivation of this result, using contour integration and Cauchy’s residue theorem,
dates back, for a particular case, at least to Turing [23], and has been analysed in
more general cases by Goodwin [12], McNamee [16], Schwartz [20] and Stenger [21].
For a detailed history and discussion see Trefethen and Weideman [22].

The rate of exponential convergence depends on the width of the strip of an-
alyticity around the real axis, and the accuracy of I h;� [f ] deteriorates when f has
singularities close to the real line. But, in the case when these singularities are poles,
the contour integral method for establishing the exponential convergence ofI h;� [f ],
that we will recall in Proposition 2.1 below, leads naturally to corrections for modify-
ing the trapezoidal rule and recovering rapid convergence, these corrections expressed
in terms of residues off at these poles. This appears to have been observed explicitly
�rst by Chiarella and Reichel [8], in the context of evaluating (5) (and see Matta and
Reichel [15], Hunter and Regan [13], and Mori [17]), and has been developed into a
general theory by Bialecki [7] (and see La Porte [14]).

It is convenient to recall in a proposition the standard arguments ([8, 15, 13] and
cf. [22, pp. 402{403]) that are made to prove exponential convergence, since we will
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The representations (6) and (9
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bounds hold also fory = 0 and y = �=h since the left hand sides of the bounds depend
continuously on y on [0; �=h ] (recall that I �

h;� [f z ] is an entire function of z and that
w(z) is bounded below ony � 0 by (32)).

Now suppose thaty > �=h and take H = �=h � " for some " 2 (0; �=h ). Then
I �

h;�;H [f z ] = I h;� [f z ], and sincey=(y2 � H 2) and (1+
p

2�y )y=(y2 � H 2) are decreasing
as functions ofy on (H; 1 ], it follows from (38) and (39) with H = �=h � " that

(42) jw(z) � I h;� [f z ]j �
2
p

2� e� � 2 =h2 + " 2

�
1 � e� 2� 2 =h2 +2 �"=h

�
" (2� � "h )

and

(43)
jw(z) � I h;� [f z ]j

jw(z)j
�

2
p

2� (h +
p

2�� ) e� � 2 =h2 + " 2

h
�
1 � e� 2� 2 =h2 +2 �"=h

�
" (2� � "h )

:

If �=h > 1=
p

2 we can again choose" = 1=
p

2, obtaining the bounds (35) and (36) for
y > �=h ; these bounds hold also fory = �=h since the left hand sides of the bounds
depend continuously ony on [�=h; 1 ).

It follows immediately from the de�nition (29) that, for x 2 R, y > 0,

jCh;� [f z ]j �
2 e� 2�y=h

1 � e� 2�y=h
ey2 � x 2

:(44)

Since jI �
h;� [f z ]j � j I h;� [f z ]j + jCh;� [f z ]j, the following corollary follows from the above

proposition, (44), and (32).

Corollary 2.3. If z = x + i y with x = y � 0 and h <
p

2 � , then

(45)
�
�w(z) � I �

h;� [f z ]
�
� � ca

e� � 2 =h2

1 � e� 2� 2 =h2 +
p

2�=h

and

(46)

�
�
�w(z) � I �

h;� [f z ]
�
�
�

jw(z)j
�

cr

h
e� � 2 =h2

1 � e� 2� 2 =h2 +
p

2�=h
;

where

(47) ca :=
2(2e +

p
� )

p
e�

� 4:934 and cr :=
2
p

2� (1 +
p

� )(2e +
p

� )
p

e
� 60:77:

Proof. For 0 � x = y � �=h these bounds follow immediately from the sharper
bounds (33) and (34). Suppose now that15.349 5.358 Td [(;)]TJ/F43 9.9626 Tf -276.101 -23.887 Td [(wher)51(e)]TJ/F8 9.9626 Tf 0 -23.421 Td I/F8 9.9626 Tf 7.697 0 Td [((1)-222(+)]TJ/F14 9.9626 Tf (1 +, then

(45)

�prop775). ) z ]j �
2 e� 2�y=h

2

12�y=h
e

2
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Proposition 2.2 tells us that I �



COMPUTATION OF THE ERROR FUNCTION USING TRAPEZOIDAL RULES 11

for x � 0, where

Gx (t) := e � t 2
jFx (t + i �=h )j =
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h <
p

2 � , it follows from Corollary 2.3 and Proposition 2.5, on noting that the bounds
in Proposition 2.5 are smaller than those in Corollary 2.3, that Eh and eh satisfy the
bounds claimed in the proposition whenz 2 @
, i.e. for z on f x + i x : x � 0g and
on the positive real axis. Thus the proposition follows by Lemma 2.4 if we can show
that Eh (z) and eh (z) do not grow too rapidly as z ! 1 in 
.

But, if h <
p

2 � , it follows from (31) and (38) applied with H = 3 that, for some
constant C > 0 independent of z, jEh (z)j � Cjzj if z 2 
 with y � 2. Similarly,
since I �

h;�;H [f z ] = I h;� [f z ] if y > H and I �
h;� [f z ] = I h;� [f z ] + Ch;� [f z ], it follows from

(38) applied with H = 1 and (44) that, for some constant eC > 0 independent of

z, jEh (z)j � eCjzj if z 2 
 with y � 2. Thus jEh (z)j � C � jzj for z 2 
, where

C � := max( C; eC), so that also, applying (32), jeh (z)j � C � jzj(1 +
p

� jzj) for z 2 
.
Thus the proposition follows by applying Lemma 2.4.

The following corollary summarises and simpli�es, at the cost of a little sharpness,
the results of Propositions 2.2 and 2.6 and of this subsection.

Corollary 2.7. Suppose thatz = x + i y with x � 0, y � 0, and h <
p

2 � .
Then the bounds(45) and (46) hold with ca and cr given by (47) if y � max(x; �=h ).
The same bounds hold as bounds onjw(z) � I h;� [f z ]j and jw(z) � I h;� [f z ]j=jw(z)j,
respectively, with the same values ofca and cr , if y � max(x; �=h ).

Proof. The �rst claim of the corollary follows from Proposition 2.6 and (33) and
(34), and the second follows from (35) and (36).

2.3. Truncating the in�nite series. Propositions 2.2 and 2.6 together provide
accurate trapezoidal-rule-baeep(z)Cxz] +

�

zeh;�Cz] +zh;��zeh;�Cz]
zzj8TJ/F8 9.9626 T0.9626 Tf 3.875 01Td [(z)]TJ/F8 9.9626 Tf 5.071 0 .9651036 R1.494 Td [([)]TJ/F11638 26 Tf 3.871(or)-31 Td [(C)]TJ/F10 6.9738498 4.981 0 Td [(j8TJ/F8 9.9626 Tf1 10.314 0 Td [(@)]TJ/F8 9.966 Tf1 10.314 ;31.216 0 Td [(The)-333(� r8]TJ6.973872626 Tf 4 0 545 01Td [1 0 0 1 430]TJ6905f 22.564 0 Td [(x)]TJ/F14 9.9626 T7 4.877 -1.494 Td [(z)]TJ/F8 9.9626 Tf 4.591 1.494 Td [(])]TJ/F14 7/F859626 Tf 3.87gi)-466(n78T213 0 0.6 rg356 RG
 [(35)]TJ
0 g 0 G
 [())-3332and)-334(()]TJ
0 0 0.203 0 Td [(c)]TJ/F10 6.9779rg 95.072 0 �494 Td [(h;�)]TJ/F8556 Tf 4.591 1.kTd [(j8TJ/F8 9.9628 9.7626 Tf 19.35 0 Td [(c)]TJ/F10 6.9738 228(enden)2t.495 Td [(z)]TJ/F8 396226 Tf 4.591 1.kTd [(j8TJ/F8 9.9628 9.7626 Tf 19.35de8 9.96d5 T213.6 rg 0  RG
 [(35)]TJ
0 g 0 G
 [())-33315T
q
1 0 0 1 436.373 44-440(WTd [(ws)213will rg 0 call rg 133he5 T713err58 -1 0 in78T213d 5.576 l -(ccurat58.51-27(osition)]TJmite)-2Td [(C)-16(;)]TJ/F1 953 4.379 -1.494 Td [(h;�)]TJ/F8 9.9626 Tf 12.708 1.494 Td [([)]TJ/F11 9.9626 Tf 2.767 0 Td [(f)]TJ/F10 6.9738 Tf 4.878 -1.494 Td [(z)]TJ/F8 9.9626 Tf 4.59 1.494 Td [(])]TJ/F14 9.9626 Tf 2.768 0 T333(Lemma)]T-13.2 Td [(z)]TJ/F38 92f 4.379 -1.494 Td [(h;�)]T10 6.9738 Tf -0.7NT050)]J/F8 9.96 Tf f 12.708 2.822 Td [([)]TJ/F11 9.9626 Tf 1.767 0 Td [(f)]TJ/F10 6.9738 Tf 4.878 -1.494 Td [(z)]TJ/F8 9.9626 Tf 4.59 1.494 Td [(])]TJ/F14 9.9626 Tf 2.768 0 T333(L28(ws)-458114nit RGProp)-err58cond)-3gi)-466(n78T343 0 0.6 ccurat910 16 0.502.768 05 0 555 01Td [(z)]TJ/F8 9.962123 228(enden)2T.494 Td [(h)]TJ/F8 9.20690 0 4f -0.7NT050)]1 9.96.965371.534 708 2.822 Td [([)]TJ/F11 9.9626 T463.767 0 Td [(f)]TJ/F10 6.9738 Tf 4.877 -1.494 Td [(z)]TJ/F8 9.9626 Tf 4.591 1.494 Td [(])]TJ/F14 9.9626 Tf 2.767 0 T.0)-3:=5.0�e
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on (0; 1 ) and noting (53), that

(57) 2h
1X

k= M

e� s2
k � 2
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Proof. From (25) and (55), for 0 � y � x,

(63) jTN
h;� [f z ]j �

2hjzj
�

1X

k= N +1

e� s2
k

jz2 � s2
k j

�
2
p

2hx
� (x + sN +1 )

1X

k= N +1

e� s2
k

jz � sk j
:

Thus, and noting (32), the bounds (61) and (62) hold if x = 0.
Choose� with 0 < � < 1. Given x > 0 let M be the smallest integer� N + 1

such that sM > �x , so that, if M > N + 1, sk � �x and jz � sk j � (1 � � )x for k < M .
If M > N + 1 it follows, using the bound (57), that

2hx
M � 1X

k= N +1

e� s2
k

jz � sk j
�

2h
1 � �

1X

k= N +1

e� s2
k �

2hsN +1 + 1

(1 �
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Further, if x � 0 and
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the nth convergent of the beautiful Laplace continued fraction representation forw(z)
(speci�cally suggesting n = 9). Gautschi notes that: i) by construction the nth
convergent is asymptotically accurate, with error O(jzj � 2n � 1) as jzj ! 1 , uniformly
in the �rst quadrant; ii) the nth convergent converges tow(z) as n ! 1 if and only
if Im( z) > 0; iii) remarkably, for Im( z) > 0, the nth convergent coincides with the
approximation obtained by approximating (3) by an n-point Gauss-Hermite rule. For
smaller z Gautschi [11] proposed (rational) approximations that are truncated Taylor
expansions with the coe�cients approximated by convergents of continued fractions.

This methodology, carefully tuned, is the basis of TOMS Algorithm 680 (Poppe
and Wijers [18]) which achieves a relative error of 10� 14 over nearly all the complex
plane using, in the �rst quadrant: i) Maclaurin polynomials of degree � 55 for the
odd function erf(� iz) (substituted into (2)) in an ellipse around the origin; ii) the
convergents (78) with n � 18 outside a larger ellipse; iii) the more expensive mix
of Taylor expansion and continued fraction calculation proposed by Gautschi [11] in
between. This algorithm has been used as a benchmark by several later authors.

Weideman [24, 25] proposed (the derivation starts from (3)) the single rational
approximation

(79) w(z) �
1

p
� (L � iz)

+
2

(L � iz)2

N � 1X

n =0

an +1

�
L + i z
L � iz

� n

; for Im( z) � 0;

where the size ofN controls the accuracy of the approximation, L := 2 � 1=4N 1=2,
and the an are discrete Fourier coe�cients that can be precomputed by the FFT.
He argues, based on operation counts, that, for intermediate values ofjzj, the work
required to compute w(z) to 10� 14 relative accuracy is much smaller for (79) than for
the Poppe and Wijers algorithm [18].

Zagloul and Ali proposed a method (see TOMS Algorithm 916 [27] and the re-
�nements in [26], and cf. [19] and [3, (7.1.29)]) starting from

(80) erf(z) = erf( x) +
2e� x 2

p
�

Z y

0
et 2

sin(2xt ) dt +
2i e� x 2

p
�

Z y

0
et 2

cos(2xt ) dt;

for z = x + i y. They approximate

w(z) � u(x; y) + i v(x; y); x; y � 0;(81)

where

u(x; y) := e � x 2
erfcx(y) cos(2xy) +

2a sin2(xy)
�y

e� x 2
+

ay
�

(� 2 cos(2xy) S1 + S2 + S3) ;

v(x; y) := � e� x 2
erfcx(y) sin(2xy) +

a sin(2xy)
�y

e� x 2
+

a
�

(2y sin(2xy) S1 � S4 + S5) ;

erfcx(y) := e y2
erf(y), and Sj , j = 1 ; : : : ; 5, are the following summations reminiscent

of the trapezoidal rule approximations (6):

S1 :=
1X

k=1

�
1

a2k2 + y2

�
e� (a2 k 2 + x 2 ) ; S2 :=

1X

k=1

�
1

a2k2 + y2

�
e� (ak + x )2

;

S3 :=
1X

k=1

�
1

a2k2 + y2

�
e� (ak � x )2

; S4 :=
1X

k=1

�
ak

a2k2 + y2

�
e� (ak + x )2

;

S5 :=
1X

k=1

�
ak

a2k2 + y2

�
e� (ak � x )2

:

(82)
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Fig. 2 . Maximum absolute and relative errors in the approximation (10) and the error bounds
of Theorem 1.1, plotted against N .

The authors have supplied us with their Matlab implementation Faddeyeva_v2(z,M)
[26], where the parameterM is the number of accurate signi�cant �gures required,
and the code enforces 4� M � 13. In this code the choicea = 1=2 is made and the
sums in (82) are truncated, the number of terms retained depending onM . Zagloul
and Ali [27] (and see [26]) present numerical evidence that the approximation (81),
with a = 1=2 and appropriate truncation of the in�nite sums (82), is more accurate
and faster than TOMS Algorithm 680 [18].

Abrarov et al. [2] (and see [1]) proposed recently another method for computing
w(z) using modi�ed rational approximations, namely

w(z) �

8
><

>:

 1(z); if z 2 D1;
 2(z); if z 2 D2;
 3(z); if z 2 D3;

(83)

whereD1 := f z = x + i y : jzj < 8 and y > 0:05xg, D2 := f z = x + i y : jzj < 8 and y �
0:05xg, D3 := f z : jzj � 8g,

 1(z) :=

MX

m =1

Am + Bm (z + i �= 2)

C2
m � (z + i �= 2)2 ;  2(z) := e � z2

+ z
M +2X

m =1

� m � � m z2


 m � � m z2 + z4 ;(84)

the coe�cients Am , Bm , Cm , � m , � m , 
 m and � m are speci�ed in [2], and  3(z) is
approximately (78) with n = 10 (see [2, Equation (9)]). Abrarov et al. [2] present
numerical evidence to show that (83) achieves an accuracy of 10� 13 using � = 2 :75
and M = 23 in (84).

4. Numerical results. In this section we show calculations that illustrate and
support Theorem 1.1, and that compare the accuracy and e�ciency of our approxi-
mation wN (z) given by (10
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using the Matlab codewTrap(z,N) provided in Table 1 of the supplementary material
to this paper [5]. The maximum values we plot are discrete maxima taken over
the 16; 020; 801 points z = 10pei� , with p = � 6(0:0006)6 and � = 0( �= 1600)�= 2,
a superset of the 40; 401 test values in Weideman [24, 25]. To compute errors we
use as the exact values ofw(z) the independent approximation (79) with N = 45,
implemented through a call cef(z,45) to the Matlab code in [24, Table 1]. (The
results in [24, 25, Figure 8], [6, Figure 2] suggest thatN = 45 in (79) is ample for
accuracies close to machine precision, and we obtain almost identical results in Figure
2 and Table 1 below if we use, instead,w20(z) given by (10) as the exact value.)

We observe in Figure 2 the rate of exponential convergence predicted by Theorem
1.1. The approximation wN (z) achieves, with N = 11 over this set of discrete points
in the �rst quadrant, maximum absolute and relative errors which are < 2 � 10� 15.

Algorithm
Maximum
abs. error

Maximum
rel. error

Computing
time (seconds)

wTrap(z,11) 1:67 � 10� 15 1:89 � 10� 15 4:29 (� 0:08)
cef(z,40) 2:11 � 10� 15 2:15 � 10� 15 4:20 (� 0:02)
fadsamp(z) 3:86 � 10� 14 3:86 � 10� 14 5:74 (� 0:04)

Faddeyeva_v2(z,13) 4:07 � 10� 15 1:71 � 10� 13 11:00 (� 0:11)
Table 1

Maximum absolute and relative errors for the Matlab codes implementing the approximations
(10) , (79) , (83) , and (81) . The computing times are mean and s.d. of 25 executions.

In Table 1 we compare the accuracy and e�ciency of our approximation and
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