
 
 

 
 

 

Department of Mathematics  and Statistics 
 

Preprint MPCS-2017-01 
 
 

12 January 2017 
 
 
 

Existence, Uniqueness and Structure of 
Second Order Absolute Minimisers 

 
by 

 
 

Nikos Katzourakis and Roger Moser 
 
 

 
 

 
 

School of Mathematical , Physical 
and Computational  Sciences 
 



EXISTENCE, UNIQUENESS AND STRUCTURE OF SECOND
ORDER ABSOLUTE MINIMISERS

NIKOS KATZOURAKIS AND ROGER MOSER

Abstract. Let 
 � Rn be a bounded open C1;1 set. In this paper we prove
the existence of a unique second order absolute minimiser u1 of the functional

E1 (u; O) := kF( �; � u)kL 1 ( O ) ; O � 
 measurable ;

with prescribed boundary conditions for u and Du on @
 and under natural
assumptions on F. We also show that u1 is partially smooth and there exists
a harmonic function f 1 2 L 1 (
) such that

F( x; � u1 (x)) = e1 sgn
�
f 1 (x)

�

for all x 2 f f 1 6= 0 g, where e1 is the in�mum of the global energy.

1. Introduction

For n 2 N, let 
 � Rn be a bounded open set and let also F : 
 � R �! R be a
real function that is L (
) 
 B (R)-measurable, namely, measurable with respect to
the product � -algebra of the Lebesgue subsets of 
 with the Borel subsets of R. In
this paper we consider variational problems for second order supremal functionals
of the form

(1.1) E1 (u; O) :=



 F(�; �u)






L 1 (O )
; O � 
 measurable;

where the admissible functions u range over the (Fr�echet) Sobolev space

(1.2) W 2;1 (
) :=
\

1<p< 1

n
u 2 W 2;p(
) : �u 2 L 1 (
)

o
:

The following is a natural notion of minimiser for variational problems of this type.

De�nition 1 (Second order ond or(yp)olu1
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Example. For 
 = (� 1; 0) [ (0; 1), consider the functional E1 (u; O) = ku00kL 1 (O )

and let Q(x) := x� (� 1;0)(x)� x(x� 1) � (0;1)(x), x 2 
. Then Q is a global minimiser
of E1 (�; 
) in W 2;1

Q (
) with E1 (Q; 
) = 2 and is also a second order absolute
minimiser. However, for any function � 2 C1

c (� 1; 0) with 0 < k� 00kL 1 (� 1;0) < 1,
the perturbation Q + � still satis�es E1 (Q + �; 
) = 2 and lies in W 2;1

Q (
), but

does not minimise E1 (�; (� 1; 0)) over W 2;1
Q ((� 1; 0)) because the only minimiser

on (� 1; 0) with boundary data Q is the identity.

On the other hand, if u 2 W 2;1 (
) minimises E1 (�; 
) uniquely in W 2;1 (
)
with respect to its own boundary conditions, then we will show that u is actually
the unique second order absolute minimiser. This is the situation that we will �nd
in the main results of this paper. We �rst give a condition that guarantees that
u is the unique minimiser for its boundary values on any subdomain. While it is
not obvious that this condition can be met, we will subsequently prove that it is
satis�ed by exactly one function under given boundary conditions and very mild
additional assumptions.

In the following, we will use the symbolisation \sgn" for the sign function, with
the convention that sgn(0) = 0. We will assume also that

(1.3) 
 is a bounded connected open subset of Rn , n � 1,

and

(1.4)

(
F : 
 � R �! R is L (
) 
 B (R)-measurable and for a.e.

x 2 
, � 7! F(x; � ) is strictly increasing with F(x; 0) = 0.

Our �rst main result therefore is:

Theorem 2 (Criterion for unique minimisers). Suppose(1.3)-(1.4) hold and con-
sider (1.1) and a function u� 2 W 2;1 (
). If there exist a number e� � 0 and a
function f � 2 L 1(
) satisfying

(1.5) �f � = 0; on 
;

such that

(1.6) F(�; �u� ) = e� sgn(f � ); a.e. on 
;

then
E1 (u� ; O) < E1

�
u� + �; O

�
;

for any open O � 
 and any � 2 W 2;1
0 (O)
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is by assumption strictly increasing, (1.6) is equivalent to the next representation
formula for u� :

�u� (x) = F(x; �)� 1
�

e� sgn
�
f � (x)

� �
; a.e. x 2 
:

Moreover, by using standard argument involving Green functions (see e.g. [GT, Ch.
2]), we could represent u� in terms of F; f � ; e� ; u� j@
; D� u� j@
.

Theorem 2 gives a connection between the variational problem and a PDE system
of second order equations with a parameter consisting of (1.5) and (1.6). We will
see later that under certain assumptions on 
, F and the boundary data, the system
has in fact a solution (u� ; f � ; e� ) with f � 6� 0 if e� > 0. It then follows that (u� ; e� )
is unique and the system is equivalent to unique global minimality under prescribed
boundary data. We may think of (1.5) and (1.6) as a PDE formulation of the L 1

variational problem. There does exist, however, a more conventional analogue of
the \Euler-Lagrange equation" for (1.1). This is the fully nonlinear PDE of third
order

(1.7) F(�; �u)F� (�; �u)
�
�D

�
jF(�; �u)j2

� �
�2 = 0; on 
:

A particular model case of (1.1)-(1.7) is what we call the \1 -Bilaplacian" and
arises from the choice F(x; � ) = � . Then, equation (1.6) becomes �u� = e� sgn(f � )
and (1.7) becomes �ujD(j�uj2)j2 = 0. Due to the particular structure of the func-
tional (1.1), however, in this case (1.7) becomes redundant since all the structural
information of second order absolute minimisers can be obtained directly from the
L 1 variational problem.

For our existence result, we will assume that F : 
 � R �! R satis�es

(1.8)

8
>>>>>><

>>>>>>:

F 2 C2(
 � R);

F(x; 0) = 0; x 2 
;

9 c > 0 :

8
><

>:

c � F� (x; � ) �
1

c
; (x; � ) 2 
 � R;

F(x; � ) F�� (x; � ) � �
1

c
; (x; � ) 2 
 � R;

where subscripts of F denote partial derivatives. The conditions of (1.8) imply that
for any �xed x 2 
 the partial function jF(x; �)j is level-convex on R



4 NIKOS KATZOURAKIS AND ROGER MOSER

where e1 = E1 (u1 ; 
). Further, f 1 6� 0 if e1 > 0.
(II) Let

�1 := f � 1
1 (f 0g):

If e1 > 0, then u1 belongs toC3;� (
 n �1 ) for any � 2 (0; 1) and �1 is
a Lebesgue nullset. Ife1 = 0, then u1 is a harmonic function.

(III) For p 2 N, let

ep := inf
�

Ep(u) : u 2 W 2;p
u 0

(
)
	

:

Then, for any p large enough there exists a global minimiserup 2 W 2;p
u 0

(
)
of Ep satisfying Ep(up) = ep. Moreover, ep �! e1 as p ! 1 and there
exists a subsequence(p` )

1
`=1 such that up` �� * u 1 in the weak topology of

W 2;1 (
) as ` ! 1 . In addition,
8
><

>:

up` �! u1 ; in C1(
);
D2up` �� * D2u1 ; in L q(
; Rn � n ) for all q 2 (1; 1 );
�up` �! �u1 ; a.e. on 
 and in L q(
) for all q 2 (1; 1 );

as ` ! 1 . Furthermore, �up` �! �u1 locally uniformly on 
 n �1 if
e1 > 0 and locally uniformly on 
 if e1 = 0.

(IV) Let

(1.9) f p :=
1

ep� 1
p

�
�F(�; �up)

�
�p� 2

F(�; �up) F� (�; �up)

if ep 6= 0 and f p � 0 if ep = 0. Then, the harmonic function f 1 in (I) may
be chosen such thatf p` �! f 1 as ` ! 1 in the strong local topology of
C1 (
).

By invoking Theorem 2, an immediate consequence is that the modes of con-
vergence in Theorem 3(III) as p ! 1 are actually full and not just subsequential.
Also, known results on the regularity of nodal sets of solutions to elliptic equations
[HS] imply that �1 is countably recti�able, being equal to the union of countably
many smooth submanifolds of
 and a set of vanishing(n � 2)-dimensional Haus-
dor� measure . This, however, uses only the fact that f 1 is harmonic and it seems
plausible that the full statement in (I) could give further information.

The optimal regularity of �1 is an open question which we do not attempt to
answer here. Certainly, full regularity of the set �1 cannot be expected as there
are limitations: in [KP2] it was noted that �1 in general may not be a smooth
submanifold, as for certain data u0 the intersection of transversal lines in 
 was
observed in numerical experiments. In most cases the set �1 is necessarily non-
empty and divides 
 into two distinct parts, whilst the equations F(�; �u1 ) = � e1

do not permit any solutions in W 2;1
u 0

(
) for most boundary data, even if n = 1.
Therefore, the Laplacian of u1 will have a jump on �1 and, in terms of u1 , no
more regularity than W 2;1 (
) can be expected (see the numerical and explicit
solutions in [KP2]).

Let us also note further that (I){(IV) above have been obtained in [KP2] for
n = 1 and in some other special cases (although were not stated in this explicit
fashion), whilst the qualitative behaviour emerging here was observed numerically
for n = 2 and F(x; � ) = � .

When combined, Theorem 2 and Theorem 3 imply in particular the following.
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Corollary 4. Under the hypotheses of Theorem 3, there exists a unique global
minimiser u1 of E1 (�; 
) in W 2;1

u 0
(
) , which is a second order absolute minimiser

and a strong solution to the Dirichlet problem for (1.7):
8
<

:

F(�; � u)F � (�; � u)
�
�D

�
jF( �; � u)j2

� �
�2

= 0 ; in 
 ;
u = u0; on @
 ;

Du = D u0; on @
 ;

More precisely, u1 is thrice di�erentiable a.e. on 
 and satis�es the PDE in the
pointwise sense.

The study of supremal functionals and of their associated equations is known
as Calculus of Variations in the spaceL 1 . Second order variational problems in
L 1 have only relatively recently been studied and are still poorly understood. It
is remarkable that for our speci�c problem, we obtain not just unique absolute
minimisers, but also a fair amount of detailed information about their structures,
with relatively simple means. On the other hand, our methods take advantage of
the special structure of the problem and are unlikely to work in general, although
they allow the following modest generalisation: all of the preceding results hold for
the seemingly more general case where the Laplacian is replaced by the projection
A : D2u =

P
i;j A ij D2

ij u on a �xed positive symmetric matrix A 2 Rn � n
+ . This

gives rise to the following functional:

E1 (u; O) =



 F( �; A :D2u)






L 1 (O ) ; O � 
 measurable :

However, this case can easily be reduced to the case we study herein via the change
of variables x 7! � O> x for a diagonal n � n matrix � and an orthogonal matrix
O 2 O(n) arising from the spectral representationA = O� 2O> .

Some of the techniques that underpin Theorem 3 have been successfully deployed
to problems somewhat di�erent to (1.1) (with dependence onu in addition to � u)
[MS, S1], which suggests that further generalisation might be possible. In order
to keep the presentation simple, however, we do not explore this possibility any
further in this work.

We conclude this introduction by placing the L 1 problem we study herein into
the wider context of Calculus of Variations. Variational problems for �rst order
functionals of the form

(1.10) (u; O) 7�! ess sup
x 2O

H
�
x; u(x); Du(x)

�
; u 2 W 1;1 (
) ; O � 
 ;

together with the associated PDEs, �rst arose in the work of Aronsson in the 1960s
[A1]{[A3]. The �rst order case is very well developed and the relevant bibliography
is very extensive. For a pedagogical introduction to the theme which is accessible
to non-experts, we refer to the monograph [K8] (see also [C]). The vectorial case of
(1.10) for maps2

1.10
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with dependence on pure second derivatives only. Some preliminary investigations
(relevant to the second order case of energy density H(�; u; u0; u00) when n = 1) had
previously been performed via di�erent methods by Aronsson and Aronsson-Barron
in [A4, AB].

Apart from the intrinsic mathematical interest, the motivation to study higher
order L 1 minimisation problems comes from several diverse areas. In applied
disciplines like Data Assimilation in the geosciences, PDE-constrained optimisation
in aeronautics, etc. (see e.g. the model problem in [K9] and references therein, as well
as the classical monograph [L]), a prevalent underlying problem is the construction
of approximate solutions to second order ill-posed PDE problems. For instance, in
the modelling of aquifers, one needs to solve a Poisson equation �u = f coupled
with a pointwise constraint of the form K (u) = k for given functions f; K; k . By
minimising the error function j�u� f j2+jK (u)� kj2 in L 1 , one can obtain uniformly
(absolutely) best approximations.

Minimisation problems in L 1 similar to the above have also been studied in
the context of di�erential geometry and in questions related to the Yamabe prob-
lem. In particular, the second author, together with Schwetlick [MS], and subse-
quently Sakellaris [S1] considered the problem of minimising the scalar curvature
of a Riemannian metric on a given manifold and in a given conformal class. When
formulated in terms of di�erential operators, this gives rise to a functional similar
in structure to (1.1). This work uses di�erent boundary conditions, however, and
no attempt is made to prove uniqueness or �nd second order absolute minimisers.
Nevertheless, some of the tools in the proofs of the above results originate in the
above quoted papers.

We close with some remarks about generalised solutions to the equations govern-
ing the \extremals" of Calculus of Variations in L 1 . In the scalar �rst order case,
the theory of viscosity solutions of Crandall-Ishii-Lions (see [CIL, C, K8]) proved
to be an apt framework within which the generally non-smooth solutions to the so-
called Aronsson equation, which is a second order PDE, can be studied rigorously.
However, viscosity solutions are of purely scalar nature and fail to work in either
the vectorial or the higher order case (where we have either a second order system
with discontinuous coe�cients, or a fully nonlinear third order PDE). In the recent
papers [K9, K10] a new theory of generalised solutions has been introduced which is
based on a probabilistic representation of derivatives which do not exist classically
and in the papers [AK, AyK, CKP, K11, K12, K13, KP, KP2, KP3] several results
have been obtained in this framework. However, in the setting of the present paper,
the particular structure of the problem at hand allows to prove directly existence
of strong solutions to the fully nonlinear PDE (1.7).

2. Proofs

In this section we establish the proofs of Theorems 2 and 3 and of Corollary 4.

Proof of Theorem 2. Fix � 2 W 2;1
0 (
) with � 6� 0 on 
. Since f � is a harmonic

function in L 1(
), it follows that

(2.1)

�




f � �� = 0:

We set

�� := f � 1
� (f 0g):
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By standard results on the nodal set of solutions to elliptic equations [HS] and the
connectedness of 
, it follows that if f � 6� 0 then �� is a Lebesgue nullset and if
f � � 0 then �� = 
.

Let us �rst consider the case f � 6� 0. Note that �� cannot vanish almost
everywhere on 
 (as this would imply that � � 0 by uniqueness of solutions of the
Dirichlet problem for the Laplace equation). Therefore, we deduce that f �� 6= 0
on a subset of positive Lebesgue measure in 
. Hence, (2.1) implies that there exist
measurable sets 
� � 
 with L n (
� ) > 0 such that

� f � �� > 0; a.e. on 
� ;

where L n



8 NIKOS KATZOURAKIS AND ROGER MOSER

which establishes the desired bound. Finally, (2.5) is a consequence of (1.8), which
gives j� jF� (x; � ) � cj� j, and of (2.3), which gives cj� j � c2jF(x; � )j. �

We will construct the solutions to our problem by approximation with minimisers
of L p functionals. Therefore, we need to understand the behaviour of the latter.

Proposition 6. Suppose thatF 2 C2(
 � R) satis�es (1.8). Then for any p >
c� 3 + 1 there exists a minimiser up of Ep over the spaceW 2;p

u 0
(
). Moreover, up is

a weak solution to the Dirichlet problem for the Euler-Lagrange equation associated
with the functional Ep:

8
><

>:

�
� �

�F(�; �u)
�
�p� 2

F(�; �u) F� (�; �u)
�

= 0; in 
;

u = u0; on @
;
Du = Du0; on @
:

Furthermore, there exist a (global) minimiser u1 of the functional E1 (�; 
) over
the spaceW 2;1

u 0
(
) such that Ep(up) �! E1 (u1 ; 
) as p ! 1 . Also, there exists

a subsequence(p` )
1
1 such that

�
up` �! u1 ; in C1(
);

D2up` �� * D2u1 ; in L q(
; Rn � n ); for all q 2 (1; 1 );

as ` ! 1 .

Proof of Proposition 6. By (2.3){(2.4) of Lemma 5, for p > c � 3+1 the functional
Ep is convex in W 2;p

u 0
(
) and

Ep(u) � c(L n (
))� 1=pk�ukL p (
);

for any u 2 W 2;p
u 0

(
). Since u � u0 2 W 2;p
0 (
), by the Calderon-Zygmund L p

estimates (e.g. [GT, GM]) and the Poincar�e inequality we have a positive constant
c0 = c0(p;

2
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and hence (�up)p� p0
is bounded in L k (
). By the previous arguments and (2.6),

we conclude that (up)p� p0
is bounded in W 2;k

u 0
(
) for any k 2 N. By a standard

diagonal argument, weak compactness and the Morrey theorem, there exists

u1 2
\

1<k< 1

W 2;1
u 0

(
)

such that the desired convergences hold true along a subsequence as p` ! 1 . When
we pass to the limit as ` ! 1 in (2.7), the weak lower semicontinuity of the L k

norm implies

k�u1 kL k (
) �
(L n (
))1=k

c
E1 (u0; 
):

Letting k ! 1 we obtain �u1 2 L 1 (
). Thus, u1 2 W 2;1
u 0

(
), as desired. It
remains to show the convergence of E
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In other words, given any boundary condition u0 2 W 2;1 (
) such that �u0 is
continuous up to the boundary, we can �nd another function w in the same space
with the same boundary data, the Laplacian of which is as small as desired in a
neighbourhood of the boundary.

Proof of Lemma 7. Since @
 is C1;1-regular, the result of the appendix establishes
that the distance function dist(�; @
) belongs to C1;1(
2r 0

) for some r0 > 0 small
enough.

Let d be an extension of dist(�; @
) from 
r 0
to 
 which is in the space W 2;1 (
).

Extend �u0 and d by zero on Rn n 
. Let (� � )�> 0 � C1
c (Rn ) be a standard

mollifying family (as e.g. in [E]). We set

(2.9) v� := u0 �
d2

2

�
� � � �u0

�
:

Then v� � u0 2 W 2;1
0 (
) since d = 0 on @
 and

Dv� = Du0 � d
�

d
2

D
�
� � � �u0

�
+

�
� � � �u0

�
Dd

�
;

D2v� = D2u0 �
�
Dd 
 Dd

��
� � � �u0

�
� d

�
d
2

D2
�
� � � �u0

�

+ D
�
� � � �u0

�

 Dd + Dd 
 D

�
� � � �u0

�
+

�
� � � �u0

�
D2d

�
:

By using that

tr(Dd 
 Dd) = jDdj2 = 1 on 
r 0 ;

for 0 < r < r 0 we deduce

k�v� kL 1 e2 r 4[(+)]TJ/F1 9.9626 T2281.1Tf 6.048 Td [15set
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Proof of Theorem 3. Let us begin by setting

e1 := inf
�

E1 (u; 
) : u 2 W 2;1
u 0

(
)
	

:

If e1 = 0, then everything in Theorem 3
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r � 
 of the boundary @
. Since up � w 2 W 2;p
0 (
), it is an admissible test

function and by (2.12), integration by parts gives
�




f p �(up � w) = 0:

Hence, by the above together with (1.9), (1.8), (2.2) and (2.5), we obtain
�




f p �w =

�




f p �up

=
1

ep� 1
p

�




�
�F(�; �up)

�
�p� 2

F(�; �up) F� (�; �up)�up

=
1

ep� 1
p

�




�
�
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for x 2 
 n � 1 . On any compact set K � 
 n � 1 , we have the uniform con-
vergencef p` �! f 1 as ` ! 1 , whereas F� is uniformly bounded from above
and below by (1.8). Hence, by restricting ourselves along the subsequencep` and
letting ` ! 1 we obtain uniform convergence of the right-hand side of (2.17) to
� � 1 (�; e1 sgn(f 1 )) on K . But since we already know that � up �� * � u1 weakly
in L 2(
), it follows that

(2.18)
�
x; � u1 (x)

�
= � � 1

�
x; e1 sgn

�
f 1 (x)

� �
; x 2 K:

As a consequence,

F
�
x; � u1 (x)

�
= e1 sgn

�
f 1 (x)

�
; x 2 K:

Now let us recall that L n (� 1 ) = 0. This is a consequence of general regularity
results for nodal sets of solution to elliptic equations [HS]. The statement of item
(I) then follows.

In order to prove item (II), we note that (2.18) implies that � u1 2 C2(
 n� 1 ).
The desired statement then follows from standard Schauder theory [GT].

For item (III), �rst recall the subsequential cg 0 15b,7g4 Tdn18(tice)-46.9738 a2).
(u2 )C 1
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The C2 regularity of the distance function for a C2 boundary @
 is a classical result,
see e.g. [GT, Appendix 14.6]. On the other hand, the case of C1 regularity of the
distance function when the boundary @
 is C1 holds under the extra hypothesis
that the distance is realised at one point; see e.g. [F].

In order to prove the desired C1;1 regularity of the distance function near @

when the boundary itself is a C1;1 manifold (which we utilised in Lemma 7), we
�rst note the following fact: suppose that r > 0 is such that 1=r is larger than the
essential supremum of the curvature of @
. If x 2 
 and y 2 @
 with jx
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Now note that

Dd(	(x0; t)) = N (x0)

whenever t > 0 is small enough. Hence if � denotes the projection onto Rn � 1 � f 0g,
then we obtain the formula

Dd = N � � � 	� 1

near x0. The right-hand side is of class C0;1, and thus d is of class C1;1 near x0. A
compactness argument then proves the above statement.

Acknowledgement. N.K. would like to thank Craig Evans, Juan Manfredi,
Robert Jensen, Jan Kristensen, Giles Shaw and Tristan Pryer for inspiring sci-
enti�c discussions on the topic of L 1 variational problems.
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