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Abstract

The evolution of a species is modelled in two dimensions by a
Lotka-Volterra equation system in which the random motion of indi-
viduals is biased so as to increase their expected rate of reproduction.
The system is solved numerically in a �xed �nite region using a mov-
ing mesh �nite element method in which the mesh movement is driven
by local conservation. With random seeding the population is seen to
form clusters which depend on parameters representing di�usion and
the size of a local survival region.

1 Introduction
In [3, 4] Grindrod noted that the derivation of many dispersion models rests



Results obtained in [4] from this model for a single population in one dimen-
sion demonstrated that from an initially random seeding of individuals local
clusters are formed.

In this paper we demonstrate the clustering phemonenon numerically in
two dimensions using a moving mesh �nite element method based on con-
servation. The numerical approximation uses linear �nite elements moving



2 Model equations for a single species
In order to emphasise clustering e�ects we assume that births or deaths occur
on a much longer time scale than clustering, so are neglected here.

The single species population balance equation for the population density
u(x ; t) in a region 
 is then

@u
@t

= �r � (uv) (2)

where the velocityv is the sum of the optimal velocity� = r q and a di�usive
velocity � � (r u)=u, leading to

@u
@t

= � r 2u � r � (ur q); (3)

x 2 
 ; t � 0 where � is a di�usion coe�cient. Boundary conditions on u
and q are the re
ective conditions

@u=@n= 0 ; @q=@n= 0 ; x 2 @
 ; t � 0: (4)

Note that a consequence of (3) and (4) is that the total population
Z

u(x ; t)dx (5)

is constant in time.
Given E (u) and the population densityu(x ; t) at any given time, we can

obtain q(x ; t) from (1) and use (3) to determine the evolution ofu. Following
[3, 4] we takeE (u) to be of the form

E (u) = (1 � u)(u � a) (6)

wherea = 0 :2.

3 Solution procedure on a moving domain
We follow a procedure in which the interior of the domain 
 is allowed
to deform in time so as to preserve and track a distribution of the local
population.
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We write (2) as
@u
@t

+ r � (uv ) = 0 ; (7)

an Eulerian conservation law equivalent to constancy in time of the (La-
grangian) local mass Z


( t )
u dx (8)

when the points of the domain 
(t) move with velocity v (x ; t).
We solve (3) numerically using the moving-mesh �nite element procedure

based on conservation described in [1, 2, 5], as follows. Comparing (7) with
(3), the velocity v satis�es

� � r 2u + r � (u� ) = r � (uv ) (9)

Having found v (x ; t



=
Z


( t )

@
@t

(wu) d
 +
I

@

w(x ; t)u(x ; t)v (x ; t) � n̂ dS;

yielding
Z


( t )

�
w(x ; t)

@u
@t

+ u(x ; t)
@w
@t

+ w(x ; t)r � (uv) + u(x ; t)v(x ; t) � r w
�

d
 = 0 :

(12)
Assuming that the weight functionsw(x ; t) move with the velocity v (x ; t) of
the points of the domain,

@w
@t

+ v(x ; t) � r w = 0 ;

so that equation (12) reduces to
Z


( t (

�
w(x ; t)

@u
@t

� u(x ; t)v(x ; t) � r w
�

d
 = 0

After integration by parts using the boundary condition (4) we obtain the
weak form

�
Z


( t )
w(x ; t)r � (uv) d
 =

Z


( t )
w(x ; t)

@u
@t

d
 ; (13)

Then, substituting the weak form of the driving PDE (3) into (13),

�
Z


( t )
w(x ; t)r � (uv) d
 =

Z


( t )
w(x ; t)( � r 2u � r � (ur q)) d


After integration by parts using the boundary conditions (4), we obtain the
weak form

�
Z


( t )
r w � (uv) d
 = �

Z


( t )
r w � r u d
 �

Z



u(x ; t)r w � r qd


for the velocity v (x ; t).
For a unique v (x ; t) we introduce a velocity potential � (x ; t) such that

v(x ; t) = r � , leading to the weak form
Z


( t )
u(x ; t)r w�r � d
 = � �

Z


( t )
r w�r u d
+

Z


( t )
u(x ; t)r q�r w d
 ; (14)
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for � (x ; t), given u(x ; t) and q(x ; t). Equation (14) has a unique solution
for � (x ; t) given the boundary conditions (4), apart from a constant which
di�erentiates out.

Before (14) is solved for� (x ; t) we obtain the function q(x ; t) from a weak
form of equation (1),

Z


( t )
w(x ; t)E (u) d
 = � �

Z



w(x ; t)r 2qd
 +

Z


( t )
w(x ; t)q(x ; t) d
 :

Integrating the right hand side by parts using the boundary condition (4),
we obtain the weak form

�
Z


( t )
r w � r qd
 +

Z


( t )
w(x ; t)q(x ; t) d
 =

Z


( t )
w(x ; t)E (u) d
 ; (15)

for q(x ; t), given u(x ; t).
The solution procedure for the velocityv (x ; t) is therefore to obtainq(x ; t)

from (15) and (1), deduce� (x ; t) from (14) and hence the velocityv (x ; t)
from a weak form of the relationv � r � = 0.

3.2 Finite elements
Finite elements are applied on a mesh of triangles within a 2-D polygonal
region. Let w be a standard piecewise-linear �nite element basis function
Wi (bx), (1 � i � N ), on the mesh (the full set forming a partition of unity).
The total distributed mass is constant in time through the imposition of zero
Neumann natural boundary conditions (4).

A piecewise-linear population densitybu(bx ; t) is given by the expansion

U(bx ; t) =
X

j

Uj (t)Wj (bx) (16)

The distributed conservation principle (11) then becomes
Z


( t )
Wi (x ; t) U(x ; t) d
 = C(Wi ); (17)

constant in time, where

C(Wi ) =
Z


(0)
Wi (x ; 0)U(x ; 0) d


6





in matrix form
K (U)� = � � KU + K (U)Q (20)

where � is a vector with entries � i (t) and K (U) is the weighted sti�ness
matrix with entries Z


( t )
U(x ; t)r



where bV i ( bX ; t) = V i ( bX (x ; t); t) by the explicit Euler scheme

bX n+1
i = bX n

i + � t bV n
i (22)

where � t is the time step. The time step is chosen su�ciently small to avoid
instability.

3.6 The moved solution
Having found the mesh pointsbX i at time tn+1 we recover the population
density U(bx ; t) at time tn+1 at the new time step from (16) expanded in
terms of Wj (bx) as

U(bx ; tn+1 ) =
NX

j =1

Un+1
j Wj (bx);

using the weak form of the conservation principle (17), obtaining

NX

j =1

� Z


( t )
W n+1

i Wj
n+1 d


�
; Un+1

j = C(Wi ) (23)

whereC(Wi ) is given from the initial conditions by

C(Wi ) =
Z


(0)
Wi (x ; 0) U(x ; 0) d
 (24)

Equation (23) is equivalent to the matrix system

M (bx)Un+1 = C (25)

whereUn+1 is the vector having entriesUn+1
i , C is the vector having entries

C(Wi ), and M (bx) is the mass matrix evaluated atbx .

4 Algorithm
Summarising, the algorithm for the moving mesh �nite element solution of
the single species aggregation model de�ned by equations (3), (1) and (6)
on a mesh in 2-D in a region with �xed boundaries and with internal nodes
moved by conservation is as follows.

From the initial mesh X i (x ; 0) and initial conditions U(x ; 0) obtain the
constant-in-time values ofC(Wi ) from (24). Then, at each time step,
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1. Calculate the nodal values of the piecewise-linear functionE(x ; t) from
equation (18),

2. Obtain Q(x ; t) from equation (19),

3. Find the velocity potential �( x ; t) from equation (20),

4. Deduce the node velocitiesV (x ; t) from equation (21),

5. Determine the moving coordinatesbX i (x ; t) at the next time-step from
(22),

6. Recover the solutionU(bx ; t) on the moved mesh at the next time step
from equation (25).

5 Results
We use a random seeding to provide the initial conditions for the model,
selected from a normal distribution with a mean of 0:3 and a standard de-
viation of 0:01. We are able to run the model sometimes to a blow up and
sometimes to a solution where population growth and decline become ap-
proximately balanced, depending on the initial values ofu, and also on the
parameters� and � . The parameter � controlling the rate of di�usion has a
smoothing e�ect while from the de�nition contained within (1) it is apparent
that � de�nes the scale of the clusters that are expected to form. We can see
this scaling e�ect in the results, with the number and size of clusters reduced
as � increases.

An example solution is given in �gure 1, for parameters� = 0 :005 and� =
0:01. This choice produces four clusters from the initially random seeding.



the two e�ects become balanced and the approximately balanced solution is
observed.

Figure 1: A solution of the 2D population equations after 350 time steps at
t = 0 :35, with � = 0 :005 and� = 0 :01.

Figure 2: A solution of the 2D population equations after 10 time steps at
t = 0 :01, with � = 0 :001 and� = 0 :01.
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world systems which can be described in a similar manner to this model. The
aim should be to understand the requirements from both a mathematical and
value perspective. Subsequent development will be in the direction of the
research requirements of those ecological systems which would most bene�t
from a study which has access to this modelling capability.
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