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AN L1 REGULARISATION STRATEGY TO THE INVERSE

SOURCE IDENTIFICATION PROBLEM FOR ELLIPTIC

EQUATIONS

NIKOS KATZOURAKIS

Abstract. In this paper we utilise new methods of Calculus of Variations in
L1 to provide a regularisation strategy to the ill-posed inverse problem of

identifying the source of a non-homogeneous linear elliptic equation, satisfying

Dirichlet data on a domain. One of the advantages over the classical Tykhonov
regularisation in L2 is that the approximated solution of the PDE is uniformly

close to the noisy measurements taken on a compact subset of the domain.

1. Introduction

Let n 2 N and 
 � Rn be a bounded domain with C1;1 regular boundary @
.
Let also L be the linear non-divergence di�erential operator

(1.1) L[u] := A : D2u + b �Du + cu

which is assumed to be uniformly elliptic with bounded continuous coe�cients:

(1.2)

(
A 2 (C0 \ L1)(
; Rn�ns ); b 2 (C0 \ L1)(
; Rn); c 2 (C0 \ L1)(
);

and exists a0 > 0 : A : � 
 � � a0j�j2; for all � 2 Rn:

In the above, the notations \:" and \�" symbolise the Euclidean inner products in the
space of symmetric matrices Rn�ns and in Rn respectively, whilst Du = (Diu)i=1:::n,
D2u = (D2

iju)i;j=1:::n and Di � @=@xi. The direct (or forward) Dirichlet problem
for the above operator has the form

(1.3)

�
L[u] = f; in 
;
u = g; on @
;

and asks to determine u, given a source f and boundary data g. This is a classical
problem which is essentially textbook material, see e.g. [19, Ch. 9]. In particular, it
is well-posed (in the sense of Hadamard) and, given f 2 L1(
) and g 2W 2;1(
),
there exists a unique solution u in the locally convex (Fr�echet) space

(1.4) W2;1
g (
) :=

\
1<p<1

n
u 2

�
W 2;p \W 1;p

g

�
(
) : L[u] 2 L1(
)

o
:

Note that due to the failure of the Lp elliptic estimates when p =1 (see e.g. [18]),
in general u 62W 2;1(
). Let us also note with the assumptions (1.2) on L, the case
of divergence operators with C1 matrix coe�cient A is included as a special case:

L0[u] = div(ADu) + b �Du + cu:

Key words and phrases. Regularisation strategy; Inverse source identi�cation; Elliptic equa-
tion; 1-Bilaplacian; Absolute minimisers; Calculus of Variations in L1.
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The inverse problem associated to (1.3) consists of the question of �nding f , given
the boundary data g and some partial information on the solution u, typically
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can only determine a unique biharmonic function u in 
 with �2u = 0. Another
popular choice in the literature for the observation operator Q consist of one of the
terms in the separation of variables formula (when L = � on rectangular domains),
as e.g. in [36]. To the best of our knowledge, (1.10) has not been studied before in
this generality.

Herein we follow an approach based on recent advances in Calculus of Variations
in the space L1 (see [22, 23, 24, 25]) developed recently for functionals involving
higher order derivatives. The �eld has been initiated in the 1960s by Gunnar
Aronsson (see e.g. [3, 4, 5, 6, 7]) and is still a very active area of research; for a
review of the by-now classical theory involving scalar �rst order functionals we refer
to [21]. To this end, we provide a regularisation strategy inspired by the classical
Tykhonov regularisation strategy in L2 (see e.g. [27, 30]), but for the next L1

\error" functional:

(1.11) E1(u) :=


Q[u]� q�




L1(�;H
)

+ �


L[u]




L1(
)

; u 2 W2;1
g (
);

where � > 0 is a �xed regularisation parameter for the penalisation term jL[u]j.
In the variational language, it serves to make the functional coercive in the space.
The bene�t of �nding a best �tting solution in L1 is apparent: we can keep the
error term jQ[u] � q�j due to the noise e�ects uniformly small, not merely small
on average, which would happen if one chose to minimise the integral of the error
instead of the supremum.

As it is well known to the experts of Calculus of Variations in L1, mere (global)
minimisers of supremal functionals, albeit typically easy to obtain with standard
direct minimisation methods ([13, 16]), they are not truly optimal and they do
not share the nice \local" minimality properties of minimisers of their integral
counterparts ([10, 32]). A popular method is to use minimisers of Lp approximating
functionals as p!1 and prove appropriate convergence of such Lp minimisers to
a limiting L1 minimiser. This method is fairly standard nowadays and provides
a selection principle of L1 minimisers with additional favourable properties (see
e.g. [9, 11, 12, 17, 22, 23]). This idea is inspired by the simple measure-theoretic
fact that the Lp norm (of a �xed L1 \ L1 function) converges to the L1 norm
as p ! 1. Accordingly, we will obtain special minimisers of (1.11) as limits of
minimisers of
(1.12)

Ep(u) :=


jQ[u]� q�j(p)




Lp(�;H
)

+ �


jL[u]j(p)




Lp(
)

;1li(p)]TJ/F14 9.993 13Qa6Tf 4.107 0 T2) �pp \ppTJ 0355.53557782 0 Tg) (
);alini14xedLp
s)



Lp(�; H
) jpH

;



Lp(
) jpL

; p
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Theorem 1 (L1 and Lp regularisations of the inverse source identi�cation prob-
lem). Let 
 � Rn be a bounded C1;1 domain and let also g be in W 2;1(
). Suppose
also the operators (1.1) and (1.6) are given, satisfying the assumptions (1.2), (1.7),
(1.8). Suppose further a function q� 2 L1(�;H
) is given which satis�es (1.9) for
� > 0. Let �nally � > 0 be �xed. Then, we have the next results in relation to the
problem (1.10):

(i) [Existence] There exist a global minimiser u1 � u�;�1 2 W2;1
g (
) of the

functional E1 de�ned in (1.11). In particular, we have E1(u1) � E1(v) for all
v 2 W2;1

g (
) and

f1 � f�;�1 := L[u�;�1 ] 2 L1(
):

In addition, there exist signed Radon measures

�1 � ��;�1 2 M(
); �1 � ��;�1 2 M(�)

such that the divergence PDE

(1.13) Kr(�; u1;Du1)�1 � div
�
Kp(�; u1;Du1)�1

�
+ �L�[�1] = 0;

is satis�ed by the triplet (u1; �1; �1) in the distributional sense. In (1.13), the
operator L� is the formal adjoint of L, de�ned through duality, i.e.

L�[v] := div(div(Av)) � div(bv) + cv

and Kr;Kp denote the partial derivatives of K(x; r; p) with respect to (r; p) 2 R�Rn.
Additionally, the error measure �1 is supported in the closure of the subset of � of
maximum noise, that is

(1.14) supp(�1) �
n��Q[u1]� q�

��F =


Q[u1]� q�




L1(�;H
)

o
;

where \ ( � )F " symbolises the \essential limsup" with respect to the Radon measure
H
x� on �, see Proposition 6 that follows. If additionally the measurement function
q� is continuous on �, (1.14) improves to

(1.15) supp(�1) �
n��Q[u1]� q�

�� =


Q[u1]� q�




L1(�;H
)

o
:

(ii) [Convergence] For any �; � > 0, the minimiser u1 can be approximated
by a family of minimisers (up)p>n � (u�;�p )p>n of the respective Lp functionals
(1.12) and the pair of measures (�1; �1) 2M(
)�M(�) can be approximated by
respective absolutely continuous signed measures (�p; �p)p>n � (��;�p ; ��;�p )p>n, as
follows:

For any p > n, the functional (1.12) has a global minimiser up � u�;�p in the

space (W 2;p \W 1;p
g )(
) and there exists a sequence pj �!1 as j !1, such that

(1.16)

(
up �! u1; in C1;�(
); f4.60oxiTf 26 5.703
15 202.547 Td [(
))]TJ/F11 9.96211 9.9626 TfJ/F14 9.97393 -9.082 Td 25 Td [(fol)-51(lows4(�.2 22H21.12)]T173 17 8.44 1.495 Td [(;)-9.013 -1.494 Td [(j)]TJ/F151(e)]TJ/F11 6)]TJ/F151(e)5d [85
75 -1.481pu

j;p
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as p!1 along the sequence. Further, for each p > n, the triplet (up; �p; �p) solves
the equation

(1.18) Kr(�; up;Dup)�p � div
�
Kp(�; up;Dup)�p

�
+ �L�[�p] = 0;

in the distributional sense.

(iii) [L1 error estimates] For any exact solution u0 2 W2;1
g (
) of (1.10) (with

f = L[u0] and Q[u0] = q0) corresponding to measurements with zero noise, we have
the estimate:

(1.19)



Q[u�;�1 ]�Q[u0]





L1(�;H
)

� 2� + � kL[u0]kL1(
);

for any �; � > 0.

(iv) [Lp error estimates] For any exact solution u0 2 (W 2;p\W 1;p
g )(
) of (1.10)

(with f = L[u0] and Q[u0] = q0) corresponding to measurements with zero noise
and for p > n, we have the estimate:

(1.20)



Q[u�;�p ]�Q[u0]





Lp(�;H
)

� 2� + � kL[u0]kLp(
);

for any �; � > 0.

The estimate in part (iv) above is useful if we have merely that L[u0] 2 Lp(
)
for p <1 (namely when perhaps L[u0] 2
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� Q[u] := u(x; c), for n = 2 and 
 = (a; b)�(c; d) being a rectangular domain
(i.e., one of the products in the separation of variables when L = �). This
implies that (1.19) simpli�es to

u�;�1 (�; c)� u0(�; c)




L1((a;b);H1)

� 2� + � kL[u0]kL1((a;b)�(c;d)) as �; � ! 0;

and similarly for its Lp-counterpart.

� Q[u] := Du � n, where n is the outer normal vector on @
. In this case,
(1.21) simpli�es to

n � �Du�;�1 �Du0

�


L1(@
;Hn�1)

� 2� + � kL[u0]kL1(
) as �; � ! 0;

and similarly for its Lp-counterpart.

We would like to note again that, due to the ill-posed nature of the problem, in
general it is not possible to obtain an estimate on 
 n �.

We now provide some clari�cations regarding Theorem 1.

Remark 5. (i) We note that in (1.13) the distributional meaning of this PDE is�
�

Kr(�; u1;Du1)� d�1 +

�
�

Kp(�; u1;Du1) �D�d�1 + �

�



L[�] d�;
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measure respectively, the above is in fact equivalent to

�
�

�

�
Kr(�; up;Dup)� + Kp(�; up;Dup) �D�

���Q[up]� q�
��p�2

(p)

�
Q[up]� q�

�


jQ[up]� q�j(p)



p�1

Lp(�;H
)

dH


+ � �
�




L[�]
jL[up]jp�2

(p) L[up]

jL[up]j(p)


p�1

Lp(
)

dLn = 0;

for all � 2 C2
c (
).

(iii) Since we only prescribe boundary conditions u = g on @
 but impose no
condition on the gradient (as opposed to e.g. [22], wherein an L1 minimisation
problem was considered by imposing Du = Dg on @
 additionally to u = g on @
),
we therefore have \natural boundary conditions" for the gradient on @
. We will
make no particular further use of this observation.

The following two results are of independent interest and are utilised in the
proof of Theorem 1 that follows. We state and prove them in considerably greater
generality than that needed herein, as they have their own merits in the Calculus
of Variations in L1.

Proposition 6 (The essential limsup). Let X � Rn be a Borel set, endowed with
the induced Euclidean topology and let also � 2 M(X) be a positive �nite Radon
measure on X. For any f 2 L1(X; �), we de�ne the function fF 2 L1(X; �) by
setting

fF(x) := lim
"!0

�
� � ess sup

y2B"(x)

f(y�8 Td [(y).9626 Tf 9.9254 -14.048 Td [(3051)]TJ/F55 9.9626 TJ 5.57.7874s58�8 Td [(y).9626 Tf 9.9254 -14.048 Tme048 Td [(3051)]TJ/F55 9.9626 TJ 5.57.7874s58�8 Td TJ/F55 9.9626 Tf 7.723 0 Td [(by)]TJ -349.235 -11.955 Td [(setting)]TJ/F11 t(5 0 T.1rv)55(ation.)]TJ 11.956 -19.056 Td [(The)-476(fy)-412(and)-395setting
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(i) There exists a subsequence (ki)
1
1 and a limit measure �1 2M(X) such that

�k
���* �1 in M(X);

as ki !1.

(ii) If there exists f1 2 L1(X; �) n f0g such that

sup
X
jfk � f1j �! 0 as k !1;

then the limit measure is supported in the set where (the �
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by our assumptions on L and the H�older inequality we have

Ep(v) � �kL[v]kLp(
)

� �

C(p;A; b; c)

�
kvkW 2;p(
) � kgkW 2;p(
)

�
� �

C(p;A; b; c)

�
kvkW 2;p(
) � kgkW 2;1(
)

�
for some C = C(p;A; b; c) > 0 and any v 2 (W 2;p \W 1;p

g )(
). Let (ump )11 be a
minimising sequence of Ep:

Ep(u
m
p ) �! inf

n
Ep(v) : v 2 (W 2;p \W 1;p

g )(
)
o
;

as m!1. Then, by the above estimates, we have the uniform bound

kump kW 2;p(
) � C

for some C > 0 depending on p but independent of m 2 N. By standard weak
and strong compactness arguments in Sobolev spaces, there exists a subsequence
(umkp )11 and a function up 2 (W 2;p \W 1;p

g )(
) such that, along this subsequence
we have 8><>:

ump �! up; in Lp(
);

Dump �! Dup; in Lp(
;Rn);

D2ump ��* D2up; in Lp(
;Rn�ns );

as mk ! 1. Additionally, since p > n, by the regularity of the boundary we
have the compact embedding W 2;p(
) b C1;k(
) as a consequence of the Morrey
estimate. Hence,

ump �! up in C1;�(
); for � 2
�

0; 1� n

p

�
;

as mk !1. The above modes of convergence and the continuity of the function K
de�ning the operator Q imply that Q[ump ] �! Q[up] uniformly on � as mk ! 1.
Therefore, 

jQ[ump ]� q�j(p)




Lp(�;H
)

�!


jQ[up]� q�j(p)




Lp(�;H
)

as mk ! 1. Additionally, by the linearity of the operator L and because its
coe�cients are L1, we have that

L[ump ] ��* L[up] in Lp(
);

as mk !1. Since the functional

j � j(p)

Lp(
)
: Lp(
) �! R

is convex on this re
exive space and also it is strongly continuous, it is weakly lower
semi-continuous and therefore

jL[up]j(p)




Lp(
)

� lim inf
k!1



jL[umkp ]j(p)



Lp(
)

:

By putting all the above together, we see that

Ep(up) � lim inf
k!1

Ep(u
mk
p ) � inf

n
Ep(v) : v 2 (W 2;p \W 1;p

g )(
)
o
;

which concludes the proof. �
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Lemma 9. For any �; � > 0, there exists a (global) minimiser u1 2 W2;1
g (
)

and a sequence of minimisers (upi)
1
1 of the respective Ep-functionals constructed

in Lemma 8, such that (1.16) holds true.

Proof.
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Then, the triplet (up; �p; �p) satis�es the PDE (1.18) in the distributional sense.
In fact, the following stronger assertion holds: we have

�
�

�

�
Kr(�; up;Dup)� + Kp(�; up;Dup) �D�

���Q[up]� q�
��p�2

(p)

�
Q[up]� q�

�


jQ[up]� q�j(p)



p�1

Lp(�;H
)

dH


+ � �
�




L[�]
jL[up]jp�2

(p) L[up]

jL[up]j(p)


p�1

Lp(
)

dLn = 0;

for all � 2W 2;p
0 (
).
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for any � 2 W 2;p
0 (
) � C1(
), because of the continuity of K(x; r; p) in x and the

C1 regularity in (r; p). �

Lemma 11. For any �; � > 0, consider the minimiser u1 of E1 constructed in
Lemma 9 as sequential limit of minimisers (up)p>n of the functionals (Ep)p>n as
pi ! 1. Then, there exist signed Radon measures �1 2 M(
) and �1 2 M(�)
such that the triplet (u1; �1; �1) satis�es the PDE (1.13) in the distributional
sense, that is�




�
Kr(�; u1;Du1)� + Kp(�; u1;Du1) �D�

�
d�1 + �

�



L[�] d�1 = 0;

for all � 2 C2
c (
). Additionally, there exists a further subsequence along which the

weak* modes of convergence of (1.17) hold true as p!1.

Proof. As noted in the beginning of the proof of Lemma 10, we have the p-uniform
total variation bounds k�pk(
) � 1 and k�pk(�) � 1. Hence, by the sequential
weak* compactness of the spaces of Radon measures

M(
) =
�
C0

0 (
)
��
; M(
) =

�
C0(�)

��
;

there exists a further subsequence denoted again by (pi)
1
1 such that �p

���*�1 in
M(
) and �p

���*�1 inM(�), as pi !1. Fix now � 2 C2
c (
). By Lemma 10, we

have that the triplet (up; �p; �p) satis�es (1.18), that is�
�

�
Kr(�; up;Dup)� + Kp(�; up;Dup) �D�

�
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the ((�; �)-dependent) minimiser up of Ep (constructed in Lemmas 8-11), satis�es
the error bounds (1.20), that is:


Q[up]�Q[u0]





L1(�;H
)

� 2� + � kL[u0]kLp(
):

If additionally u0 2 W2;1
g (
), then the ((�; �)-dependent) minimiser u1 of E1

(constructed in Lemmas 8-11), satis�es the error bounds (1.19), that is:


Q[u1]�Q[u0]




L1(�;H
)

� 2� + � kL[u0]kL1(
):

Proof. Let us use the symbolisation q0 := Q[u0], noting also that q0 2 C0(�) and
that we have the estimate

kq� � q0kL1(�;H
) � �:

For any p 2 (n;1), the function up is a global minimiser of Ep in (W 2;p\W 1;p
g )(
).

Therefore,

Ep(up) � Ep(u
0):

This implies the estimate

Q[up]� q�



Lp(�;H
)

+ �


L[up]




Lp(
)

�


Q[u0]� q�




Lp(�;H
)

+ �


L[u0]




Lp(
)

:

The latter estimate together with the Minkowski and H�older inequalities, in turn
yield 

Q[up]�Q[u0]




Lp(�;H
)

�


Q[u0]� q�




Lp(�;H
)

+


Q[u0]� q�




Lp(�;H
)

+ �


L[u0]




Lp(
)

= 2kq� � q0kL1(�;H
) + �


L[u0]




Lp(
)

� 2� + � kL[u0]kLp(
);

as claimed. To obtain the corresponding estimate for u1 in the case that addi-
tionally u0 2 W2;1

g (
), we may pass to the limit as p ! 1 in the last estimate
above: indeed, consider the subsequence pi ! 1 along which we have the strong
convergence up �! u1 in C1(
) and therefore Q[up] �! Q[u1] uniformly on �.
Since by assumption L[u0] 2 L1(
), the conclusion follows by letting i ! 1 in
the last estimate. �

We now establish Proposition 6.

Proof of Proposition 6. (i) Let Bn� (x) be the open �-ball of Rn centred at x.
By the Lebesgue di�erentiation theorem (see e.g. [16]) applied to the measure �xX
(namely to � extended to Rn by zero on Rn n X) and by recalling that B�(x)
symbolises the open ball in X, we have

f(x) = lim
�!0

�
�
�

Bn� (x)

f d(�xX)

�
= lim

�!0

�
1

�(B�(x))

�
B�(x)

f d�

�
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and therefore

f(x) � lim
�!0

�
1

�(B�(x))

�
B�(x)

f d�

�
� lim

�!0

�
� � ess sup

B�(x)

f
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By the Lebesgue-Besicovitch di�erentiation theorem (see e.g. [16]), �-a.e. point
x 2 X� has density 1, namely

lim
"!0

�
�
X(�) \ Bn" (x)

�
�(Bn" (x))

= 1;

where Bn" (x) is the open "-ball centred at x with respect to Rn. Hence, since

B"(x) = X \ Bn" (x);

for any � > 0, there exists x� 2 X(�) such that

�
�
X(�) \ B"(x�)

�
= �

�
X(�) \ Bn" (x�)

�
> 0:

Therefore, since

� � ess sup
y2X

f(y) � � + f(x); � � a.e. x 2 X(�);

we deduce

� � ess sup
y2X

f(y) � � + � � ess sup
y2B"(x�)\X(�)

f(y)

� � + � � ess sup
y2B"(x�)

f(y):

By letting "! 0 in the above inequality, we infer that

� � ess sup
x2X

f(x) � � + lim
"!0

�
� � ess sup

y2B"(x�)
f(y)

�
= � + fF(x�)

� � + sup
x2X

fF(x);

for any � > 0. By letting � ! 0, we obtain

� � ess sup
x2X

f(x) � sup
x2X

fF(x);

as desired. This inequality completes the proof. �

By invoking Proposition 7 whose proof follows, we readily obtain (1.14)-(1.15)
by choosing

X = �; � = H
x�; fk = Q[upk ]� q�; f1 = Q[u1]� q�:

Proof of Proposition 7. (i) By the de�nition of �k, we have for any continuous
function � 2 C0(X) with j�j � 1 that�����

X

�d�k

���� � 1

jfkj(k)



k�1

Lk(X;�)

�
�
X

����jfkj(k)

�k�2
fk �

���d�
� 1

jfkj(k)



k�1

Lk(X;�)

�
�
X

�
jfkj(k)

�k�1
d�:

Hence, by H�older inequality, we have the total variation bound

k�kk(X) �
�

jfkj(k)




Lk(X;�)

�1�k
�
�
�
X

�
jfkj(k)

�k
d�

�k�1
k

= 1:
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By the sequential weak* compactness of the space M(X) =
�
C0(X)

��
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By the above, for any " > 0 small enough (recall that f1 6� 0) and for any k � k("),
we have the estimate

����d�kd�

���� � 1

�(X)

0B@ 1

k
+ jf1j +

"

4

kf1kL1(X;�) �
"

2

1CA
k�1

; � � a.e. on X:

By choosing k(") even larger if needed, we can arrange����d�kd�

���� � 1

�(X)

 
2jf1j + "

2kf1kL1(X;�) � "

!k�1

; � � a.e. on X:

Since by Proposition 6 we have jf1j � jf1jF �-a.e. on X, we obtain����d�kd�

���� � 1

�(X)

 
2jf1jF + "

2kf1kL1(X;�) � "

!k�1

; � � a.e. on X:

Consider now for any " > 0 the �-measurable set

X" :=
n
jf1jF < kf1kL1(X;�) � 2"

o
:

Notice also that X" is in fact open in X because jf1jF is upper semicontinuous
(Proposition 6). Additionally, we have the estimate����d�kd�

���� � 1

�(X)

 
2kf1kL1(X;�) � 3"

2kf1kL1(X;�) � "

!k�1

; � � a.e. on X":

The above estimate together with the Lebesgue Dominated Convergence theorem
imply that for any " > 0 small enough we have

d�k
d�
�! 0 in L1(X"; �); as k !1:

Consider now the sequence of nonnegative
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Therefore, since X" is open in X
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