
 
 

 

 
Department of Mathematics and Statistics 

 
Preprint MPCS-2018-05 

 
 

12 April 2018 
 
 
 

Counterexamples in Calculus of Variations 
in L through the vectorial 

Eikonal equation 
 

by 
 

Nikos Katzourakis and Giles Shaw 
 
 
 

 
 

School of Mathematical, Physical 
and Computational Sciences 
 



ar
X

iv
:s

ub
m

it/
22

26
58

5 
 [m

at
h.

A
P

]  
12

 A
pr

 2
01

8

Counterexamples in Calculus of Variations inL1 through the
vectorial Eikonal equation
Nikos Katzourakisa;1, Giles Shaw2

aDepartment of Mathematics and Statistics, University of Re ading, Whiteknights, PO Box 220, Reading RG6 6AX,
Berkshire, England, UNITED KINGDOM

Abstract

We show that for any regular bounded domain 
L 1

does not su�ce to characterise either limits of p-Harmonic maps as p ! 1 , or absolute minimisers in the sense
of Aronsson.

R�esum�e

Nous montrons que pour tout domaine born�e r�egulier 
 � Rn , n = 2 ; 3, il existe une in�nit�e de di��eomorphismes
globaux solutions de l'�equation iconale, �egaux �a l'iden tit�e sur @
. Nous donnons �egalement des exemples explicites
de telles cartes dans des domaines annulaires. Ceci implique que le syst�eme du type 1 -Laplacien apparaissant
dans le Calcul des Variations vectoriel dans L 1 ne su�t pas �a caract�eriser les limites pour p ! 1 des cartes
p-harmoniques, ni les minimiseurs absolus au sens d'Aronsson.
Contre-exemples dans le Calcul des Variations dans L 1 par l'�equation iconale vectorielle

1. Introduction

Calculus of Variations in L 1 is concerned with the variational study of supremal functionals, as well as
with the necessary conditions governing their extrema. The archetypal model of interest is the functional

E1 (u; O) := ess supO jDuj; for u 2 W1;1 (
; RN ); O � 
 measurable ; (1)

where n; N 2 N, 
 � Rn is a �xed open set and Du(x) = (D i u� (x)) � =1 :::N
i =1 :::n 2 RN � n is the gradient

matrix. We note that our general notation is either self-explanatory or standard. In (1) and throughout
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We note that the results above improve and supersede one of the main results in [17] which required 

to be a punctured ball. Since the unique solution to the Dirichlet problem for � pu = 0 in 
 with u = id
on @
 is u(x) � x when p < 1 , it follows that none of our di�eomorphisms is a limit of p-harmonic maps
as p ! 1 . Thus, we con�rm that (2) by itself cannot su�ce to identify limits of p-harmonic maps and
that additional selection criteria are neededto have a situation analogous to the scalar case.

The proof of Theorem 1.1 is based on the next result of independentinterest.

Proposition 1.1 Let n; m; 
 be as in Theorem 1.1. Then, the nonlinear problem

jDuj2 + 2 div u � C in 
 and u = 0 on @
 ;

has in�nitely many non-trivial solutions (u; C) 2 (Cm \ C0
0)

�

; Rn

�
� (0; 1 ). Additionally, the set of all

solutions has the trivial solution (0; 0) as an accumulation point with respect to the topology ofCm
�

; Rn

�
.

Since the proofs of the above results are non constructive, we include in Section 3 explicit examples of
smooth 1 -Harmonic maps de�ned on annular domains which coincide with a�ne maps on the boundary.

2. Proofs

We begin with the proof of Proposition 1.1, which is an immediate consequence of the next lemma and
of the Morrey estimate, in the form of inclusion of spaces Hm +2 (
; Rn ) � Cm

�

; Rn

�
(since n 2 f 2; 3g).

Lemma 2.1 Let n; m; 
 ; be as in Theorem 1.1 and let us de�ne the nonlinear mapping

M : (Hm +2 \ H1
0)(
; Rn ) �! Hm +1

] (
) :=
�

w 2 Hm +1 (
) :
Z



w(x) dx = 0

�

by setting (here the slashed integral denotes the average)

M [u] :=
1
2

jDuj2 + div u �
1
2

�
Z



jDu(x)j2 dx:

Then, the inverse imageM � 1[f 0g] contains in�nitely-many elements accumulating at zero. In addition,
for any " > 0, there exists ' " 2 (Hm +2 \ H1

0)(
; Rn ) n f 0g such that M [' " ] = 0 and k' " kH m +2 (
) < " .

Proof of Lemma 2.1. First note that M is well de�ned, namely its image lies in the subspace Hm +1
] (
)

of zero average. Indeed, for anyu 2 (H



By noting that M 0[0]jV : V �! Hm +1
] (
) is a linear isomorphism, the canonical isomorphism between

ker(M 0[0])� V and ker(M 0[0])� V allows us to viewM as a map on ker(M 0[0])� V by setting M



Since elog( j x j )S is orthogonal and jOAj = jAj for any A; O 2 Rn � n with O being orthogonal, we have

jDu(x)j2 =
�
�
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