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Abstract

Non-tangling moving-mesh algorithms based on local conservation
for scalar PDE problems with prescribed boundary uxes are derived
in one and two dimensions, in the latter case on a linear simplex. Mesh
tangling is prevented for any time step by applying an explicit sign-
preserving exponential time-stepping scheme to intervals in 1-D or
edges/areas in 2-D. The nodes are found in a separate step respecting
the integrity of the mesh.



1 Introduction

Moving-mesh methods for the approximate solutions of time-dependent par-
tial di erential equations (PDEs) are potentially more powerful than xed
mesh methods, capable of providing high resolution locally, sustaining scale
invariance and propagating self-similarity [12, 8].

In the velocity-based conservation method of [1, 4, 16] a velocity eld is
determined from a local Eulerian conservation law which is used to deform
the domain, nding the moved solution by local Lagrangian conservation.
Applications can be found in [1, 2, 3, 4, 14, 17, 15, 16, 9, 5, 6, 10, 7, 18]. The
method inherits the scale-invariance of the PDE problem, handles ux-driven
moving boundary conditions, whether external or internal, in a natural way
without the need for interpolation, and is capable of propagating self-similar
scaling solutions at the nodes.

Numerically, the default time-stepping scheme has been explicit Euler.
However, it is a requirement of the conservation method that the solution
remains positive and the mesh untangled ,which in many cases demands a
very small time-step, therefore limiting the practicality of the method.

In this paper a variant of the method is described which ensures a positive
solution on an untangled mesh for any time step. This is achieved by applying
a sign-preserving exponential time stepping scheme to intervals in 1-D and to
edges or areas of a simplex in 2-D, with the nodal positions found a separate
step.

The paper is organised as follows. In section 2 the relative conserva-
tion method is reviewed in one dimension, a semi-discrete scheme analysed,
and a fully discrete version described that uses an explicit exponential time-
stepping scheme on interval lengths, leading to sign-preserving solutions on
ordered meshes for any time step and culminating in the algorithms given in
section 2.4.3.

In section 3 the two-dimensional conservation method is reviewed and
the features described in 1-D generalised to 2-D on a simplex of triangles by
applying the sign-preserving exponential time-stepping scheme to either edge-
lengths or triangle-areas. The nodes are found by an averaging procedure
which retains the integrity of the simplex and solutions on the moved mesh
obtained from relative Lagrangian conservation. The algorithms are given in
section 3.3.5.

Conclusions are drawn in section 4.



2 The relative conservation method in 1-D
Suppose that the functionu(x;t) satis es the generic PDE

U =



where v



2. The Lagrangian conservation form (6) transforms to

(—b( ; )jRj=0();independent of (14)

forall ,whereta(; )= u(k(; ); )andx isthe Jacobian ofk with respect
to . The sign ofk is determined by (12).
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2.2 An initial value problem

Substitution of t( ; ) from (14) into (12) yields an ODE system fork and

( ). Given initial conditions on k andttat = © (and henceb( ) together
with (5), equations (12) and () then constitute an initial value problem for the
two unknownsk and ( ) possessing a unique solution under the conditions
of Picard's Theorem.

From equation (12),
@ogk ]
(5 ==y (15)
sinceb =k = v,. Integrating (15) from °to , equation (15) has the formal
solution z

2 = R%exp W d 0 (16)

wherex = %% at = 9 The solutiont(; ) on the moved domain is then
generated from (14) by
1 . 1 Y
—b(; )jRj=bo()= —50°()jr% (17)
() (°
whereb( ) is independent of (therefore de ned by the initial data), ensuring
conservation of mass. The sign d§ is determined




leaves the problem invariant [11], it is straightforward to verify that the
solution of the initial value problem maintains the same scale invariance.

Self-similar scaling solutions are found by seeking an ansatz of the form

R(; )=, a(; )= () ()= " # (19)

where () satis es an ODE derived from (1) and# is constant.

From (19),

@ 1
( ; = — =
;) @

so thatv = 1 leadingtov, = ¥ =k = =; independent of .

Hence, from (16) and (17),

z R(;)_®( 9

R =x’exp (= 9d° ) ©



the method can break down for a required time step. In this paper we
use a modi ed time-stepping scheme, the sign-preserving exponential scheme
applied to mesh intervals, which preserves the monotonicity df"( ) and
avoids node overtaking for any time step.

Approximating the integrand in (16) by its value at ", an explicit rst-
order-accurate exponential scheme f&" is

2" = phexpf  (v)g" (20)

The moving coordinatex"*! ( ) is obtained at time step "*! using (13) in

the form 7 u

r( ") = ; R od ° (21)

where © is an anchor point necessary for uniqueness. From (20) the time
evolution of & is completely characterised byw)".

Note that the scheme (20) preserves the sign kf over a time step irre-
spective of  or (v)".

The scheme (20) may also be obtained by applying the rst-order-accurate
explicit Euler scheme to (15), i.e.

logR"™?t =log ®"+ (V)" (22)
The total mass "*! is found from the corresponding explicit exponential
scheme
"= Texpt  I="g; (23)
preserving its sign.
Equation (14) is time-independent and ensures that

PP | L
"t ()R ™t = e ()jR " (24)

n+1

yielding t"*1. The sign of @ )"*! is determined by the sign of ¥ )" in (20).

Once ()" has been found from (10), equation (20) (with (21)) determines
®"*1 (), equation (23) yields "*! and equation (24) givesu"*! ().

It is straightforward to verify that the scale invariance (18) is inherited
from the PDE problem by the semi-discrete schemes (20) and (24). However,
the argument in section 2.2.1 for the propagation of self-similar solutions no
longer holds over a time step, since, is no longer proportional to & . Self-
similar solutions are therefore propagated over a time step only to order .

We now state the semi-discrete-in-time algorithm.
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2.3.1 A semi-discrete-in-time algorithm

Algorithm 1

At time ", givenk"( ) and @"( ), the semi-discrete algorithm is as fol-
lows.
At each time step

Algorithm 1

obtain v"(x) from (10) and hence ¥y)"
calculate —_from (5) and hence "*! from (23)
determinex"** from (20) and hencek"** () from (21)

deducet"*! from (24)

The algorithm is sign-preserving iR", @" and over a time step irrespec-
tive of t or the accuracy ofvy. It is conservative (a seen) by integration of
(24) over the domain, inherits scale-invariance from the PDE problem, and
propagates self-similar solutions over a time step to order .

We now extend the algorithm to spatial approximation.

2.4 Spatial approximation

Suppose that at time leveln the domain @"; ") is discretised using mesh
points
a'= Ry <R} <:ii< Ry =0

with corresponding nodal solutionaa! (i =0



Approximate relative masses (kept constant over the time step) are
found in each intervalk between pointsk]' and k' ; from the trapezium rule

11
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When applied in successive intervals away from an anchor poikg (needed
for uniqueness), equation (28) yields all th&!** exactly. Since the signs of
the Xy are preserved thek; remain ordered in a time step.

Another way of calculating the nodesk; from the intervals %k, with the
same outcome as the recursive step (28) (one that we shall later generalise
to 2-D) is to solve the set of equations

Rz R _ R R
Ri+1=2 Ri 1=

(29)

for all interior i (both sides equal to unity). Boundary conditions for (29) are
either Neumann, imposed by setting the left or right hand side of (29) equal
to unity, or Dirichlet, using node locations calculated from known boundary
velocities. Equation (29) can be rewritten as the barycentric interpolant

R = (R 1=2) R 122+ ( Ris1=2) Riv1=
| (R 1) '+ ( Riviz) !

for all interior i, its solution ensuring continuity when one of the x; ; is
vanishingly small. The averaged position; in (30) always lies between the
midpoints of adjacent intervals so there can be no node overtaking.

Given (vy)R, equation (25) yields (%;)"*!, equation (23) gives "*!, and
equations 28) or (30) lead to %;)"*'. The moved solution @;)"*! is given

(30)



2.4.3 FRully discrete 1-D algorithm
Algorithm 2
At each time step ", given k' and &,

obtain a discrete velocity®® from a numerical approximation of (10)
and deduce ¥yx)k = ( 9)=( k)«

calculate —_from (5) and hence "*! from equation (23)
nd (k)" from (25) and hencek!*! from (28)

determine (b,)"** from (26), then
n+1

(a) for problems in whichu is given at one boundary only, assigny
to aP**



2.5 1-D summary

Analytically, the method is sign-preserving i, andx (therefore monotonicity-
preserving ink) for arbitrary v. It is conservative, inherits scale invariance,
and propagates self-similar solutions exactly in time.

In the semi-discrete-in-time case the algorithm of section 2.3.1 is explicit,
rst-order-in-time, and sign-preserving inta, , andk over a time step for ar-
bitrary andv. Itis conservative, inherits scale-invariance, and propagates
self-similar solutions over a time step to order

In the fully-discrete case the algorithm of section 2.4.3 is explicit, rst-
order-in-time, non-tangling in k; and sign-preserving ink; over a time step
for arbitrary  t and v,. The algorithm is conservative in the sense of (31) or
(32), propagates a self-similar scaling solution to order .The algorrithm is
conservative in a particular sense, inherits the scale invariance of the problem
and propagates a self-similar scaling solution to order .The algorithm is
conservative in a particular sense, inherits the scale invariance of the problem
and propagates a self-similar scaling solution to order .

Computations con rm the predictions of the theory.

As with any time-stepping scheme, temporal accuracy is undermined for
large . However, even if  is large andyv; inaccurate, in a time step the
t; keeps the same sign and the; remain ordered.

2.6 Oscillations

Although ( ®)x remains positive it is not necessarily monotonic and approxi-
mation errors may lead to spurious oscillations iy (see (22). By smoothing
Vi We introduce extra numerical di usion to counteract the oscillations at the
expense of spatial accuracy.

The introduction of a Laplacian smoother,

1
Z-f(vx)k+1 + 2(Vx)k + (VX)k 1g

to (vx)k suppresses sawtooth oscillations irv(), and is equivalent to adding
second order numerical di usion. More than one application of the smoother
may be required to renden, monotonic and suppress the oscillations.

The positivity of the moved solution and the ordering of the mesh are
una ected by the smoothing.
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3 The relative conservation method in 2-D
Suppose that the functionu(x;t) is a solution of the generic PDE
u = Lu; (33)

in a moving domainR (t), where L is a purely spatial operator, with given
ux boundary conditions.

De ne the total mass to be
Z

(t) = R u( ;t)dx (34)

and introduce the relative density function

u(x;t)

u(x;t) = )

satisfying 7
u( ;t)dx =1 (35)
R(t)
from (34). By the Reynolds Transport Theorem the rate of change of the
total mass (t) is
d d? z ' @uv)

—_—= = — u( ;t)dx = u; dx +
dt dt rq (30 R(t) ' &) @n

ds  (36)



wherev(x;t) is the Eulerian velocity, in which _is given by (36) and (t) by
its integral. Then, from equations (33), (38) and (34), the velocity satis es
the time-independent PDE

r (u)= ——+Lu
(t)
in R(t).
For uniqueness puv = r , where (x;t) is a velocity potential satisfying
the Poisson equation

r (ur )= ——+Lu (39)
(t)
For positive u equation (39) has a unique solution for (x;t) (and hence
v(x;t)) under suitable Dirichlet or Neumann boundary conditions on .

3.1 A reference space

Introduce a Lagrangian moving coordinatek( ; ), where is a xed refer-
ence coordinate and = t, such that

@ Dy = Sy
@ v(; )=vr(; ) ) (40)
Equation (40) cannot be di erentiated in the same way as in (12) in 1-D
since (11) is unidirectional, but we can obtain a multidimensional equivalent
of (14).
The local Lagrangian conservation law (37) is expressed in terms o&nd
as
1
(t)
whereJ(®; ) is the Jacobian of the transformation generated by (40), thus
generalising (14). Given a funciorai( ; ) at any time , equation (41) leads
to a Monge-Ampere equation for a functiomk( ; ), using a di erent potential
function [13].
In spite of the di culties with generalisation of (40) and (41), if we specify

a( ; )jI(R; )j= b ); independent oft (41)



3.2 Spatial approximation in 2-D

Let the time variable be discretised as™ = n ,n=0:1;2;:::, where
is the time step, and de ne

R'=%( ;") @ =0 ") v=e(; ")

In the conservation-based scheme of [1, 4, 16] the moving coordini&fe
is advanced in time from equation (40) using the rst-order-accurate explicit
Euler scheme. Although the nodes are moved in the correct direction to rst
order in time there is then no control over mesh tangling or positivity of the
solution and the scheme may break down for required time steps. Instead, in
this paper we use the explicit sign-preserving exponential scheme of section
2 which is sign-preserving and prevents node tangling in 1-D for any time
step. There are two ways of doing this on a 2-D simplex, either through edge
lengths or triangle areas.

3.3 Spatial discretisation on a 2-D simplex

Consider a 2-D simplex consisting of non-overlapping triangles of ardg( ),
(k = 1;:::;;K) and moving nodesk;( ) with corresponding moved solution
valuesi( ), (i =1;::;N).

We begin by deriving a nite volume approximation to the velocity poten-
tial ( ) at the nodes of the simplex from (39) in the case wheteu = r f
wheref is a ux function and g is a source term.

3.3.1 Approximating the velocity potential

Assuming that Lu takes the formr f + g wheref is a ux function and
g is a source term, in a nite volume approach by integrating (39) over the
boundary of a patch of triangles ; surrounding nodei,

!

z Z
r(u ) f)dx= g+ T_) dx (42)
Using the divergence theorem equation (42) can be approximated by
( ) !
X UmM fn S :Z g+ — dx (43)
€ij sIJ (t)
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where ; is the value of sampled at the nodex;; g; is the edge joining
nodex; to nodex;; Uy is the midpoint value ofu on the edgeg; ; f,, is the
component off at x; in the direction from x; to x; and s is the average of
the lengths of the boundary edges opposite node either side of nodex; .
The linear system consisting of (43) for all interior nodes is square and
sparse and, given boundary conditions onor @ =@,ns solved for the interor
values by a standard method. Boundary conditions on correspond to
specifying tangential velocities and those o@ =@mo normal velocities.

3.3.2 Approximating triangle velocities

Having found ; at the nodes, we calculate an approximation to the velocity
Vi in a triangle as the gradient of a piecewise linear function throughj
values at the vertices. In a trianglek having values i, ,, 3 at vertices

(X1:¥1), (X2;¥2), (X3;ys), the velocity is

0 1
1 1 1 1 1 1 1
Vie=(r )k=ﬁ%> L2 3 X1 X2 Xs K (44)
“ v Y2 s 12 3

where Ay is the area of the triangle given by

1 1 1 1
A= - X1 X2 Xs (45)
Yi Y2 Yz

3.3.3 Approximating the nodal velocities

The velocitiesv; at the nodes are then obtained from the gradient¥ =
(r ) xof intriangles k surrounding node with areasAy by the barycentric
interpolant P
A, Vi
vi= Pk X (46)
A
k Ak
where the sum is over all triangle& surrounding nodei, having the property
of continuity at a node when one of theA is vanishingly small.

Summarising the calculation of the nodal velocities, from the velocity
potential given by (43) we obtain triangle-based velocitiesV  from (44)
and node-based velocities; from (46).
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3.3.4 Moving the nodes

In order to combat mesh tangling, instead of moving the nodes by the nodal
velocities (46) directly, we update local edge lengths or triangle areas using
their rates of change, enabling implementation of the sign-preserving prop-
erties of the explicit exponential time-stepping scheme seen in section 2.

Edge-length velocities

Consider an edgee of the simplex having a coordinates measured along
the edge, and denote by () the di erence in the argument along the edge
(so that & is the length of the edge).

At each end of the edge de neve to be the component of the velocity
at an end of the edge in the direction of the edge coordinate and let v
be the di erence between the twove's at the endpoints of the edge.

Then the explicit exponential time-stepping scheme for updating the edge
length ®&is

(8" =( §)"expf (Ve=8§)d"; (47)

which preserves the sign of the edge lengtte over a time step irrespective
of or Ve= b (and therefore that of §).



Since all the triangle areas remain of the same sign, mesh tangling is
avoided.
The rate of change of the total mass-is given by (5), then the total mass
n*1 obtained from the explicit exponential scheme

"ML= Nexpf t="g (50)

3.3.5 Finding the node locations

It remains to locate the nodes from either the edge lengths or the trian-
gle areas at the new time level "*'. Unlike in one dimension, there is no
unique mesh that is consistent with given edge lengths or triangle areas, each
problem being overdetermined in general.

We generalise the approach of (30) to 2-D using either edge-lengths or
triangle-areas, as follows.

Edge-lengths
Suppose that the interior nodex; of the simplex is connected td; nodes

Xj, (j =1;:::;3;), then generalisations of (29) and (30) to 2-D are
P,
i : 7]'_ Qi' 1h
Um R)_o  ang = gl ) Am (51)
=1 B L0 8)

for all interior nodesk;, where thek,, are the midpoints of the edges joining
®; to ®; and &; is the (positive) length of the edge connecting nodeto
nodej . Positivity of the weights in the second of (51) ensures thak; lies in
the convex hull of the midpointsk,, of the edges through;, thus preventing
tangling.

Triangle-areas
Similarly, if k



Boundary nodes

Boundary nodes are treated either as Dirichlet conditions by moving the
nodes with the known boundary velocitiew; of (46), or as Neumann condi-
tions by applying modi ed forms of (51) or (52), as follows. In the case of
edges, the boundary node equation (51) is modi ed to

b b
X R Ry _ X e

j=1 B j=1

where J,, is the number of edges emanating from boundary nodeand g; is
the unit vector from X, to X, while in the case of areas the boundary node



3.4 Finding the moved solution

Having obtained locations of the nodes at time"*!, the moved solutiona"**
at these nodes is found from approximations to the Lagrangian conservation
law (41), as follows.

From edges:
An approximate form of the Lagrangian conservation law (6) along an
edgeeis

1 . 1
—7 (i, Be)"™ = b = —(bm Be)" (55)
wherem is the midpoint of the edge andg, is time-independent, leading to
i n+l ( Qe)n
(8™ = 5 Cget B 59

where "*! is given by (50). The moved solutiort!** at the nodex; is then
the barycentric interpolant

Ji n+ly 1 pn+l
(s ey
T L (s (7)

of the 6! over those edges containing node,

n+1
b;




of the bg” over triangles containing nodex;, (cf.(29)), preserving the sign
of &f** and ensuring continuity of the u** when one of the p\ )" is
vanishingly small.

3.5 Fully discrete 2-D algorithms

The 2-D algorithm for the solution of the PDE problem with prescribed ux
boundary conditions on a simplex is as follows.

Algorithm 3
At each time step:

1. Determine the velocity potential at the nodes from (43) and the nodal
velocities from (44) and (46),

2. advance the edge-lengths or triangle-areasA in time from (47) or
(49), preserving their sign, and construct the nodes from (51) or (52),

3. calculate "** from (50),

4. evaluateb, or ®, from the right hand side of (55) or (58) and retrieve
the solution on the moved mesh using (56) and (57) or (59) and (60).

Note that, due to the calculation of the nodes, theg or @k, although held
constant over a time step, are recalculated at the beginning if each step.

The algorithm is non-tangling in k; and positivity-preserving in b, irre-
spective of t or the accuracy ofr 2. It is also conservative in the sense
that, for edge lengths from (55),

X
bm Se

]
over all edges is constant over a time step, or for triangle areas, from (58),

X
k

over all areas is constant over a time step.
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exhibiting the properties of exact propagation of scaling invariance and self-
similarity. We then introduced discretisation in time, superseding the stan-

dard explicit Euler scheme by an explicit exponential time stepping scheme
that preserves the monotonicity of the mesh and the sign of the solution, as
well as keeping scale invariance and propagating self-similarity to rst order
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