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A MINIMISATION PROBLEM IN L1 WITH PDE AND

UNILATERAL CONSTRAINTS

NIKOS KATZOURAKIS

Abstract. We study the minimisation of a cost functional which measures

the mis�t on the boundary of a domain between a component of the solution to
a certain parametric elliptic PDE system and a prediction of the values of this

solution. We pose this problem as a PDE-constrained minimisation problem

for a supremal cost functional in L1, where except for the PDE constraint
there is also a unilateral constraint on the parameter. We utilise approxi-

mation by PDE-constrained minimisation problems in Lp as p ! 1 and the

generalised Kuhn-Tucker theory to derive the relevant variational inequalities
in Lp and L1. These results are motivated by the mathematical modelling of

the novel bio-medical imaging method of Fluorescent Optical Tomography.

1. Introduction

Let 
 � Rn be an open bounded set with C1 boundary @
 and let also n � 3.
Consider the next Robin boundary value problem for a pair of coupled linear elliptic
systems:

(1.1)

8>>>><>>>>:
(a) �div(DuA) + Ku = S; in 
;

(b) �div(DvB) + Lv = �Mu; in 
;

(c) (DuA)n + 
u = s; on @
;

(d) (DvB)n + 
v = 0; on @
;

where u; v : 
 �! R2 are the solutions, n : @
 �! Rn is the outer unit normal
vector �eld on @
 and the coe�cients A;B;K;L;M; s; S; �; 
 satisfy 
 > 0 and

(1.2)

8><>:
u; v; S : 
 �! R2; Du; Dv : 
 �! R2�n;

K; L; M : 
 �! R2�2; A; B : 
 �! Rn�n+ ;

s : @
 �! R2; � : 
 �! [0;1):

Here the matrix-valued maps K;L are assumed to have the form

(1.3) K :=

�
k1 �k2

k2 k1

�
; L :=

�
l1 �l2
l2 l1

�
:

We will suppose that there exists a0 > 0 such that

(1.4)

8<:A;B 2 VMO(Rn; Rn�n+ ); �(A); �(B) �
h
a0;

1

a0

i
;

K;L;M 2 L1(
; R2�2); k1; � a0; l1 � a0:

Key words and phrases. Absolute minimisers; Calculus of Variations in L1; PDE-Constrained

Optimisation; Generalised Kuhn-Tucker theory; Lagrange Multipliers; Fluorescent Optical To-

mography, Robin Boundary Conditions.
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We note that our general notation will be either standard or self-explanatory, as
e.g. in the textbooks [24,
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and let also

(1.7)
�

~v1; :::; ~vN
	
� L1(@
; R2)

be predicted (noisy) values of the solution v of (1.1)(b)-(1.1)(d) on the boundary
@
. Suppose that for any i 2 f1; :::; Ng, the pair (ui; vi) solves (1.1) with coe�ciens
(Si; si; �). For the N -tuple of solutions (u1; :::; uN ; v1; :::; vN ), we will symbolise�

~u;~v
�
2 W1;m2 (
; R2�N )�W1;p(
; R2�N )

and understand (ui)i=1:::N and (ui)i=1:::N as matrix valued. Similarly, we will see
the corresponding vectors of test functions as�

~�; ~ 
�
2 W1; m

m�2 (
; R2�N )�W1; p
p�1 (
; R2�N ):

Our aim is to determine some � 2 Lp(
; [0;1)) such that all the mis�ts��(vi � ~vi)
��
Bi

��
between the predicted approximate solution and the actual solution are minimal.
We will minimise the error in L1 by means of approximations in Lp for large p
and then take the limit p ! 1. By minimising in L1 one can achieve uniformly
small cost, rather than on average. Since no reasonable cost functional is coercive
in our admissible class, we will therefore follow two di�erent approaches to rectify
this problem, but in a uni�ed fashion. The �rst and more popular idea is to add
a Tykhonov-type regularisation term �k�k for small � > 0 and some appropriate
norm. The alternative approach is to consider that an a priori L1 bound is given on
�. The latter approach appears to be more natural for applications, as it does not
alter the error functional. For �nite p <1, we can relax this to an Lp bound, but
as we are mostly interested in the limit case p = 1, we will only discuss the case
of L1 bound. In view of the above observations, we de�ne the integral functional

(1.8) Ip
�
~u;~v; �

�
:=

NX
i=1



vi � ~vi




_Lp(Bi)
+ �k�k _Lp(
); (~u;~v ; �

�
2 Xp(
)

and its supremal counterpart

(1.9) I1
�
~u;~v; �

�
:=

NX
i=1



vi � ~vi




L1(Bi)
+ �k�kL1(
) (~u;~v ; �

�
2 X1(
);

where the dotted _Lp quantities are regularisations of the respective norms:a [(�8 9.9626 T742 -k)]38 Tf [(;)]TJ/8.069 Td8L29 -1.495 Td [(i)]TJ/38 9.9626 Tf 4.817 0 Td [(k)]TJ/F7 6.9738 Tf 6.316 -1.259 Td [(_)]TJ -1.335 -1.763 Td [(L)]TJ/F9 4.9813 Tf 4.926 1.993 Td [(p)]TJ/F2 6.9738 Tf 4.183 -1.993 Td [(� Td [(�)]T5J/F9.9626 Tf 12994 -8.06Td [(�)]T3.2F9 J/F04
)]TJ 2229 -1.495 Td [(i)]TTJ/F8 9J/F04

;_

i i p p ii k i k_Lp(Bi)

(B ;_

i i p
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(1.13)

Xp(
) :=

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

(~u;~v ; �
�
2X p(
) : for all i 2 f1; :::; Ng; (ui; vi; �) satis�es

0 � � �M a.e. on 

and8>>>><>>>>:

(a)i �div(DuiA) + Kui = Si; in 
;

(b)i �div(DviB) + Lvi = �Mui; in 
;

(c)i (DuiA)n + 
ui = si; on @
;

(d)i (DviB)n + 
vi = 0; on @
;

for A;B;K;L;M; Si; si; �; 
; p satisfying hypotheses (1.2)-(1.7)

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
and

(1.14) X1(
) :=
\

n<p<1
Xp(
):

Note that X1
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We conclude this lengthy introduction with some comments about the general
variational context we use herein. Calculus of Variations in L1 is a modern sub-
area of analysis pioneered by Aronsson in the 1960s (see [6]-[9]) who considered
variational problems of supremal functionals, rather than integral functional. For a
pedagogical introduction we refer e.g. to [20, 36]. Except for their endogenous math-
ematical appeal, L
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In the proofs that follow we will employ the standard practice of denoting by C
a generic constant whose value might change from step to step in an estimate.

Proof. The aim is to apply of the Lax Milgram theorem. (Note that the matrix K
is not symmetric, thus this is not a direct consequence of the Riesz theorem.) We
de�ne the bilinear functional

B : W1;2(
; R2)�W1;2(
; R2) �! R;

B[u;  ] :=

�



h
A : (Du>D ) + (Ku) �  

i
dLn +

�
@


�

u �  

�
dHn�1:

Since A;K are L1, by H�older inequality we immediately have��B[u;  ]
�� � CkukW1;2(
)k kW1;2(
)

for some C > 0 and all u;  2W1;2(
; R2). Further, since

(Ku) � u = [u1; u2]

�
k1 �k2

k2 k1

� �
u1

u2

�
= k1juj2 � a0juj2;

we estimate

B[u; u] � a0

�
kDuk2L2(
) + kuk2L2(
)

�
+ 
kuk2L2(@
);

for any u 2 W1;2(
; R2). Hence, the bilinear form B is continuous and coercive,
thus the hypotheses of the Lax-Milgram theorem are satis�ed (see e.g. [24]). Hence,
for any � 2 (W1;2(
; R2))�, exists a unique u 2W1;2(
; R2) such that

B[u;  ] = h�;  i; for all  2W1;2(
; R2):

Next, we show that the functional � given by

h�;  i :=

�
@


�
g �  

�
dHn�1 +

�



h
f �  + F : D 

i
dLn

lies in (W1;2(
; R2))� and we will also establish the L2 and the Lp estimates. Indeed,
by the trace theorem in W1;2(
; R2), there is a C > 0 which allows to estimate��h�;  i�� � kgkL2(@
)k kL2(@
) +

�
kfkL2(
) + kFkL2(
)

�
k kW1;2(
)

� C
�
kfkL2(
) + kFkL2(
) + kgkL2(@
)

�
k kW1;2(
):

The particular choice of11g.9738 Tf 3.114 0Qar co7.749 
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for i = 1; 2. By applying the estimate to the each of the components separately, we
have

kuikW1;p(
) �C
�
kKkL1(
)kuk

L
np
n+p (
)

+ kfik
L
np
n+p (
)

+ kFikLp(
) + kgikLp(@
)

�
;

(2.7)

for i = 1; 2. Note now that since we have assumed p > 2n=(n� 2), we have
2 < np=(n+ p) < p. Hence, by the Lp interpolation inequalities, we can estimate

kuk
L
np
n+p (
)

� kuk�L2(
) kuk
1��
Lp(
); for � =

2p

n(p� 2)
:

By Young’s inequality

(2.8) ab �
�
r � 1

r
("r)

1
1�r

�
b

r
r�1 + "ar;

which holds for a; b; " > 0, r > 1 and r=(r�1) = r0, the choice r := 1=(1��) yields

1� � =
n(p� 2)

p(n� 2)� 2n
; r =

n(p� 2)

p(n� 2)� 2n
;

r

r � 1
=
n(p� 2)

2p
;

and hence we can estimate

kuk
L
np
n+p (
)

�
�
kukLp(
)

� p(n�2)�2n
n(p�2)

�
kukL2(
)

� 2p
n(p�2)

�
��
kukLp(
)

� p(n�2)�2n
n(p�2)

�r
+

�
r � 1

r
("r)

1
1�r

���
kukL2(
)

� 2p
n(p�2)

� r
r�1

(2.9)

= "kukLp(
) +

24 2p

n(

p

(2.9)

=
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it satis�es
(2.11)8
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is weakly closed. To this aim, let � j ��* �p in Lp(
) as jk ! 1. Then, for any
measurable set E � 
 with positive measure Ln(E) > 0, by integrating the last
inequality over E, the averages satisfy

0 � �
�
E

� j dLn � M

and therefore

�
�
E

�p dLn = lim
jk!1

�
�
�
E

� j dLn
�
2 [0;M ]:

By selecting E := B�(x) for x 2 
 and � 2 (0;dist(x; @
)), the Lebesgue di�eren-
tiation theorem allows us to infer

�p(x) = lim
�!0

 
�
�

B�(x)

�p dLn
!
2 [0;M ]; for a.e. x 2 
:

To conclude that (~up; ~vp; �p
�
2 Xp(
), we must pass to the weak limit in the

equations (a)i � (d)i in (1.13). The only convergence that needs to be justi�ed
that of the nonlinear source term �Mui in (b)i. To this end, note that by our
assumption p > 2n

n�2 , we have the inequality

p

p� 1
<

n

2
� m

2
:

Thus, since u ji �! upi in L
m
2 (
; R2) as jk !1, we have that

u ji �! upi in L
p
p�1 (
; R2)

as jk !1. Hence, since � j ��* �p in Lp(
), it follows that�



�
� j Mu ji

�
� �dLn �!

�



�
�p Mupi

�
� �dLn

for any � 2 C1c (
; R2) as jk !1, as a consequence of the weak-strong continuity

of the duality pairing between Lp(
) and L
p
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for any M > 0. If on the other hand (1.15) is satis�ed, then by the weak lower-
semicontinuity of the functional k � k _Lq(
) on Lq(
), we have

k�1kL1(
) = lim
q!1

k�1k _Lq(
)

� lim inf
q!1

�
lim inf
pj!1

k�pk _Lq(
)

�
� lim inf

q!1

 
lim inf
pj!1

1

�

NX
i=1



~vi




L1(Bi)

!

=
1

�

NX
i=1



~vi




L1(Bi)
:

Further, by passing to the limit as pj ! 1 in (a)i � (d)i of (1.13) as in the proof
of Proposition 6, we see that the limit (~u1; ~v1; �1

�
lies in X1(
). It remains to

prove that (~u1; ~v1; �1
�

is a minimiser of I1 and that the energies converge. Fix

an arbitrary (~u;~v; �
�
2 X1(
). Since pj � q for large j 2 N, by minimality we have

I1
�
~u1; ~v1; �1

�
= lim

q!1
Iq
�
~u1; ~v1; �1

�
� lim inf

q!1

�d [s5 -31; ~v!1
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Proof. To see (2.17), note that if M = 1, then by testing in (1.20) against � :=
�p + � where � 2 Lp(
; [0;1)), we obtain

�



�

 
�

d[�p(�p)]

dLn
+

NX
i=1

�
Mupi

�
�  pi

!
dLn � 0;

for any � 2 Lp(
; [0;+1)), which yields

(2.19) �
j�pjp�2

(p) �p

Ln(
)k�pkp�1
_Lp(
)

+

NX
i=1

�
Mupi

�
�  pi � 0; a.e. on 
:

From the above inequality we readily deduce (2.17). To see (2.18), we �x a point
x 2 f�p > 0g, t > 0 small and � 2 (0;dist(x; @
) and test against the function

� := �p � t�f�p>tg\B�(x) 2 Lp(
; [0;1):

Then, by (1.20) we get

t

�
B�(x)

�f�p>tg

 
�

d[�p(�p)]

dLn
+

NX
i=1

�
Mupi

�
�  pi

!
dLn � 0;

which by diving by tLn(B�(x)), letting t ! 0, using the Dominated Convergence
theorem and letting �! 0 yields

lim
�!0

�
�

B�(x)

�f�p>0g

 
�

d[�p(�p)]

dLn
+

NX
i=1

�
Mupi

�
�  pi

!
dLn � 0:

Now, (2.18) follows as a consequence of the Lebesgue di�erentiation theorem and
(2.19). The proof is complete. �

The proof of Theorem 2 consists of a few sub-results. We begin by computing
the derivative of Ip.

Lemma 9. The functional Ip : X p(
) �! R is Frech�et di�erentiable and its
derivative

dIp : X p(
) �!
�
X p(
)

��
which maps

(~u;~v; �) 7!
�
dIp
�

(~u;~v;�)

is given for all (~u;~v; �); (~z; ~w; �) 2X p(
) by the formula

(2.20)
�
dIp
�

(~u;~v;�)
(~z; ~w; �) = p

�
@


~w : d[~�p(~v)] + �p

�



� d[�p(�)]:

Proof. The Frech�et di�erentiability of Ip follows from well-known results on the
di�erentiability of norms on Banach spaces and our p-regularisations in (1.10)-
(1.11). To compute the Frech�et derivative, we use directional di�erentiation. For
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Let us also de�ne for any M 2 [0;1] the following weakly closed convex subset of
the Banach space X p(
):

(2.25) X p
M (
) := W1;m2 (
; R2�N )�W1;p(
; R2�N )� Lp(
; [0;M ]):

Then, in view of (2.21)-(2.25), we may reformulate the admissible class Xp(
) of
the minimisation problem (1.17) as

(2.26) Xp(
) =
n�
~u;~v; �

�
2X p

M (
) : J
�
~u;~v; �

�
= 0
o
:

We now compute the derivative of J above and prove that it is a C1 submersion.

Lemma 10. The map J de�ned by (2.21)-(2.25) is a continuously di�erentiable
submersion and its Frech�et derivative

dJ : X p(
) �! L

�
X p(
);

h�
W1; m

m�2 (
; R2)
�� � �W1; p

p�1 (
; R2)
��iN�

;

(2.27)

which maps

(~u;~v; �) 7!
�
dJ
�

(~u;~v;�)

is given by

D�
dJ
�

(~u;~v;�)
(~z; ~w; �); (~�; ~ )

E
=

266666666664

D�
dJ1

1

�
(~u;~v;�)

(~z; ~w; �); �1

E
D�

dJ2
1

�
(~u;~v;�)

(~z; ~w; �);  1

E
...D�

dJ1
N

�
(~u;~v;�)

(~z; ~w; �); �N

E
D�

dJ2
N

�
(~u;~v;�)

(~z; ~w; �);  N

E

377777777775
:(2.28)

In (2.28), for each i 2 f1; :::; Ng and j 2 f1; 2g, the component
�
dJ1

N

�
(~u;~v;�)

of the

derivative is given for any test functions

(~�; ~ ) 2W1; m
m�2 ~2 1

N

TJ 11- [11326 Tf Tf 10.206 0 Td [(2)]TJ/00
W1;m352 9.96 038 793 Tf 7p1.39 0 Td [(�)]Te2 1

N

TJ 11- [11326 Tf Tf 10.206 .985 Td [(of) Tf 0 l5TJ 8/F58 6 Tf b(unctionh)-358(fexpr)52(essf 74.446 -19.332 Td [(1 936)-36TJ/F58 9.96269Tf 10.206 029 Td [(~)]TTJ83/F5840138 Tf 8)]TJ/F118 Td6TJ/F58>dJ2

(~u;~v;�)

~z; ~w; �)
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associated with the minimisation problem (1.17), such that the constrained min-
imiser

�
~up; ~vp; �p

�
2 Xp(
) satis�es for any (~z; ~w; �) in the convex set X p

M (
) that

1

p

�
dIp
�

(~up;~vp;�p)

�
~z; ~w; � � �p

�
�

NX
i=1

��
dJ1

i

�
(~up;~vp;�p)

�
~z; ~w; � � �p

�
; �pi

�

+

NX
i=1

��
dJ2

i

�
(~up;~vp;�p)

�
~z; ~w; � � �p

�
;  pi

�
:

(2.32)

Proof. By Lemmas 9-10, Ip is Frech�et di�erentiable and J is a continuously Frech�et
di�erentiable submersion on X p(
). Also, the set X p

M
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for any (~z; ~w; �) 2X p
M (
).

We conclude this section by obtaining the further desired information on the
variational inequality (2.34).

Lemma 13. In the setting of Corollary 12, the variational inequality (2.34) for
the constrained minimiser

�
~up; ~vp; �p

�
is equivalent to the triplet of relations (1.20)-

(1.22).

Proof. The inequality (1.20) follows by setting ~z = ~w = 0 in (2.34), and recalling
the de�nition of Radon-Nikodym derivative of the absolutely continuous measure
�p(�p). The identity (1.21) follows by setting � = �p and ~z = 0 in (2.34) and
by recalling that W1;p(
; R2�N ) is a vector space, so the inequality we obtain in
fact holds for both �w. Finally, the identity (1.22) follows by setting � = �p and
~w = 0 in (2.34) and by recalling again that W1;m2 (
; R2�N ) is a vector space, so
the inequality holds for both �z. �

We conclude by establishing our last main result.

Proof of Theorem 3. We �rst show that for any p > n and any

(~v; �) 2W1;p(
; R2�N )� Lp(
);

we have the next total variations bounds for the measures (1.23)-(1.24):

~�p(~v)


(@
) � N; �19.9626 Tf 12.14284(Theored196 4 J [(~012TJai]ti)8(3)]TJ
 (H48024)]TJ/g11 9.9628.509f 6.971 -4.1n/F8 9.66(�)]TJ/F)5925a18713 Tf 0
/F8 9.7

173(v)55(ariati)83(e6/F135.978 TB [(Wbctor)-382(sH�ti)69ace)106Td1(r3(a)-382(ha)28(v)28(e)-1Td 8 Td38713 Tf 0
/F8 84i)667](w)8 21measas4RG15
p >11327(y)-333(d [(173(v)55(aria)500(a18713 Tf (;)DJ/F14 9.9626 Tf 85692 Tf 05012))]030.234 0 Td [(p)-2784i)66742.06 [(@)]TJ/F8 9.9626 Tf 92.86266 [c 3.8568 Td d196 4 J [(~012TJai]ti)8(3)]TJ
 (H48024)]TJ/g11 9.9628.51f 6.971 -4.1n/F8 9.66(�)]TJ/F)5925a18713 Tf 0
/F8 9.719.9626 Tf 12.14284(Theored196 4 J [(~012TJai]ti)8(3)]TJ
 (H48024)]TJ/g11 9.9628.509f 6.971 297.922.8 9.66(�)]TJ/F)5925a1871335H�856F8 9.7
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To see (2.37), we argue as follows. First, note that if �1 = 0 a.e. on 
, then by the
positivity of �p and �p we trivially have

lim inf
pj!1

�



�p d[�p(�p)] � 0 = k�1kL1(
)

and hence (2.37) ensues. Therefore, we may assume k�1kL1(
) > 0. Next, note
that by (1.11) we have

�



�p d[�p(�p)] = �
�




�
j�pj(p)

�p�2 j�pj2�
k�pk _Lp(
)

�p�1 dLn

= �
�




j�pjp(p)�
k�pk _Lp(
)

�p�1 dLn � 1

p2
�
�




�
j�pj(p)

�p�2�
k�pk _Lp(
)

�p�1 dLn;

which by H�older inequality gives�



�p d[�p(�p)] = k�pk _Lp(
) �
1

p2

�
k�pk _Lp(
)

�1�p ��



�
j�pj(p)

�p�2
dLn

� k�pk _Lp(
) �
1

p2 k�pk _Lp(
)

:

Hence, for any k � 1 �xed and p � k, we have�



�p d[�p(�p)] � k�pk _Lk(
) �
1

p2 k�pk _Lk(
)

:

Since by Theorem 1 we have �p ��* �1 in Lk(
) for any k 2 (1;1), by the weak
lower semi-continuity of the convex functional k � k _Lk(
) on Lk(
), it follows that

lim inf
pj!1

�



�p d[�p(�p)] � lim inf
pj!1

k�pk _Lk(
) �
�

lim sup
pj!1

1

p2

�
1

lim inf
pj!1

k�pk _Lk(
)

� k�1k _Lk(
):

We therefore discover (2.37) by letting k !1.

Now we proceed with establishing (I) and (II) of the theorem.

(I) Suppose that C1 = 0. Then, we have

(2.38)
�
~�p; ~ p

�
�!

�
~0;~0
�

in W1; m
m�2 (
; R2�N )� BV(
; R2�N )

as pj ! 1, where
�
~�p; ~ p

�
are the Lagrange multipliers associated with the con-

strained minimisation problem (1.18). In view of (2.37) and (1.19), the inequality
(1.20) implies
(2.39)

�

�



� d[�p(�p)] +

NX
i=1

�



(� � �p)
�
Mupi

�
�  pi dLn � o(1)pj!1 + �k�1kL1(
):

for any � 2 C0
0(
; [0;M ]). Note now that H�older’s inequality gives

�



���(� � �p)Mupi

���m
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duality pairing between L
m
2 (
) and L

m
m�2 (
), by letting p!1 along the sequence

(pj)
1
1 , (2.39) yields

�

�



� d�1 � �k�1kL1(
);

for any � 2 C0
0(
; [0;M ]). Hence, if � > 0, we see that �1 = 0 a.e. on 
. Again by

(1.25) and (2.38), by passing to the limit as pj !1 in (1.21), we obtain

�
@


~w : d~�1 = 0 = lim
pj!1

NX
i=1

��



h
B : (Dw>i D pi) +

�
Lwi

�
�  pi

i
dLn

+

�
@


(
wi) �  pi dHn�1

�
;

for any ~w 2 C1
0(
; R2�N ). Therefore, ~�1 = ~0, as claimed.

(II) Suppose now that C1 > 0. Then, the desired relations (1.27)-(1.29) would

follow directly from (2.39) and (1.21)-(1.22) by rescaling
�
~�p; ~ p

�
and passing to

the limit as pj !1 since the rescaled multipliers
�
~�p=Cp; ~ p=Cp

�
are bounded in

the product space

W1; m
m�2 (
; R2�N )� BV(
; R2�N )

and therefore the sequence is sequentially weakly* compact, once we justify the
convergence

(2.40)

�



�p
�
Mupi

�
�  pi
Cp

dLn �!
�




�1
�
Mu1i

�
�  1i dLn;

as pj !1. To this end, we estimate�����



�p
�
Mupi

�
�  pi
Cp

dLn �
�




�1
�
Mu1i

�
�  1i dLn

����
�

�



j�pj
�����Mupi

�
�  pi
Cp
�
�
Mu1i

�
�  1i

����dLn
+

�����



(�p � �1)
��

Mu1i
�
�  1i

�
dLn

����:
(2.41)

Note now that by Theorem 1 we have �p ��* �1 in Lq(J/F1 [(in)-382(L)]TJ/F10 6.973r[(i)]TJ/F8 9.9626 Tf :o638 Td [(626 738 Tf 6.871 ff [(�)412(�)]TJ/F11 9.9626 Tf 8.317 0 Td [(*)-3560)]TJ/F13 6.9738 Tf 17.89 -1.494 Td [(1)]TJ/F8 9.9626 Tf 12.241 1.494 Td [(in)-382(L)]TJ -8.07 Td [(M)]TJ/F11 9.9626 Tf 9.428 9.9�i
9 -1.49as9626 Tf 5.811 -8.07-342.06 [( [(95)]TJ/F13 6.97380 6.9738 Tf 6.00 Td [(u26 Tf 4.566 -8..07 Td [(M)]TJ2048 Td [(626 7!)-402i)]TJ/F8 9.9626 Tf :2367 -8 Td [(.)-668(In)-40 0 iew)-40 0of
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and the latter inequality is true by the de�nition of �. In conclusion, by H�older’s
inequality and the above arguments, (2.46) yields
(2.47)

�



�����Mupi
�
�  pi
Cp

����r dLn �
��




��Mupi
��nm(1�")

2n�m dLn
�1
s

 �



��� pi
Cp

���n(1�")
n�1

dLn
!r(n�1)
n(1�")

:

In view of (2.44)-(2.45), (2.42) ensues from (2.47) for any t 2 (1; r). Finally, (2.43)
also follows from (2.47) and the Vitali convergence theorem, as from (2.44)-(2.45)
we already know �

Mupi
�
�  pi
Cp
�!

�
Mu1i

�
�  1i a.e. on 
;

as pj !1, because M 2 L1(
; R2�2). The theorem ensues. �
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