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Abstract

A 1-D moving-mesh nite difference scheme based on local conservation is constructed for a class of second-
order nonlinear diffusion problems with moving boundaries that (a) preserves scaling properties and (b) is
exact at the nodes for initial conditions sampled from similarity solutions. Details are presented and the ex-
actness property con rmed for two moving boundary problems, the porous medium equation and a simplistic
glacier equation.

The scheme is also tested for non self-similar initial conditions by computing relative errors in the approx-
imate solution (in thé; norm) and the approximate boundary position, indicating superlinear convergence.

Keywords: Nonlinear diffusion, moving-meshes, scale-invariance, similarity, conservation, nite
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1. Introduction

Partial differential equations (PDEs) govern many physical processes which occur in branches of applied
mathematics. However, due to the complexity of these equations the solution cannot always be determined
analytically and numerical approximation becomes fundamental both for extracting quantitative solutions and
for achieving a qualitative understanding of the behaviour of the solution.

In this paper we consider one-dimensional second-order nonlinear diffusion equations of the general form

Uy = (ug)x (a(t) <x<b (1)) 1)

for a functionu(x;t), whereqis of the formf p(u)« g° ands is an odd integer, posed on nite moving domains.

Typical boundary conditions for this problem consist of a Dirichlet condition and a ux condition oruv,

wherev is the boundary velocity, at each moving boundary. Here we shall assume th@atat the moving

boundaries. In general the position of the boundary depends on the solution.

Many PDE problems that arise in practical applications possess symmetries involving simultaneous scal-
ing of the variables, x, andu
Moving-mesh schemes, referred to as r-adaptive methods, are well suited to problems po:

moving domains since they are able to track the movement of the boundaries. Construction of th
varies but can be classi ed into two broad categories; mapping-based and velocity-based methc
former, which have been extensively studied in [10/_18, 14, 13], control the location of mesh poi
based on equidistribution. Velocity-based methods, on the other hand, rely on determining a
each cornputational node in the mesh and advancing the nodal positions in time. In this paper
concerned with a particular velocity-based moving-mesh nite difference method that uses local ¢
and has been successfully applied to a number of different problems in [7, 18, 1, 34, 2, 3, 26, 4, 2!
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The main thrust of this paper is the construction of a scale-invariant moving mesh scheme for nonlinear
diffusion problems of the form (1) that is exact for initial conditions that coincide with a self-similar scaling
solution (thus preserving a scaling symmetry) and accurate for general initial conditions. The layout of the
paper is as follows. In section 2 we recall the scaling properties of a general PDE problem of the form
(1) and the construction of self-similar solutions. Details are given for two nonlinear diffusion equations of
the form (1); a porous medium equation (PME) and a simpli ed glacier equation (SGE). A moving-mesh
nite difference scheme based on conservation of the local integnali®then described in section 3 which
propagates solutions exactly when the initial condition coincides with a self-similar solution. Numerical
calculation con rms that relative errors in the approximate solution and approximate boundary position are
zero to within rounding error. Section 4 contains numerical results from the numerical algorithm when the
initial condition does not coincide with a similarity solution. Both the PME and SGE are used to assess the
accuracy of the numerical method for a non self-similar initial condition by computing the relative errors in
the approximate solution and the approximate boundary position for varying numbers of mesh points.

The paper ends with concluding remarks.

2. Background

The work of Budd et al [10, 11, 12, 13] has underlined the importance of preserving the geometric struc-
tures of the underlying PDE problem in constructing a moving-mesh method. In this section scale-invariance
and similarity solutions are recalled and illustrated in the context of two nonlinear diffusion equations, a
porous medium equation and a simpli ed glacier equation.

2.1. Scale-invariance
A PDE problem of the form (1) exhibits scale-invariance if the scaling transformation

t= £ x= % u= 0, gq= 4@ 2

maps the variableg,(x, u, g) to another setf{ ®, 0, ¢) for some arbitrary positive (group) parametesuch
that equation (1) remains the same in the transformed coordinates.

Substituting the scaling transformation (2) into the PDE (1), it is easy to show that the poweesnd
satisfy 1= + (leading to =1). Afurther relation between the scaling powers depends on
the particular form of the functiop(u) and will be described for each example in section 2.3.

The total integral (mass)

Z bty
= u(;t)d 3)
a(t)
has rate of change 7
d b(t)
— = urd + u(b(t);t)b u(a(t);t)a
dt a(t)
Z )
= (ug) d + u(bt);t)b u(a(t);t)a
a(t)

= u(b(t);t)fa(b(t); t) + by u(a(t);t)fg(a(t);t) + ag=0
by theu = 0 boundary condition. Hence the total mass is constant in time. After substitution from (2),

Z ity Z ut)
= oy ) dc M= 7 u(t fHdn
a(f) a(f)
where the moving boundariegt) andb(t) transform in the same way as and thus is constant in time if
andonlyif + =0.



2.2. Self-similar solutions

A systematic approach in which the scaling transformafibn (2) may be used to construct exact solutions to
scale-invariant PDE problems is as follows. Solutions are sought such thét; t) is a function of x and
t , which allows the number of independent variables of the differential equation to be reduced by one [8].
These solutions, termed similarity solutions or self-similar solutions, have contributed some of the greatest
insights into nonlinear ows|[[B, 15]. Such symmetries are structurally important and are useful since the
resulting equation may be more easily solved than the original problem.

In order to construct such solutions we de ne a “similarity' transformation which is invariant under the
action of [2). Introduce the so-called similarity variables

u q X

; = = —: (4)

t
By assuming functional relationships of the form
=f()  =9() (5)

(wheref andg are suf ciently differentiable functions) and substitutifig (2) into equafign (1), a time-independent
ODE satis ed by ( ) and ( ) is obtained. Fron{ {4) anfl|(5), in termsxfndt,

ux;t)=tf ti ;oodxt)=tg tl : (6)
For a xed parameter the solutions may be described in terms of the moving coordinate
b(;t)=1t (7
and the functions

b(;t

i



(v)x  (continuity equation)
px= (Darcy's law)
(equation of state)

<
I

where is the densityy is the velocity (given by Darcy's law), is the viscosity, is the permeability of the



A self-similar scaling solution, given in [20, 17], is therefore

|
_ _o 3=7
3=7 4=3
7 X

1
u(x;t) = t1=11 4@ﬁ 1 t1=11

(14)

+

where the notatiorr denotes the positive part of the solution, thus determining the ebtgntf the domain.
The position(t) of the boundary is given big(t) = t171! and its velocityy = (1 =11)t °=1! in accordance

with (9).

3. A moving domain

In general the extent of the domain of the solutiorf ¢f (1) depends on the solution itself, and so the approach
taken to solve the equation is crucial. A standard approach is to solvecioa xed domain and then adjust
the boundary according to the boundary conditions by interpolation. Another way is to solvafat the
boundary position simultaneously. A useful device is to stretch the domain in proportion to the (unknown)
boundary position and solve a modi ed PDE, although this procedure may affect the structure of the PDE [5].
A more physical way of deforming the domain is based on a local conservation of mass, which determines
a nodal velocityv (in terms of the solutioru) and has the advantage that the subsequent recoverysof
algebraic([1, 24]. This approach is summarised below.

The Eulerian equation of conservation (continuity) for a conserved quanisty

U +(uv)x =0 (15)

wherev is the Eulerian velocity. Equatioh (L5) is scale-invariant urider (2) wrsmales as 1. Combining
(I5) with the scale-invariant PDE](1),

(ug)x + (uv)x =0;
yielding (giveng and a boundary or anchor condition wnthe velocity
v(x;t)= q (16)

at all points of the domain (provided thaté 0). For the nonlinear diffusion equatiorig (1) the velodty] (16)
is

v(x;t) = f p(u)xg®: 17)
If uis constant (in time) at the moving boundary h(t), say, then for alt
Du
ﬁ=0= Ut + VpUx = (UQ)x + VpUy
wherev,, is the boundary velocity, from which
vp= f (ug)x=uxg (18)
if uc 60 []
] ]
]
]



3.1. Amoving-mesh nite difference scheme
Consider a one-dimensional mesh with time-dependent mesh points

a(t) = xo(t) <xi(t) :ir;<xn(t)= b(t)

wherea(t) andb(t) are the (moving) boundaries.

3.1.1. Generating the mesh velocities

The velocity is taken to be a nite difference approximation of (10fy (24]). In the case whers = 1
a convenient second-order centred accurate approximatiov) fat any timet" consists of a barycentric
average of the two rst-order approximationspéu)« in adjacent cells (see e.g. [26, 6]). Thus the mesh-
velocity vj at any pointx; is calculated as

p(uj+1) p(uj) + p(uj) p(uj 1)

_ (X + X')z (x X )2
Vj - j+1 i " Jl j 1 (22)
Xj+1 Xj Xj X1
with truncation error 1
Tj = é(xj Xj 1)(Xj +1 Xj) p(u)xxx X= #i (23)

where#; is an intermediate value. It is straightforward to con rm that the formula (22) is scale-invariant
under the transformation (2).

In the case of similarity the instantaneous velocity is proportionallby (9) and equal to p(u)x when
s =1 by (17). Thusp(u)x is proportional tab, the truncation error (23) vanishes, and the general second-
order formula (22) is exact in this case.

Remark 1. The same result is obtained by evaluating the derivative of the quadratic interpolating polynomial
throughp(u; 1), p(u;) andp(u; +1 ) atx = x;, as we now show.

For general values of the odd integg(includings = 1) the velocity isv = f p(u)xg® by (17). Because
the velocity is proportional ta in the case of similarity by (9), it follows tha#(u), is proportional tax=s,
Then by integration (taking the origin afat a point wherg(u) vanishes) the functiop(u) is proportional
to x1*1 =S and hencd p(u)g® is a monomialQ(x) of degreel + s. The velocity in terms 0€Q(x) is then

S

V= f PG = fQUOTg = (=9 QMO Q= (1=9°QM) Q)% (24)

The evaluation oQ(x;) = fp(u;)g® atx = x; is straightforward. Moreover, siné@(x) is a monomial of
degreel + s the evaluation o), atx = x; is exact if it is calculated by differentiating the interpolating
polynomial of degred + s through three adjacent values@(x; ).

PME

For the PME we have = 1 andp(u) = (u™)x=m withv = (u™)x=m. The velocity can there-
fore be calculated either from (22) or from (24) wid(x;) = (u;)™=m and the derivative), found by
differentiating the quadratic interpolating polynomial through adjacent value$ sfn.

SGE

For the SGEs = 3 andp(u) = (3=7)u’ with v = f p(u)xg®. The velocity can therefore be cal-
culated from (24) withQ(x;) = (3 =7)3(u;)” and the derivativ&), found by differentiating the quadratic
interpolating polynomial through adjacent valueg®#$7)3(u; ).

3.2. Advancing x(t)
The mesh point locations (t) can now be obtained via time integration of the ODE system

v G =1N 1)



We seek a time-stepping scheme which is scale invariant and exact for self-similar solutions. Often used
is the explicit Euler time-stepping scheme,

XML = N4 tyn- j=1;::N 1 (25)

which although scale invariant is not exact for self-similar solutions.
Observe from|(7) that the functign=



3.4. The numerical algorithm

In summary, a scale-invariant moving mesh algorithm for the approximate solution of nonlinear diffusion
equations of the fornj [1) is as follows:

Given initial data with mesh poianO and valuesi?, evaluate the; 's from ) at the initial time. Then
for each time step:

(1) Compute the mesh velocitigs using [22) (whers = 1) or (24) (for anys).
(2) Move the mesh from" tot"** to obtainxjn+1 using the time-stepping schen@(Z?).

n+1

(3) Update the values;' "~ values at the next time step from equati (30).

Remark 3. The solution is propagated exactly when the initial condition is sampled from a self-similar
solution initially. Any vector of nodal values sampled from a self-similar solution is a xed point of the
scheme.

4. Numerical results

When the moving-mesh algorithm of sectjon|3.4 is implemented in Matlab for the examples described in
sectior] 2.B (the PMHE (10) for various positive valuesrfand the SGH (12)) the scheme propagates initial
self-similar solutions exactly at the nodes (to within rounding error), as expected.

Where the time-stepping scheme (step 2 of the algorithm) is replaced by the forward Euler scheme corre-
sponding to putting = 1 in (27) (as is common with many authors) the scheme reverts to the nite difference
scheme described ih [24] where tests on the PME witk 1 indicate second order convergence in lthe
norm of the solution error and in the position of the boundary.riror 2 ; 3 the convergence rate reduced to
superlinear, apparently due to the in nite slope of the exact solution at the boundary in thesetaddk (
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