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Abstract. The e�ectiveness of sparse matrix techniques for directly solving large-scale linear least-squares problems is
severely limited if the system matrix A has one or more nearly dense rows. In this paper, we partition the rows of A into
sparse rows and dense rows (A s and A d ) and apply the Schur complement approach. A potential di�culty is that the reduced
normal matrix A large-scale linear least-squares problems, dense rows, augmented system, Schur complement, iterative

solvers, preconditioning, Cholesky factorization, incomplete factorizations.

AMS subject classi�cations.

1. Introduction. We are interested in solving the following linear least-squares problem:

min
x

kAx � bk2; (1.1)

where A 2 < m � n (m � n) and b 2 < m . The most commonly-used approach is to work with the
mathematically equivalent n � n normal equations

Cx = AT b; C = AT A; (1.2)

where, provided A has full column rank, the normal matrix C is symmetric and positive de�nite. Our
focus is on the case where the system matrixA is large and sparse but has a number of \dense" rows (that
is, rows that contain signi�cantly more entries than the other rows, although the number of entries in each
such row may be less thann). Just a single dense row is su�cient to cause catastrophic �ll in C and thus
for the factors of a Cholesky or QR factorization to be dense. In practice, for large-scale problems this
means that it may not be possible to use a direct solver since the memory demands can be prohibitive.
Moreover, if an incomplete factorization is used as a preconditioner for an iterative solver such as LSQR
[29, 30] or LSMR [13] applied to the normal equations, the error in the factorization can be so large as
to prohibit its e�ectiveness as a preconditioner; this was recently observed in the study by Gould and
Scott [18]. The e�ects of the presence of dense rows has long been recognised as a fundamental di�culty
in the solution of sparse least-squares problems; see, for example, [2, 5, 8, 14, 16, 40, 41, 42].

Let us assume that the rows ofA are partitioned into two parts: rows that are sparse and those that
are considered dense. We also assume conformal partitioning of the right-hand side vectorb as follows:

A =
�

As

Ad

�
; As 2 Rm s � n ; Ad 2 Rm d � n ; b =

�
bs

bd

�
; bs 2 Rm s ; bd 2 Rm d ; (1.3)

with m = ms + md, ms � n and md � 1 (in general, ms � md). Problem (1.1) then becomes

min
x
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In this paper, we exploit the fact that solving (1.4) is equivalent to solving the larger (m + n) � (m + n)
augmented system
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A ; (1.5)

where

r =
�

r s

r d

�
=

�
bs

bd

�
�

�
As

Ad

�
x

is the residual vector. Here and elsewhereI k denotes the k � k identity matrix. The system (1.5) is
symmetric inde�nite and so, if there is su�cient memory available, a sparse direct solver that incorporates
the use of numerical pivoting for stability can be used (well-known examples includeMA57[12] andHSLMA97
[20] from the HSL mathematical software library [21], MUMPS [27] and WSMP [43]). Employing a general-
purpose sparse solver ignores the block structure, although its use of a sparsity-preserving ordering (such



original normal matrix C. Let Cs = L sL T
s be the Cholesky factorization ofCs. Using this yields a block

factorization

K =



A have full column rank and assumeAs has n2 null columns with n2 � n. Assuming these columns are
permuted to the end, we can splitA into the form

A =
�
A1 A2

�
�

�
As1 0
Ad1 Ad2

�
(2.10)

with A1 2 Rm � n 1 and A2 2 Rm � n 2 (n = n1 + n2). The following result from [39] shows that the solution
of the least-squares problem can be expressed as a combination of partial solutions.

Lemma 2.1. Let the columns of A be split as in (2.10) and let z 2 Rn 1 and W2 A



Thus the computed value of the least-squares objective may di�er from the optimum for the original
problem. Having solved the regularized problem we want to recover the solution of the original problem.
Following Scott [36], we propose doing this by using the factors ofK (� ) as a preconditioner for an iterative
method applied to (2.1).

Let the Cholesky factorization of Cs(� ) be L s(� )L s(� )T . For � > 0, this is an approximate
factorization of Cs, that is, Cs � L s(� )L s(� )T . More generally, let

Cs � ~L s ~L T
s ; (2.15)

where ~L s is lower triangular. We are interested in the case~L s = L s(� ) but our main focus is where ~L s

is an incomplete Cholesky (IC) factor, that is, one that contains fewer entries than occur in a complete
factorization. For very large systems, computing and factorizingCs (or Cs



Many di�erent IC factorizations have been proposed. Although they may be considered to be general
purpose, most are best suited to solving particular classes of problems. For example, level-based methods
are often most appropriate for systems with underlying structure, such as from �nite element or �nite
di�erence applications. Here we use the limited memory based approach of Scott and T�uma [37, 38], that
has been shown in [18] to result in e�ective preconditioners for a wide range of least-squares problems.
The basic scheme employs a matrix factorization of the form

Cs � ( ~L s + R)( ~L s + R)T ; (2.20)

where ~L s is the lower triangular matrix with positive diagonal entries that is used for preconditioning and
R is a strictly lower triangular matrix with small entries that is used to stabilize the factorization process
but is then discarded (it is not used as part of the preconditioner). The user speci�es the maximum
number of entries in each column of~L s and R. At each step j of the incomplete factorization process, the
largest entries are kept in columnj of ~L s, the next largest are kept in column j of R, and the remainder
(the smallest entries) are dropped. In practice,Cs is optionally preordered and scaled and, if necessary,
shifted to avoid breakdown of the factorization (which occurs if a non positive pivot is encountered) [25].

3. Numerical experiments. In this section, we present numerical results to illustrate potential of
the Schur complement approach and, in particular, demonstrate that it allows us to solve some problems
that are intractable if dense rows are ignored. Results are included for direct solvers and for iterative
solvers that can be used to solve very large problems.

3.1. Test environment. The characteristics of the machine used to perform our tests are given in
Table 3.1. All software is written in Fortran and all reported timings are elapsed times in seconds. In

Table 3.1
Test machine characteristics

CPU Two Intel Xeon E5620 quadcore processors
Memory 24 GB
Compiler gfortran version 4.8.4 with options -O3 -fopenmp
BLAS Intel MKL



where

 
x (k )

r (k )
d

!

is the computed solution of (2.1) on the kth step. In our experiments, we set~� = 10 � 7.

With this choice, in most of our experiments (3.1) is satis�ed with � = 10 � 6.

3.2. Test set 1. Our test problems are taken from the CUTEst linear programme set [17] and the
UFL Sparse Matrix Collection [9]. In each case, the matrix is \cleaned" (duplicates are summed, out-of-
range entries and explicit zeros are removed along with any null rows or columns). In our experiments, we
use the following de�nition for a dense row ofA: given � (0 < � � 1), row i of A is de�ned to be dense if
the percentage of entries in rowi is at least � .

Our �rst test set is given in Table 3.2. The problems were chosen because they have at least one
row that is more than 10% dense. They are also di�cult problems to solve (see [18]); at least three of
the problems are rank de�cient. An estimate of the rank was computed by running the sparse symmetric
inde�nite solver HSLMA97on the augmented system (1.5) (with the pivot threshold parameter set to 0.5);
for problems 12month1and PDE1there was insu�cient memory to do this.

Table 3.2
Statistics for Test Set 1. m, n and nnz (A) are the row and column counts and the number of nonzeros in A . nullity

is the estimated de�ciency in the rank of A , rdensity( A ) is the largest ratio of number of nonzeros in a row of A to n over
all rows, m j ( j = 10 ; 20; 30; 40; 50) is the number of rows of A with at least j % entries, and density( C) is the ratio of the
number of entries in C to n2 . � denotes insu�cient memory to compute the statistic.

Problem m n nnz (A) nullity rdensity( A ) m10 m20 m30 m40 m50 density( C)

Trec14 15904 3159 2872265 0 0.791 2664 1232 649 346 150 9.32� 10� 1

Maragal 6 21251 10144 537694 516 0.586 68 68 30 21 0 7.49� 10� 1

Maragal 7 46845 26525 1200537 2046 0.360 85 43 21 0 0 3.10� 10� 1

scsd8-2r 60550 8650 190210 0 0.100 40 0 0 0 0 5.22� 10� 2

PDE1 271792 270595 990587 - 0.670 1 1 1 1 1 -
12month1 872622 12471 22624727 - 0.274 284 4 0 0 0 6.87� 10� 1

Table 3.3
The e�ects of varying the row density parameter � on the number md of rows that are classed as dense and the density

of Cs (the ratio of the number of entries in Cs to n2 ).

Identi�er m n � m d density (Cs )

Trec14 15904 3159 0.005 12643 2.38� 10� 2

0.010 9676 8.52� 10� 2

0.050 4467 6.17� 10� 1

0.100 2664 8.31� 10� 1

Maragal 6 21251 10144 0.005 2923 6.22� 10� 4

0.010 823 1.93� 10� 2

0.100 68 5.49� 10� 2

Maragal 7 46845 26525 0.001 4668 2.15� 10� 4

0.005 687 9.02� 10� 3

0.010 108 1.70� 10� 2

0.100 85 1.78� 10� 2

scsd8-2r 60550 8650 0.050 50 1.44� 10� 3

0.100 40 1.39� 10� 2

PDE1 271792 270595 0.660 1 4.52� 10� 5

12month1 872622 12471 0.010 43951 1.10� 10� 1



to m. For the Maragal problems, Cs is highly sparse if approximately 10% of the rows are classi�ed as
dense.

3.3. Test set 2. For our second test set, we take some of the CUTEst and UFL examples that do
not initially contain dense rows and append some rows. This allows us to explore the e�ect of varying the
number of dense rows as well as the density of these rows. The problems are listed in Table 3.4; these
problems are all of full rank. When appending rows, the pattern of each such row is generated randomly
with the requested density and the values of the entries are random numbers in [� 1; 1].

For our solvers, the number of entriesnnz(C) in the normal matrix C can be at most huge(1)
(� 2 � 109) where huge is the Fortran intrinsic function. If we add a single row with density � � 0:1
to each of the matricesAs in the lower part of Table 3.4 then nnz(C) exceeds this limit. Thus for these
examples and our current software, we cannot use any approach that requires the normal matrix to be
computed.

Table 3.4
Statistics for Test Set 2. ms , n and nnz (A s ) are the row and column counts and the number of nonzeros in A s .

rdensity( A s ) is the largest ratio of number of nonzeros in a row of A s to n over all rows, and density( Cs ) is the ratio of the
number of entries in Cs to n2 .

Problem ms n nnz (A s ) rdensity( A s ) density( Cs )

IG5-15 11369 6146 323509 1.95� 10



Table 4.1
Results for Test Set 1 of running the Cholesky direct solver HSLMA87on the normal equations (without exploiting dense

rows), using LSMR for re�nement. nnz (L ) denotes the number of entries in the Cholesky factor L of C and Its is the
number of LSMR iterations. Tf , Ts and Ttotal denote the times (in seconds) to compute the normal matrix and factorize
it, to run LSMR and the total time. � denotes unable to form normal matrix C.

Identi�er m n nnz (L ) Its Tf Ts Ttotal

Trec14 15904 3159 4.85� 106 1 4.79 0.03 4.82
Maragal 6 21251 10144 4.96� 107 3 13.1 0.12 13.2
Maragal 7 46845 26525 1.43� 108 4 37.8 0.40 38.2
scsd8-2r 60550 8650 1.20� 107 0 0.88 0.00 0.88
PDE1 271792 270595 - - - - -
12month1 872622 12471 7.27� 107 1 42.5 0.35 42.9

Table 4.2
Results for Test Set 1 of solving the reduced augmented system (2.1) using the Schur complement approach and the

Cholesky direct solver HSLMA87. � is the row density parameter. density( Cs ) is the ratio of the number of entries in the
reduced normal matrix Cs to n2 , nnz (L ) is total number of entries in the factors (that is, nnz (L s ) + md (md + 1) =2), Its
is the number of GMRES iterations. Tp , Ts and T

)+



solving (2.18), and for forming and factorizing the Schur complement matrix (2.19). For problemsTrec14,
scsd8-2r and 12month1, results are given for more than one value of the parameter� that controls which
rows are classi�ed as dense. As the density ofCs increases, a larger shift� is needed to prevent breakdown
of the IC factorization and this has the e�ect of decreasing the quality of the preconditioner. However,
for small � , for examples12month1and Trec14, md is large. Consequently, the factorization of the dense
Schur complement ~S is expensive and although the GMRES iteration count is much less than the LSMR
count, for these two problems the Schur complement approach o�ers no signi�cant bene�t in terms of
total time. For the other problems, exploiting the dense rows is advantageous. In particular,PDE1could
not be solved via the normal equations but the reduced augmented system approach performs well. We
observe that for the rank de�cient Maragal



limit of 600 seconds. By contrast, for preconditioned GMRES on the reduced augmented system, the shift
and the times to compute the incomplete factorization and achieve convergence are essentially independent
of � (and for this reason only results for � = 1 :0 are included in Table 5.4). Furthermore, this approach
uses a smaller shift than for the normal equations and produces a much higher quality preconditioner,
leading to signi�cantly faster times. With more than one added row, the density of C often increases
further making the normal equation approach even less feasible. For the augmented approach, adding
more than one row does not a�ectCs or the time to compute the incomplete factorization but does result
in the dense factorization of the Schur complement matrix becoming more expensive. For most of our test
problems, the number of iterations decreases as the number of added rows increases (for example,psse0
and graphics but for others (including relat9 ), the converse is true (see Table 5.5).

Table 5.3
Results for Test Set 2 with a single dense row of density � appended. Results are for preconditioned LMSR on the

normal equations using the IC factorization preconditioner. �



Table 5.4
Results for Test Set 2 with a single dense row ( � = 1 :0) appended. Results are for preconditioned LMSR on the normal

equations using the IC factorization preconditioner and for running GMRES on the reduced augmented system using the
block IC factorization preconditioner. � denotes the global shift, Its is the number of iterations. Tp , Ts and Ttotal denote
the times (in seconds) to compute the IC preconditioner, to run the iterative solver and the total time. { indicates statistic
unavailable.

Problem Normal equations with LSMR Reduced augmented system with GMRES
� Its Tp Ts Ttotal � Its Tp Ts Ttotal

IG5-15 6.5536� 101 810 0.92 0.82 1.73 1.024 337 0.47 1.08 1.55
psse0 2.6214� 102 33690 2.06 39.8 41.9
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