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Abstract

A �nite element numerical solution of the Lotka-Volterra competition-
di�usion model of theoretical ecology is presented which depends on
a conservation-based moving mesh. The model parameters are cho-
sen such that the competition is strong enough to spatially segregate
the two populations, leading to a two-phase problem with a coupling
condition at the moving interface. Incorporation of the moving inter-
face into the �nite element solution preserves the identities of the two
species in space and time, enabling parameters to be referred to each
separate population as the interface moves.

1 Introduction

We consider the application of a conservation-based moving mesh �nite el-
ement method [1, 3] to a model of population dynamics. A version of
the Lotka-Volterra competition model is taken that describes a two-phase
segregated reaction-di�usion system and the moving mesh method imple-
mented for this system. We examine a two-phase Lotka-Volterra competition-
di�usion system with a high competition limit, so that the species are com-
pletely spatially segregated and interact only though their interface using an
interface condition based on this high competition limit [4, 6].
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The model is implemented numerically with a variety of creative param-
eter combinations, and various behaviours are observed which dominate in
turn as the populations evolve through time.

It is shown in [4] that where competition is strong enough to spatially
segregate two populations the Lotka-Volterra PDE system can be reduced to
a form similar to a Stefan problem, The Stefan problem has been considered
numerically in [2] usiing a moving mesh �nite element method based on con-
servation (MMFEM). The two major di�erences between the Stefan model
and the Lotka-Volterra model are, �rstly, there are additional logistic growth
terms in the Lotka-Volterra model, and secondly, there is a parameter in the
Lotka-Volterra model of the interface (the equivalent of the latent heat coef-
�cient of the Stefan problem) which is set equal to zero. In biological terms,
one species does not transform into another, which means that unlike the
Stefan problem the competition system has an interface condition that does
not specify an interface velocity. This presents a challenge when attempting
to apply the same approach to the Lotka-Volterra model as to the Stefan
problem in [2] because that paper uses the interface velocity taken directly
from that condition.

However, the moving mesh �nite element method approach in [2] is a
promising way to model the competition system because it not only directly
tracks the evolution of the interface between species, it provides a framework
for keeping particular mesh nodes attached to particular species. This means
that the internal dynamics of a species can be assigned to particular nodes
or elements rather than particular parts of space, and the dynamics for any
given location will automatically be those of the correct species.

In this paper we model, in one dimension, the system described by Hil-
horst et al. [4] using a moving mesh �nite element method (MMFEM) de-
veloped from that in [2]. We demonstrate that the MMFEM method can
be extended to include logistic growth terms and also applied to problems
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@t
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where �1, �2 are constant di�usion coe�cients and with (in general)

f(u1



Figure 1: Initial conditions for the competition system, with population den-
sity U1 of species 1 (on the left) and U2 of species 2 (on the right). The
interface node has zero population and must always satisfy the interface con-
dition.

interface and annihilate each other in a ratio determined by the competition
coe�cient �. This condition is given in [4] as

��1
@u1

@x
= ��2

@u2

@x
(5)

where � = K2=K1. We call � the interspecies competition rate. Because the
annihilation is complete we also have a zero Dirichlet condition,

u1 = u2 = 0;

at the interface. Zero Neumann boundary conditions @u1=@x = 0 and
@u2=@x = 0 are applied at �xed external boundaries away from the interface.

Initial conditions on u1 and u2 are not given in [4], but we select suitable
initial conditions and physical parameters such that one species is in growth
and the other in decline. The initial conditions are shown in �gure (1).
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3 The MMFEM conservation method

3.1 Weak forms

We begin by writing the governing Lotka-Volterra equations (3) and (4) in
the weak formsZ
Rp(t)

w(x; t)
@up
@t

dx = �p

Z
Rp(t)

w(x; t)
@2up
@x2

dx+rp

Z
Rp(t)

w(x; t)up

�
1� u1

k1

�
dx;

(6)
(p = 1; 2), where w(x; t) is a positive test function.

3.2 A relative conservation principle

The total population of each species is de�ned as �p, given by

�p(t) =

Z
Rp(t)

up(x; t) dx (7)

(p = 1; 2), where Rp(t) is the domain inhabited by that species.



where vp(x; t) is the domain velocity. We suppose that the test function
w(x; t) moves with the velocity vp(x; t) induced by (8), so that

@w

@t
+ vp

@w

@x
= 0

Hence (10) becomes

d

dt

"Z
Rp(t)

w(x; t)up(x; t)dx

#
=
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@
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Z
Rp(t)
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dx:

Therefore, by (9), the velocity vp and rate of change of the total mass _�p in
each region are given in terms of the constants cp by

cp _�p �
Z
Rp(t)

w(x; t)
@

@x
(up _xp)dx =

Z
Rp(t)

w(x; t)
@up
@t

dx; (p = 1; 2): (11)

The boundary conditions have yet to be applied.

3.3 A velocity potentlal

At this point it is convenient to introduce a velocity potential �p, de�ned by

vp =
@�p
@x

(12)

so that equation (11) becomes

cp _�p �
Z
Rp(t)

w(x; t)
@

@x

�
up
@�p
@x

�
dx =

Z
Rp(t)

w(x; t)
@up
@t

dx;

for each species, or after integration by parts,
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�
wup
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Z
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Z
Rp(t)

w(x; t)
@up
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dx: (13)

3.4 Substituting the Lotka-Volterra equations

We now substitute the weak form of the governing PDEs (6) into the right
hand side of (13), giving after a further integration by parts,

�p

�
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At the external boundaries @up=@x = 0 and also



Moreover, the Stefan condition refers to a situation where the gradients
of u either side of the interface are of the same sign in general. In contrast,
equation (5) refers to an interface where the gradients either side are of
opposite polarity, since u = 0 on the interface and the method requires
positive populations, i.e. we have interfaces with ’V’ shaped functions.

Whilst the interface velocity is not given explicitly by (5) the expression
does contain information about the location of the interface implicitly. Thus,
if we know @u=@x in the interior of each region adjacent to the interface, we
may use the fact that u = 0 at the interface to infer an interface position.
We therefore seek an interface position such that the values of @u=@x either
side of the interface are in the ratio ��.

3.5.1 Approximating the interface condition

We shall adopt an explicit time-stepping approach which allows us to update
the species and the interface simultaneously, but only to �rst order in time
and subject to stability limitations on the time step. Should there be a
problem in this regard, a suitable alternative would be to use an implicit time
integration scheme, which would accord the ability to reassign the interface
position.

At any given time t we approximate the interface condition (5) in the
�nite di�erence form

��1
u1;m � u1;m�1

xm � xm�1

= ��2
u2;m+1 � u2;m

xm+1 � xm
;

where the subscript m denotes the interface node and the xi; up;i, (i = m �
1;m;m+1); (p = 1; 2); are adjacent node positions and solution values. Since
um = 0 we obtain an expression for the position of the interface node xm in
terms of adjacent nodal values at m� 1 as

xm =

�
��1u1;m�1xm+1 + �2u2;m+1xm�1



where �t is the time step.

3.6 Finite elements and modi�ed basis functions

We now consider spatial approximation of the velocities of the species in the
two phases. Let the regions R1(t) = [0; xm(t)] and R2(t) = [xm(t); 1], where
xm(t) is the position of the interface. De�ne the mesh

0 = X0 < X1(t) < : : : < Xm(t) < : : : < XN(t) < XN+1 = 1

and choose the test function w(x; t) to be a member of the set fWg of stan-
dard piecewise-linear positive basis functions Wi (0 < i < N + 1) appropri-
ate to Neumann boundary conditions, except for Wm�1;Wm;Wm+1. With the
known value of the population at the interface node Xm(t) in mind we discard
the test function Wm and augment the adjacent test functions Wm�1;Wm+1

by those parts of Wm lying in the relevant phase. The resulting set of test
functions, f ~Wig say, called modi�ed test functions in [5, 6], form a partition
of unity in each phase.

The population densities up in each phase are now approximated by
piecewise-linear functions Up, (p = 1; 2), projections of up into the spaces
spanned by the f ~Wig.

The total populations in the two phases are then

�1(t) =

Z Xm(t)

0

U(x; t) dx; �2(t) =

Z 1

Xm(t)

U(x; t) dx (18)

and the relative conservation principles in the two phases are

1

�1(t)

Z Xm(t)

0

Wi U1(x; t) dx = c1;i;
1

�2(t)

Z 1

Xm(t)

Wi U2(x; t) dx = c2;i:

where the constant-in-time partial populations c1;i and c2;i are obtained from
(8) and the initial conditions at t = 0, giving

c1;i =
1

�1(0)

Z Xm(0)

0

~Wi(x; 0)U1(x; 0)dx; c2;i =
1

�2(0)

Z 1

Xm(0)

~Wi(x; 0)U2(x; 0)dx:

Note that due to the construction of the ~Wi both
Pm�1

i=0 c1;i and
PN+1

i=m+1 c2;i

are equal to unity.
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3.6.1 The �nite element velocity potentials

We now substitute piecewise-linear �nite element functions �1;�2 for �1; �2

into (14) to obtain, in phase 1,Z Xm(t)

0

U1(x; t)
@ ~Wi

@x

@�1

@x
dx = �c1;i

_�1 � �1

Z Xm(t)

0

@ ~Wi

@x

@U1

@x
dx+ �1

�
Wi

@U1

@x

�����
m(t)

+ r1

Z Xm(t)

0

~Wi(x; t)U1(x; t)

�
1� U1(x; t)

k1

�
dx; (i



weak forms Z Xm(t)

0

~Wi(x; t)V1(x; t) dx =

Z Xm(t)

0

~Wi
@�1

@x
dx (23)

in phase 1, or Z 1

Xm(t)

~Wi(x; t)V2(x; t) dx =

Z 1

Xm(t)

~Wi
@�2

@x
dx (24)

in phase 2, and solve for V1 and V2, except at the interface where (17) is
applied.

3.6.3 The �nite element mesh

Having obtained the velocities V1(x; t) and V2(x; t), we derive piecewise-linear
nodal functionsX1(x; t); X2(x; tx,from4-23.9[J8121.9701d-5.3a-44-23.9[J8122.9701d-56 Tld-ste-5.3 Td1(Tf -5.3sa50)]T56 scTf 4hith.1.794 tio.652 Tf52 Tf 4.732Fand-28 0 -31.282(Td [(3.6d1(.3)-11228 0itself1.282(Tf 80.10782(52 Ty10782( -31.282(14.h24 -1.782(Td [(2.782(scTf 4hith10782( o10782( -31.285 Td [83.6.3)-11.794 t7)-22 Tf52 Tf 4.7324.733 1.794 Td [1f 4y)-23.9[J81)-375(,)-23.9resultd-ste-5.3Td 8o0a
h[J/F28o0a
h[J77.341-3Tf 6d [(t)]TJ/F28 8 7.9701 Tf 80.655el)93711.9552;)-167(t)]TJ/F15 115.13552 Tf 13+[(()]TJ/F31 7.970166 78.97.892051)]TJ/F15 1is)]TJ -187.9052 76 T2f 7.03.911 Td [(X)]TJ/F32 5.9776 Tf 52 0 857/F28 7.922 8o0a
h[J/F28o0a
h[J915 Td97.689/F28 7.92680z14i(el6x;)-167(t)]TJ/F15 11.9Td 1.793 Td [(2)]TJ/F1-423(2,)-448(and7 52 793 Td [(2U(()]TJ/F31 7.9702 Tf9el)33551.9552;)-167(t)]TJ/F15 111.7249d97.26.124 0 Td [(�]TJ/F31 7.970.9T3 [J/F28 7;J/F15 13 [/F31 7.9702 84ons)]TJ/F300Q
BT
/F30 11.9552 Tfnd)87.022 Td Td [(()]TJ/F30 11.9552 T2f 7atcTf 4hith.1.794 65o1 7.9702 Tf9el7.970TJ/F17e2f 4y)-23.9[J81)-3758qE8+t

+552; t �]TJ/F31 7.970.9T3 [J/F28 7;J/F15 13 [/F31 7.9702 84ons



3.7 Matrix forms

3.7.1 The velocity potentials

We expand �1(x; t);�2(x; t) in terms of standard piecewise-linear basis func-
tions Wj(x; t) as

�1(x; t) =
m�1X
j=0

�1;jWj(x; t); �2(x; t) =
N+1X
j=m+1

�2;jWj(x; t)

These forms may be substituted into (19) and (20), where _�1 is given by
(21) and _�2 by (22), and the resulting systems written in matrix form.

Equations (19) and (20) can then be expressed in the form

~K(U1) �1 = ~f
1

~K(U2) �2 = ~f
2

(28)

where ~K(U1), ~K(U2) are weighted sti�ness matrices constructed with the
modi�ed basis functions ~Wi, having entriesZ Xm(t)

0

U1(x; t)( ~Wi)x (Wj)x dx; (i; j = 0; : : : ;m� 1);

and Z 1

Xm(t)

U2(x; t)( ~Wi)x (Wj)x dx; (i; j = m+ 1; : : : ; N + 1):

The vector �p contains the coe�cients �p;j, (p = 1; 2), and ~f
p
, ~f

p
; are vectors

whose entries are the right hand sides of (19),(20), respectively.
Since the matrices ~K(U1) and ~K(U2) are both singular (the rows of the

left hand sides of both (19) and (20) sum to zero), each of the systems (28)
have an in�nity of solutions. We set �p;m = 0 at the interface node to obtain
unique solutions for �1(x; t) and �2(x; t). (The rates of change _�1 and _�2

can be found in a straightforward manner by simply summing the rows of
equations (28).)

3.7.2 The velocities

In order to derive the velocities we use the expansions

V1(x; t) =
m�1X
j=0

V1;j(t)Wj(x; t); V2(x; t) =
N+1X
j=m+1

V2;j(t)Wj(x; t)
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substituted into equation (23) and (24) to obtain

m�1X
j=0

"Z Xm(t)

0

~WiWjdx

#
V1;j =

m�1X
j=0

"Z Xm(t)

0

~Wi
@Wj

@x
dx

#
�1;j (29)

and

N+1X
j=m+1

�Z 1

Xm(t)

~WiWjdx

�
V





3. Find the position of the interface node Xm at the next time step from
(25) and estimate the interface velocity,

4. Generate the nodal positions Xi;j, X2;j at the next time-step from V1;j,
V2;j and the interface velocity, using the explicit Euler scheme,

5. Update the values of �1 and �2 from _�1 and _�2 using the same Euler
scheme,

6. Find the population densities U1 and U2 at the next time level by
solving equations (34).

4 Results

There is a vast range of parameter values in use because there are so many
varied but suitable examples of the type of competition. We select a conser-
vatively representative set of parameters, chosen to demonstrate some of the
behaviours that this model is able to describe.

4.1 A parameter choice

Firstly we choose a set of parameters that favour species 1, as shown in �gure
2. In this case we see an increasing interface velocity in the initial stages,
followed by a long steady phase where the interface velocity is approximately
constant (�gure 3). As we approach the annihilation of species 2, the interface
velocity increases again (�gure 4). This is due to the low population of species
2 a�ecting its ability to grow. The movement of the interface is shown in
�gure 5.

4.2 Alternative parameter choices

4.2.1 Carrying capacities

We now investigate other parameter choices. We restrict the growth of species
1 by lowering its carrying capacity k1. We observe that in this scenario
neither species is dominant, even though all the competition and di�usion
characteristics are uncha7(eter)-22bW5231(is)o F18.7919 -5Tf 81



Figure 2: Result of competition model at t = 1:7. Here we use �1 = �2 = 0:01,
k1 = k2 = 100, r1 = r2 = 1 and �3. We run the model with a time step
of 0:0001 for 17000 steps and plot the results every 0:1. We see the internal
dynamics of the species driving the population densities and interface 
uxes,
and the position of the interface responding to those 
uxes. The initial
conditions are shown in red, with species 1 in blue and species 2 in green.

Figure 3: Result of competition model at t = 6:0. Here we use �1 = �2 = 0:01,
k1 = k2 = 100, r1 = r2 = 1 and � = 3. We run the model with a time step of
0:0001 for 60000 steps and plot the results every 0:1. The interface continues
to evolve and the populations of the species are now limited by the respective
carrying capacities. The initial conditions are shown in red, with species 1
in blue and species 2 in green
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Figure 4: Result of competition model at t = 8:8. Here we use �1 = �2 = 0:01,
k1 = k2 = 100, r1 = r2 = 1 and � = 3. We run the model with a time step
of 0:0001 for 88000 steps and plot the results every 0:



Figure 6: Result of competition model at t = 8, considering the e�ect of
altered carrying capacities. Here we use �1 = �2 = 0:01, k1 = 50; k2 = 150,
r1 = r2 = 1 and � = 3. We run the model with a time step of 0:0001 for
80000 steps and plot the results every 0:1. We see that with di�erently chosen
carrying capacities we �nd the interface position is approximately steady and
these two species are in balance.

to make territorial gains due to this property alone (�gure 7). However, as
time goes on, the growth and competition characteristics become increasingly
important. We see species 1 becoming more dominant over time, so that the
interface velocity actually reverses direction. Figure 8 shows the evolution
of the system at t = 12:3, and �gure 9 shows the movement of the interface
with the direction reversal.

These results give con�dence that this model is likely to be able to satisfy
the requirements of modelling a wide variety of competition systems. It is
stable to a large choice of set-up parameters and is able to produce complex
behaviours without problems.
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Figure 7: Result of competition model at t = 3:5, considering the e�ect of
an increased di�usion rate for species 2. Here we use �1 = 0:01; �2 = 0:05,
k1 = k2 = 100, r1 = r2 = 1 and � = 3. We run the model with a time step
of 0:0001 for 35000 steps, and plot the results every 0:1. We observe that
species 2 is able to make initial territorial gains due to its high di�usion rate,
even though the competition rate is unaltered.

Figure 8: Result of competition model at t = 12:3, considering the e�ect of
an increased di�usion rate for species 2. Here we use �1 = 0:01; �2 = 0:05,
k1 = k2 = 100, r1 = r2 = 1 and � = 3. We run the model with a time step of
0:0001 for 123000 iterations, and plot the results every 0:1. We see that the
initial di�usion-driven gains by species 2 are reversed, and that the overall
growth characteristics are dominating so that species 1 is gaining territory.
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Figure 9: Position of interface, xm, showing interface movement for the com-
petition model at up to t = 12:3, considering the e�ect of an increased
di�usion rate for species 2 (cf. �gure 5). Here we use �1 = 0:01; �2 = 0:05,
k1 = k2 = 100, r1 = r2 = 1 and � = 3. We run the model with a time
step of 0:0001 for 123000 iterations, and plot the results every 0:1. Due to
the growth characteristics we can see interesting temporal e�ects. Here the
interface velocity has actually reversed direction as the system changes from
di�usion-dominated to growth-dominated.

5 Summary

In this paper we have applied a moving mesh �nite element method based
on the relative conservation principle (MMFEM) of [2] to a two-phase Lotka-
Volterra competition system with a high competition limit [4], so that the
species are completely spatially segregated and interact solely through an
interface condition based on this limit.

The model and the MMFEM method are described in detail and the
approach implemented for a variety of parameter combinations, observing
the various behaviours that dominate as the species evolve through time.

For a set of parameters that favour species 1 we see an increasing interface
velocity in the initial stages followed by a long steady phase where the inter-
face velocity is approximately constant. Although the population of species
2 initially grows it is eventually wiped out by the competition with species 1.
As the annihilation of species 2 is approached, the interface velocity increases
again. The interface continues to evolve and the populations of the species
are then limited by the respective carrying capacities. This is due to the low
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population of species 2 a�ecting its ability to grow.
If the growth of species 1 is restricted by lowering its carrying capacity

we observe that neither species is dominant, even though all the competition
and di�usion characteristics are unchanged. Increasing the di�usion rate for
species 2, this species is able to make initial territorial gains, even though
the competition rate is unaltered. However, as time goes on, growth and
competition characteristics become increasingly important so that species 1
becomes more dominant and the interface velocity reverses direction.

A natural extension is to two dimensions along the lines described in [2]: a
�rst attempt appears in reference [6] which foundered only on stability issues.
In further work it would be interesting to compare the behaviour of the model
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