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ON A VECTOR-VALUED GENERALISATION OF VISCOSITY

SOLUTIONS FOR GENERAL PDE SYSTEMS

NIKOS KATZOURAKIS

Abstract. We propose a theory of non-di�erentiable solutions which applies

to fully nonlinear PDE systems and extends the theory of viscosity solutions of
Crandall-Ishii-Lions to the vectorial case. Our key ingredient is the discovery of

a notion of extremum for maps which extends min-max and allows \nonlinear

passage of derivatives" to test maps. This new PDE approach supports certain
stability and convergence results, preserving some basic features of the scalar

viscosity counterpart. In this �rst part of our two-part work we introduce and

study the rudiments of this theory, leaving applications for the second part.
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applicability of this approach. Without being exhaustive, some notable extensions
of viscosity solution in either sense are given in [5, 6, 7, 11, 18, 21, 28, 29, 31].

It appears that the main restriction which to date has been unable to be re-
moved is that VS apply to single equations with scalar-valued solutions, or at best
to weakly coupled monotone systems which essentially can be treated component-
wise as independent equations. Removing this constraint is hardly a straightforward
task, as VS are essentially based on the scalar nature of the problem and on com-
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de�ne a tensor S : T in 
(q�p)RN by

(2.3) S : T :=
�
S�q:::�p:::�1 is:::i1T�p:::�1 is:::i1

�
e�q 
 :::
 e�p+1

:

For example, for s = q = 2 and p = 1, the tensor S : T of (2.3) is a vector with
components S��ijT�ij with free index � and the indices �; i; j are contracted. In
particular, in view of (2.3), the second order linear system

(2.4) A�i�jD
2
iju� + B�
kDku
 + C��u� = f�;

can be compactly written as A : D2u+B : Du+Cu = f , where the meaning of \:" in
the respective dimensions is made clear by the context. Let now P : Rn �! RN be
linear map. We will always identify linear subspaces with orthogonal projections on
them. Hence, we have the split RN = [P]>�[P]? where [P]> and [P]? denote range
of P and nullspace of P> respectively. In particular, if � 2 SN�1, then [�]> = �
 �
is (the projection on) the line span[�] and [�]? is (the projection on) the normal
hyperplane I � � 
 �.

Symmetrised tensor products. The next notion plays a crucial role to what
follows. The symmetrised tensor product is the operation

(2.5) _ : RN
 RN �! RN�Ns : a _ b :=
1

2

�
a
 b+ b
 a

�
:

Obviously, a _ b = b _ a and a _ a = a
 a. Let us also record the identities

(a _ b) :X = X : (a
 b) = a>Xb ; X 2 RN�Ns ;(2.6)

ja
 bj2 = jaj2jbj2 ; ja _ bj2 =
1

2

�
jaj2jbj2 + (a>b)2

�
:(2.7)

We will also need to consider tensor products \_" of higher order between RN and
the spaces RN
 Rn and RN
 Rn�ns . If � 2 RN , P 2 RN
 Rn, we view the tensor
products � 
 P and P
 � as maps Rn �! RN
 RN . This allows to de�ne

(2.8) � _ P : Rn �! RN�Ns ; � _ P :=
1

2

�
� 
 P + P
 �

�
:

Obviously, (� _P)w = � _ (Pw) and � _P = P_ �. Similarly, if X = X�ije�
 eij J/Fe51-3.615 -8.07 Td [(:)]TJ/F8 9.9626 Tf  Td2J/F14 9.9626 Tf 8.11 -(�)]TJ/F14 9.9627ee47d9627c7 [(w)]TJ/F8 0 mn0 Th Td [(�)]TJ/F14(This)-33-/F14 9.9626 Tf 9.784 4 Td [10 1 1.s2(Similarly)84(,)-310(if)]�
�cts � 
 e
P and P
_
 e
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Remark 4. It is evident that RNn�Nns� is a proper subspace of RNn�Nns and that
it can be equipped with both partial orderings \�" and \�
". It also evident that
\�" is a stronger notion than \�
", in the sense that � � 0 implies � �
 0. The
known examples of rank-one convex quadratic form which are not convex imply
that rank-one positivity is genuinely weaker that positivity.

3. Contact solutions for fully nonlinear PDE systems

In this section we introduce the basics of a theory of non-di�erentiable solutions
which applies to fully nonlinear systems of partial di�erential equations of the form

(3.1) F(�; u;Du;D2u) = 0;

where u : Rn � 
 �! RN and

(3.2) F : 
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In the following we will also need to consider closures of contact jets:
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The new objects J1;�, J2;� will be studied thoroughly later. Before presenting
some explicit calculations of contact jets for a typical map to illustrate the working
philosophy (which is analogous to the scalar case), we present a reformulation of
De�nitions 9-10.

Lemma 12 (Alternative de�nitions). In the setting of De�nitions 9-10, the impli-
cations (3.11), (3.8) can be respectively replaced by

P 2 J1;�u(x) =) ��F
�
x; u(x);P

�
� 0;(3.12)

(P;X) 2 J2;�u(x) =) ��F
�
x; u(x);P;X

�
� 0:(3.13)

If moreover the nonlinearity F is continuous, we can replace the ��F by �>F.

Proof of Lemma 12. For brevity we exhibit only the second order case. Obvi-

ously, J2;�u(x) � J
2;�
u(x). Conversely, assume (3.13) and �x (P;X) 2 J2;�

u(x).
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We now employ (4.3) to check directly that

(4.5) (� _R)

�
� � R

jRj

�
= ��

�
� � R

jRj

�
with �� as in (4.1). The lemma follows. �

We now show that symmetric products � _ (�) coupled by the inequality �

induce \directed" orderings.

Proposition 14 (Induced partial orderings). Let � be in SN�1 and �? = I� �
 �.

(i) If v 2 RN , then

� _ v � 0 ,
�
v = (�>v)�
�>v � 0

,
�
�?v = 0
�>v � 0

, v = �jvj�:(4.6)

(ii) If X 2 RN
 Rn�ns , then

� _X �
 0 ,
�

X = � 
 (�>X)
�>X � 0

,
�
�?X = 0
�>X � 0

, � _X � 0:

In particular, it follows that the orderings � and �
 coincide on the cone

(4.7)
n
� _Y

��� � 2 RN ; Y 2 RN
 Rn�ns

o
which is a subspace of the space (2.16) of separately symmetric tensors.

Proof of Proposition 14. (i) By Lemma 13, �_v � 0 if and only if max�(�_v) �
0, hence if and only if 1

2 (jvj + �>v) = 0 and this says v = �jvj�. The latter is

equivalent to v = (�>v)� with �>v � 0 and to �?v = 0 with �>v � 0.
(ii) Suppose that � _X �
 0 and �x � 2 RN and w 2 Rn. Then, we have

0 � (� _X) : (� 
 w)
 (� 
 w)

=
1

2

�
��X�ij + ��X�ij

�
��wi��wj(4.8)

=
1

2

��
��X�ijwiwj

�
+
�
��X�ijwiwj

��
����

=
�
� _ (X : w 
 w)

�
: � 
 �:

By (4.8), we obtain for any w �xed that � _ (X : w 
 w) � 0. By employing (i) to
the vector v := X : w 
 w, we see that

�>(X : w 
 w) � 0 ;
�
X� � 
 (�>X)

�
: w 
 w = 0;

for any w �xed. Since w
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and the last inequality follows by �>X � 0. Hence, � _X � 0 as desired. Finally,
the implication � _X � 0) � _X �
 0 is trivial. �

Now we relate generalised and classical pointwise derivatives.

Theorem 15 (Contact jets and derivatives). Let u : Rn � 
 �! RN be a map
which is continuous at x 2 
.
(a) If there exists one direction � 2 SN�1 such that both J1;��u(x) are nonempty,
then u is di�erentiable at x and both J1;��u(x) are singletons with element the
gradient:

(4.10) J1;��u(x) 6= ; =) J1;�u(x) = J1;��u(x) =
�

Du(x)
	
:

(b) If u is di�erentiable at x, then for all � 2 SN�1 the sets J1;�u(x) are singletons
with element the gradient:

(4.11) J1;�u(x) =
�

Du(x)
	
:

Moreover, whenever (Du(x);X�) 2 J2;��u(x) 6= ;, we have the inequality

(4.12) � _
�
X� �X+

�
�
 0

which is equivalent to

(4.13) �?
�
X� �X+

�
= 0 ; �>

�
X� �X+

�
� 0:

(c) If u is twice di�erentiable at x, then for all � 2 SN�1 the sets J2;�u(x) are
nonempty, they contain (Du(x);D2u(x)) and also

J2;�u(x) =
n�

Du(x);D2u(x) + � 
A
�

: A � 0
o
:(4.14)

Moreover, we have the characterisations

J2;�u(x) =
n

(Du(x);X) : � _
�
D2u(x)�X

�
�
 0

o
=
n

(Du(x);X) : � _
�
D2u(x)�X

�
� 0

o
(4.15)

=

(
(Du(x);X) :

�
�>
�
D2u(x)�X

�
� 0;

�?
�
D2u(x)�X

�
= 0

)
:

(d) If v : Rn � 
 �! RN is twice di�erentiable at x and �; � � 0, then

(4.16) J2;�(�u+ �v)(x) = �J2;�u(x) + �
�
Dv(x); D2v(x)

�
:

Proof of Theorem 15. (a) Let P� 2 J1;��u(x) 6= ;. Then, by (3.3), we have

�� _
�
u(z + x)� u(x)� P�z

�
: � 
 � � o(jzj);(4.17)

if � 2 RN , where \o(1)" is realised by T (z) : � 
 �. We set z := "w for " > 0 and316Td [(0)-355(and)]TJ/F1 9.9626 Tf 4.567 --1j � :
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for any w 2 Sn�1
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(c) We �rst observe that by applying Proposition 14, all four sets appearing in
the right hand sides of of (4.14), (
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(e) We have as 
 3 z ! 0
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Example 19 (Calculation of contact jets, cf. [24]). Let u : R �! RN be given by

(4.38) u(z) := �Az �(�1;0](z) +

�
Bz +

C

2
z2

�
�(0;+1)(z);

where A;B;C 2 RN , A+B 6= 0. The contact jets of u at zero are

J1;�u(0) =

(
�; � 6= A+B

jA+Bj ;�
B�A

2 + tB+A
2 : t 2 [�1;+1]

	
; � = A+B

jA+Bj ;
(4.39)

J2;�u(0) =

(
�; � 6= A+B

jA+Bj ;��
B�A

2 + tB+A
2 ;X

�
: (t;X) 2 S

	
; � = A+B

jA+Bj ;
(4.40)

where

S :=
�

(�1;+1)� RN
�[�

f�1g � fC � s(A+B) : s � 0g
�

[�
f+1g � f�s(A+B) : s � 0g

�
:(4.41)

The proof of the above facts follows by a simple but lengthy computation by using
directly the de�nition of contact jets.

5. Ellipticity and consistency with classical notions

Now we introduce the appropriate notion of ellipticity for fully nonlinear second
order PDE systems and establish compatibility between classical and CS.

De�nition 20 (Degenerate elliptic second order systems). Let u : Rn � 
 �! RN
be a C2 map. The PDE system (3.1) is called degenerate elliptic when for all
(x; �;P) 2 
 � RN � (RN 
 Rn) the map F(x; �;P; : ) : RN 
 Rn�ns �! RN
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Proof of Lemma 21. By Proposition 14, (5.3) is equivalent to

(5.5)
�?
�
X � Y

�
= 0;

�>
�
X � Y

�
� 0

�
=) �>

�
G(X) � G(Y)

�
� 0:

Assuming (5.5), we have �>(X � Y) � 0 and � 
 �>(X � Y) = X � Y and also
�>
�
G(X) � G(Y)

�
� 0. These relations yield

0 �
�
�>
�
G(X) � G(Y)

�� �
�>(X � Y)

�
=
�
G(X) � G(Y)

�
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(ii) There exists an increasing � 2 C1(0;1) with �(0+) = 0, such that as z ! 0

�>
�
u(z + x)� u(x)� Pz

�
� �

����?�u(z + x)� u(x)� Pz
����2

�(jzj)jzj
+ �(jzj)jzj:(6.1)

Theorem 27 (Structure of second contact jets). Let u : Rn � 
 �! RN be
continuous. Let also x 2 
, � 2 SN�1 and (P;X) 2 RN
 (Rn � Rn�ns ). Then, the
following are equivalent:
(i) (P;X) 2 J2;�u(x).
(ii) There exists an increasing
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case only 1=2 of the derivatives can be interpreted weakly, the rest 1=2 must exist
classically".

In order to prove Theorems 26-27, we need a technical tool. Let R 2 RN and
� 2 SN�1. By Lemma 13, the tensor product �_R
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(i) 0 2 Jp;�R(0), that is, max�(� _R(z)) � o(jzjp) as 
 3 z ! 0.
(ii) We have

(6.9) �>R(z) � o(jzjp) and

���?R(z)
��2

jR(z)j
= o(jzjp) as 
 3 z ! 0:

(iii) There exist maps � : Rn �! �? � RN and � : Rn �! [0;1) satisfying that
�(z) = o(jzjp=2) and �(z) = o(jzjp) as 
 3 z ! 0 and also

(6.10) �>R � � and �?R = �
�1

2
j�j2 +

�1

2
j�j2
�2

+
���>R��2�1=2

on 
:

(iv) If we set T :=
�
j�?Rj � j�>Rj

	
� 
, then

(6.11)

8>>><>>>:
�>R(z) � o(jzjp);���?R(z)

��2���>R(z)
�� = o(jzjp);

9>=>; as 
 \ T 3 z ! 0;

jR(z)j = o(jzjp); as 
 n T 3 z ! 0:

We observe that when N = 1, then �? � 0 and we recover a single inequality
along � 
 � �= R

�jp
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as 
 3 z ! 0. Since on 
 \ f�>R > 0g we have 1 �
�
jRj + �>R

�
=jRj and on


 \ f�>R � 0g \ fR 6= 0g we have 1 �
�
jRj � �>R

�
=jRj, we infer that

jRj
4

��� sgn(R)� s(R)�
���2 � �

jRj2 � j�>Rj2
�

2jRj
(z) = o(jzjp);(6.16)

as 
 3 z ! 0. Thus, (6.9) and (6.16) imply (6.12), which is equivalent to (i). Let
us now prove the equivalence between (ii) and (iii). If we assume (ii), we de�ne

(6.17) � :=
�
�>R

�+
; � :=

�
�?RjRj� 1

2

�
�fR 6=0g\
:

It follows that �, � have the desired properties and by (6.17), we have jRjj�j2 =
j�?Rj2 = jRj2� j�>Rj2. It follows that jRj is the positive solution of the quadratic
equation t2 � j�j2t� j�>Rj2 = 0. Hence,

(6.18) jRj =
1

2
j�j2 +

��1

2
j�j2
�2

+ j�>Rj2
�1=2

:

Thus, (6.17) and (6.18) imply (6.10). Conversely, if we assume (iii) and let S be
de�ned by the formula giving R above, then S solves the equation t2 � j�j2t �
j�>Rj2 = 0. Hence, by the above and perpendicularity, we have

(6.19) S2 = j�>Rj2 + j�j2S = jRj2 � j�?Rj2 + j�j2S = jRj2:

This, S = jRj and hence �?R = �jRj 12 . As a result, (6.10) implies (6.9) as claimed.
We conclude by proving that (iv) is equivalent to (ii). For, let us split RN as �>��?
and equip it with the norm kRk := max

�
j�>Rj; j�?Rj

	2
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Let f�1; ::; �N�1g be an orthonormal base of the hyperplane �? � RN . Then, R
and the identity I can be written as:

(6.24) R = (�>R)� +

N�1X
�=1

(��
>R)��; I = � 
 � +

N�1X
�=1

�� 
 ��:

By plugging (6.24) into (6.23), we obtain

(6.25) � _

"
(�>R)� +

N�1X
�=1

(��
>R)��

#
� � � 
 � + �

N�1X
�=1

�� 
 ��:

By applying \: � 
 �" to (6.25) and employing orthonormality of the base, we infer
that � �>R+� � 0:. Let now t 2 Rnf0g and � 2 f1; :::; N �1g be �xed and apply
again \: (t�� + �)
 (t�� + �)" to (6.25) to obtain

j�j4�>R +

N�1X
�=1

�
�>�R

��
�>� (t�� + �)

��
�>(t�� + �)

�
� �j�j4 + �

N�1X
�=1

�
�>� (t�� + �)

�2
:

By orthogonality of the base, we deduce that t�>� R � �t2 + � + �>R. Since this
holds for both �t, we infer that

(6.26)
���>� R�� � �jtj +

� � �>R

jtj

and the choice t :=
�
(�� �>R)=�

�1=2
in (6.26) implies

���>� R��2 � 4�
�
�+ �>R

�
. By

summing with respect to �, we obtain���?R��2 =

N�1X
�=1

���>� R��2 � 4(N � 1)
�
� �>R + 4(N � 1)�

�
�:

The above estimate implies the direction \=)" of Claim 32 for the choice �(jwj) :=

jwj�1
(4(N�1)�(jwj))1=p. Conversely, assume the validity of the inequality in (6.22)

for such a � and set �(w) := (�(jwj)jwj)p. Then, we have

(6.27)
���?R��2 � �

�
� �>R + �

�
;

locally near 0 2 Rn. Since � > 0 near zero, (6.27) readily gives �>R � �(w) =
o(jwjp) as w ! 0. By setting T :=

����?R�� � ���>R��	 and 
 :=
����>R�� > �

	
, the

inequality (6.27) implies on T \ 
 that���?R��2���>R�� (w) �
�(w)

�
� �>R(w) + �(w)

����>R(w)
�� � �(w) +

�2(w)���>R(w)
�� � 2�(w);

as T \
 3 w ! 0. Hence, by the implication (iv) =) (i) of Theorem 31, we obtain

(6.28) max�
�
� _R(w)

�
� o(jwjp);

as T \ 
 3 w ! 0. On the other hand, on T n 
 we have
���>R�� � � and also���?R�� � ���>R��, hence by Lemma 13 we estimate

max�
�
� _R(w)

�
=

1

2

�
jR(w)j + �>R(w)

�
� jR(w)j =

=
����>R��2 +

���?R��2� 1
2 �

�
�2(w) + �2(w)

� 1
2 =

p
2�(w);
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as z ! 0. By increasing the o(1) functions appearing in the summands appropri-
ately, we incorporate the o(jzj4) term in the �rst summand and therefore obtain
that (P;X� � 
A) 2 J2;�u(x), as claimed. �

7. The extremality notion of contact maps

So far, our central objects of study have been contact jets, a certain type of
generalised pointwise derivatives. Jets in fact introduce in an implicit non-trivial
fashion an extremality notion for maps, which we will now exploit. This notion
extends min and max of scalar functions to the vector-valued case, e�ectively ex-
tending the \Maximum Principle calculus" (Du = 0 and D2u � 0 at maxima of u)
to the vectorial case. This device allows the \nonlinear passage of derivatives to test
maps". This extremality notion, although simple in its form, presents peculiarities
and is not obvious how it arises. Hence, we have chosen to base the PDE theory
of CS to jets rather than to extrema, since jets seem more reasonable due to the
formal resemblance to their scalar counterparts.

Motivation. We begin by motivating the notions that follow. Let u : R �! RN be
a smooth curve. Every reasonable de�nition of extremal point u(�x) 2 RN at �x 2 R
must imply that ju0(�x)j = 0. However, this is impossible if N � 2 as the example of
unit speed curves certi�es for which ju0j � 1. In order to succeed we must radically
change our point of view of \extremals". The idea is to relax the pointwise notion to
a 
exible functional notion of \extremal map" which takes into account the possible
\twist". Our viewpoint is the following: if N = 1 and u : R �! R has a maximum
u(�x) 2 R at �x 2 R, then we can identify the extremum u(�x) with the constant
function  � u(�x) : R �! R which passes through �x (Figure 1(a)).

Figure 1(a). Figure 1(b).

When N � 2 we can view extrema as maps  : R �! RN passing at x through
u(�x) which generally are nonconstant (Figure 1(b)).

Going back to N = 1, we see that maximum can be viewed as a constant function
 \touching u" at x in the direction � = +1 and minimum as \touching u" at x in
the direction � = �1. When N � 2, there still exists a sti�er notion of \touching
u" at x
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De�nition 34 (Contact maps). Let u : Rn � 
 �! RN be continuous and �x
x 2 
 and � 2 SN�1.

(1) The map  2 C1(Rn)N is a �rst contact �-map of u at x if  (x) = u(x) and
for every cone Cx, there is a neighb
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We will shortly see that contact maps constitute an appropriate notion of ex-
tremum for PDE theory. Let us �rst connect contact maps to contact jets. We
will consider only the second order case and x 2 
 and we refrain from providing
details for the �rst order case and boundary points which can be done by simple
modi�cations. Given a continuous u : Rn � 
 �! RN , x 2 
 and � 2 SN�1, set
(7.6)

D2;�u(x) :=

(�
D (x);D2 (x)

������  2 C2(Rn)N ;  (x) = u(x) & 8 cone Cx;���?(u�  )
��2� (Cx)2

�
� �>(u�  )

�
near x

)
:

Theorem 35 (Equivalence between extremality and jets). If u : Rn � 
 �! RN
is continuous, x 2 
 and





VECTOR-VALUED VISCOSITY SOLUTIONS FOR PDE SYSTEMS 27

Hence,����?�u� T2;x 
����2 = 2�

h
� �>

�
u� T2;x 

�i
+
n

4�2 + 2
���?R2;x 

��2o
� 2

�
�+ j�?R2;x j

�h
� �>

�
u� T2;x 

�
+ 2
�
�+ j�?R2;x j

�i
:
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The \contact principle calculus" result we establish below explains why contact
maps of the solution play the role of smooth \test maps" for the PDE system.

Theorem 38 (Nonlinear passage of derivatives to contact maps). Suppose u : Rn �

 �! RN is a continuous map, twice di�erentiable at x 2 
. Let  2 C2(Rn)N

and � 2 SN�1 be given. Consider the following statements:

(i)  is a second contact �-map of u at x 2 
.
(ii) We have (

D
�
u�  

�
(x) = 0;

� _D2
�
u�  

�
(x) �
 0:

Then, (i) implies (ii). Moreover, (ii) implies (i) if moreover �>D2
�
u�  

�
(x) < 0.

Trivial modi�cations in the arguments of the proof of Theorem 38 that follows
readily imply the following consequence.
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adding a \viscosity term", there exists some extra information which is trivial in the
scalar case and allows convergence of the approximating solutions. In order to make
this statement precise, we introduce an auxiliary notion of sequential derivatives
needed in the exploitation of stability and approximation.

De�nition 43 (Approximate derivative). let u : Rn � 
 �! RN be a continuous
map. The set of Approximate �rst jets of u at x 2 
 is

(8.2) A1u(x) :=
n

P 2 RN
 Rn
��� lim inf

r!0
max
jzj=r

��u(z + x)� u(x)� Pz
��

r
= 0
o

The set of Approximate second derivatives of u at x 2 
 is

A2u(x) :=
n

(P;X) 2 RN

�
Rn � Rn�ns

� ���
lim inf
r!0

max
jzj=r

��u(z + x)� u(x)� Pz � 1
2X : z 
 z

��
r2

= 0
o

(8.3)

Remark 44. Obviously, if u is (twice) di�erentiable at x, then A1u(x) = fDu(x)g
and A2u(x) = f(Du(x);D2u(x))g. In general, approximate derivatives may exist
at non-di�erentiability points, as it happens for the Lipschitz continuous func-
tion u : R ! R given by u(z) := z cos(1=jzj) for z 6= 0 and u(0) = 0 for which
[�1;+1] = A1u(0) 6= ;, while u0(0) does not exist. This follows from the observa-
tion maxjzj=r(ju(z)� u(0)� pzj=r) = j cos(1=r)� pj.

The following is the main approximation result for contact jets. It follows that
contact jets perturb to contact jets under weak� convergence in the local Lipschitz
space, together with a technical assumption which appears to be satis�ed in the cases
of interest. This assumption requires convergence of codimension-one projections
of sequential jets along a sequence of hyperplanes.

Theorem 45 (Approximation of contact jets). Let u : Rn � 
 �!�,]TJ/F13 6.9738 Tf 57 Tf 22.195 0



VECTOR-VALUED VISCOSITY SOLUTIONS FOR PDE SYSTEMS 31

Corollary 47. By (8.6) and Lemma 2, we deduce that Y = e?X on the hyperplane
(e?�)? of RN and (e?�)>(Y � e?X) � 0 along (e?�)
 (e?�) (Figures 6(a),(b)).

Figure 6(a): Illustration for N = 2 Figure 6(b): Illustration for N = 3

Remark 48. Proposition 46 is optimal, as the example u(z) := �jzj cos2(1=z)�Rnf0g
shows: indeed, we have J1;+u(0) = f0g = A1u(0) but u0(0) does not exist, although
J1;+u(0) and A1u(0) coincide and are singletons. Namely, some \loss of informa-
tion" occurs when e = �� (i.e. when e?� = 0).

Proof of Proposition 46. Since Q 2 A1(e?u)(x), exists rj ! 0 such that

(8.7) e?
�
u(wrj + x)� u(x)� rjQw

�
= o(rj)

as j !1, for all w 2 Sn�1. Fix � 2 e?. If e 6= ��, then e? n �? 6= ;, and for any
" > 0, exists �" 2 e? n �? with j�� �"j � ". Since (�" 
 �")e? = �" 
 �", (8.7) gives

o(rj) = � (�>" �)
h
�>"

�
u(wrj + x)� u(x)� rjQw

�i
(8.8)

as j !1. Since P 2 J1;�u(x), we have

o(jzj) = (�>" �)
h
�>"

�
u(z + x)� u(x)� (e?P)z

�i
(8.9)

as z ! 0. By choosing z = wrj in (8.9) and summing (8.9) and (8.8), we get
(�>" �)

�
�>"
�
Q� e?P

�
w
�
� o(1) as rj ! 0. By interchanging w with �w, using that

j�>" �j > 0 and letting j ! 1, we get �>"
�
Q � e?P

�
= 0. By letting " ! 0, we

�nd �>
�
Q � e?P

�
= 0. Since � 2 e? is arbitrary and Q = e?Q, we conclude that

Q = e?P. If e = �� and moreover J2;�u(x) 6= ;, Corollary 28 and De�nition 43
imply that Q = e?P = D(e?u)(x). Further, if (Q;Y) 2 A2(e?u)(x), it trivially
follows that Q 2 A1(e?u)(x). Since (P;X) 2 J2;�(x) 6= ;, part (a) implies that
Q = e?P. Fix � 2 e?. By arguing as eaelier, there exists rj ! 0 such that

o(r2
j ) � � 
 � :

h
� _

�
u(wrj + x)� u(x)� rjQw �

r2
j

2
(e?X) : w 
 w

�i
;(8.10)

o(r2
j ) � �� � :

h
� _

� rX�J/F11 9.9626 Tf 21.585 0 Td [(�)]TJ/F14 9.9626 Tf 7.
7o
3051� :

�
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By passing to the limit we conclude that (e?�) _ (Y � e?X) �
 0. �

Proof of Theorem 45. Since (P;X) 2 J2;�u(x), we have (�>P; �>X) 2 J2;+(�>u)
(x). By the C0 convergence �>um ! �>u as m ! 1, standard arguments of the
scalar case (see e.g. [14, 24]) imply that there exists xm ! x and (pm; Xm) 2
J2;+(�>um)(xm) such that

(8.12) (pm; Xm) �! (�>P; �>X) ; as m!1:

Since um 2 C2(
)N , it follows that pm = �>Dum(xm) and Xm � �>D2um(xm).
By Theorem 15, the set J2;�um(xm) contains

(8.13) (Pm;Xm) :=
�(

�(tains) -4.11Tu;
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