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Abstract

A 1-D moving-mesh �nite difference scheme based on local conservation is constructed for a class of second-
order nonlinear diffusion problems with moving boundaries that (a) preserves scaling properties and (b) is
exact at the nodes for initial conditions sampled from similarity solutions. Details are presented and the ex-
actness property con�rmed for two moving boundary problems, the porous medium equation and a simplistic
glacier equation.

The scheme is also tested for non self-similar initial conditions by computing relative errors in the approx-
imate solution (in thel1 norm) and the approximate boundary position, indicating superlinear convergence.

Keywords: Nonlinear diffusion, moving-meshes, scale-invariance, similarity, conservation, �nite
differences, porous medium equation, glacier equation.

1. Introduction

Partial differential equations (PDEs) govern many physical processes which occur in branches of applied
mathematics. However, due to the complexity of these equations the solution cannot always be determined
analytically and numerical approximation becomes fundamental both for extracting quantitative solutions and
for achieving a qualitative understanding of the behaviour of the solution.

In this paper we consider one-dimensional second-order nonlinear diffusion equations of the general form

ut = ( uq)x (a(t) < x < b (t)) (1)

for a functionu(x; t ), whereq is of the formf p(u)x gs ands is an odd integer, posed on �nite moving domains.
Typical boundary conditions for this problem consist of a Dirichlet condition onu and a �ux condition onuv,
wherev is the boundary velocity, at each moving boundary. Here we shall assume thatu = 0 at the moving
boundaries. In general the position of the boundary depends on the solution.

Many PDE problems that arise in practical applications possess symmetries involving simultaneous scal-
ing of the variablest, x, andu

Moving-mesh schemes, referred to as r-adaptive methods, are well suited to problems posed on �nite
moving domains since they are able to track the movement of the boundaries. Construction of these schemes
varies but can be classi�ed into two broad categories; mapping-based and velocity-based methods [19]. The
former, which have been extensively studied in [10, 19, 14, 13], control the location of mesh points and are
based on equidistribution. Velocity-based methods, on the other hand, rely on determining a velocity for
each computational node in the mesh and advancing the nodal positions in time. In this paper we shall be
concerned with a particular velocity-based moving-mesh �nite difference method that uses local conservation
and has been successfully applied to a number of different problems in [7, 18, 1, 34, 2, 3, 26, 4, 25, 24, 6, 16].
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The main thrust of this paper is the construction of a scale-invariant moving mesh scheme for nonlinear
diffusion problems of the form (1) that is exact for initial conditions that coincide with a self-similar scaling
solution (thus preserving a scaling symmetry) and accurate for general initial conditions. The layout of the
paper is as follows. In section 2 we recall the scaling properties of a general PDE problem of the form
(1) and the construction of self-similar solutions. Details are given for two nonlinear diffusion equations of
the form (1); a porous medium equation (PME) and a simpli�ed glacier equation (SGE). A moving-mesh
�nite difference scheme based on conservation of the local integral ofu is then described in section 3 which
propagates solutions exactly when the initial condition coincides with a self-similar solution. Numerical
calculation con�rms that relative errors in the approximate solution and approximate boundary position are
zero to within rounding error. Section 4 contains numerical results from the numerical algorithm when the
initial condition does not coincide with a similarity solution. Both the PME and SGE are used to assess the
accuracy of the numerical method for a non self-similar initial condition by computing the relative errors in
the approximate solution and the approximate boundary position for varying numbers of mesh points.

The paper ends with concluding remarks.

2. Background

The work of Budd et al [10, 11, 12, 13] has underlined the importance of preserving the geometric struc-
tures of the underlying PDE problem in constructing a moving-mesh method. In this section scale-invariance
and similarity solutions are recalled and illustrated in the context of two nonlinear diffusion equations, a
porous medium equation and a simpli�ed glacier equation.

2.1. Scale-invariance

A PDE problem of the form (1) exhibits scale-invariance if the scaling transformation

t = � t̂; x = � � x̂; u = � � û; q = � � q̂ (2)

maps the variables (t, x, u, q) to another set (̂t, x̂, û, q̂) for some arbitrary positive (group) parameter� such
that equation (1) remains the same in the transformed coordinates.

Substituting the scaling transformation (2) into the PDE (1), it is easy to show that the powers� , � and�
satisfy� � 1 = � + � � � (leading to� � � = 1 ). A further relation between the scaling powers depends on
the particular form of the functionp(u) and will be described for each example in section 2.3.

The total integral (mass)

� =
Z b( t )

a( t )
u(�; t ) d� (3)

has rate of change
d�
dt

=
Z b( t )

a( t )
ut d� + u(b(t); t) _b� u(a(t); t)_a

=
Z b( t )

a( t )
(uq) � d� + u(b(t); t) _b� u(a(t); t)_a

= u(b(t); t)f q(b(t); t) + _bg � u(a(t); t)f q(a(t); t) + _ag = 0

by theu = 0 boundary condition. Hence the total mass is constant in time. After substitution from (2),

� =
Z b( t̂ )

a( t̂ )
� � û(�̂; t̂ ) d( � � �̂ ) = � � + �

Z b( t̂ )

a( t̂ )
u(�̂; t̂ ) d�̂

where the moving boundariesa(t) andb(t) transform in the same way asx, and thus� is constant in time if
and only if� + � = 0 .
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2.2. Self-similar solutions
A systematic approach in which the scaling transformation (2) may be used to construct exact solutions to

scale-invariant PDE problems is as follows. Solutions are sought such that� � u(x; t ) is a function of� � x and
�t , which allows the number of independent variables of the differential equation to be reduced by one [8].
These solutions, termed similarity solutions or self-similar solutions, have contributed some of the greatest
insights into nonlinear �ows [8, 15]. Such symmetries are structurally important and are useful since the
resulting equation may be more easily solved than the original problem.

In order to construct such solutions we de�ne a `similarity' transformation which is invariant under the
action of (2). Introduce the so-called similarity variables

� =
u
t � ; � =

q
t � ; � =

x
t � : (4)

By assuming functional relationships of the form

� = f (� ); � = g(� ); (5)

(wheref andg are suf�ciently differentiable functions) and substituting (2) into equation (1), a time-independent
ODE satis�ed by� (� ) and� (� ) is obtained. From (4) and (5), in terms ofx andt,

u(x; t ) = t � f
�

x
t �

�
; q(x; t ) = t � g

�
x
t �

�
: (6)

For a �xed parameter� the solutions may be described in terms of the moving coordinate

bx(�; t ) = t � � (7)

and the functions

bu(�; t



� t = � (�v )x (continuity equation)
v = � �p x =� (Darcy's law)
p = � 
 (equation of state)

where� is the density,v is the velocity (given by Darcy's law),� is the viscosity,� is the permeability of the



A self-similar scaling solution, given in [20, 17], is therefore

u(x; t ) =
1

t1=11

�
7

4 3
p

11

� 3=7
 

1 �
�

x
t1=11

� 4=3
! 3=7

+

(14)

where the notation+ denotes the positive part of the solution, thus determining the extentb(t) of the domain.
The positionb(t) of the boundary is given bybx(t) = t1=11 and its velocityv = (1 =11)t � 10=11, in accordance
with (9).

3. A moving domain

In general the extent of the domain of the solution of (1) depends on the solution itself, and so the approach
taken to solve the equation is crucial. A standard approach is to solve foru on a �xed domain and then adjust
the boundary according to the boundary conditions by interpolation. Another way is to solve foru and the
boundary position simultaneously. A useful device is to stretch the domain in proportion to the (unknown)
boundary position and solve a modi�ed PDE, although this procedure may affect the structure of the PDE [5].
A more physical way of deforming the domain is based on a local conservation of mass, which determines
a nodal velocityv (in terms of the solutionu) and has the advantage that the subsequent recovery ofu is
algebraic [1, 24]. This approach is summarised below.

The Eulerian equation of conservation (continuity) for a conserved quantityu is

ut + ( uv)x = 0 (15)

wherev is the Eulerian velocity. Equation (15) is scale-invariant under (2) whenv scales as� � � 1. Combining
(15) with the scale-invariant PDE (1),

(uq)x + ( uv)x = 0 ;

yielding (givenq and a boundary or anchor condition onv) the velocity

v(x; t ) = � q (16)

at all points of the domain (provided thatu 6= 0 ). For the nonlinear diffusion equations (1) the velocity (16)
is

v(x; t ) = �f p(u)x gs: (17)

If u is constant (in time) at the moving boundaryx = b(t), say, then for allt

Du
Dt

= 0 = ut + vbux = ( uq)x + vbux

wherevb is the boundary velocity, from which

vb = �f (uq)x =ux g (18)

if ux 6= 0



3.1. A moving-mesh �nite difference scheme
Consider a one-dimensional mesh with time-dependent mesh points

a(t) = x0(t) < x i (t) : : : ; < x N (t) = b(t)

wherea(t) andb(t) are the (moving) boundaries.

3.1.1. Generating the mesh velocities
The velocity is taken to be a �nite difference approximation of (17) (cf: [24]). In the case wheres = 1

a convenient second-order centred accurate approximation forvj at any timetn consists of a barycentric
average of the two �rst-order approximations top(u)x in adjacent cells (see e.g. [26, 6]). Thus the mesh-
velocity vj at any pointx j is calculated as

vj = �
p(u j +1 ) � p(u j )

(x j +1 � x j )2 + p(u j ) � p(u j � 1 )
(x j � x j � 1 )2

1
x j +1 � x j

+ 1
x j � x j � 1

(22)

with truncation error
Tj =

1
6

(x j � x j � 1)(x j +1 � x j ) p(u)xxx
�
�
x = # i

(23)

where#i is an intermediate value. It is straightforward to con�rm that the formula (22) is scale-invariant
under the transformation (2).

In the case of similarity the instantaneous velocity is proportional tox by (9) and equal to� p(u)x when
s = 1 by (17). Thusp(u)x is proportional tobx, the truncation error (23) vanishes, and the general second-
order formula (22) is exact in this case.

Remark 1. The same result is obtained by evaluating the derivative of the quadratic interpolating polynomial
throughp(uj � 1), p(uj ) andp(uj +1 ) at x = x j , as we now show.

For general values of the odd integers (includings = 1 ) the velocity isv = �f p(u)x gs by (17). Because
the velocity is proportional tox in the case of similarity by (9), it follows thatp(u)x is proportional tox1=s.
Then by integration (taking the origin ofx at a point wherep(u) vanishes) the functionp(u) is proportional
to x1+1 =s and hencef p(u)gs is a monomialQ(x) of degree1 + s. The velocity in terms ofQ(x) is then

v = �f p(u)x gs = �
�

f Q(x)1=sgx

� s
= �

�
(1=s)

�
Q(x)1=s� 1Qx

� � s

= � (1=s)sQ(x)1� s(Qx )s: (24)

The evaluation ofQ(x j ) = f p(uj )gs at x = x j is straightforward. Moreover, sinceQ(x) is a monomial of
degree1 + s the evaluation ofQx at x = x j is exact if it is calculated by differentiating the interpolating
polynomial of degree1 + s through three adjacent values ofQ(x j ).

PME
For the PME we haves = 1 andp(u) = ( um )x =m with v = � (um )x =m. The velocity can there-

fore be calculated either from (22) or from (24) withQ(x j ) = ( uj )m =m and the derivativeQx found by
differentiating the quadratic interpolating polynomial through adjacent values ofum

j =m.

SGE
For the SGEs = 3 andp(u) = (3 =7)u7=3 with v = �f p(u)x g3. The velocity can therefore be cal-

culated from (24) withQ(x j ) = (3 =7)3(uj )7 and the derivativeQx found by differentiating the quadratic
interpolating polynomial through adjacent values of(3=7)3(uj )7.

3.2. Advancing x(t)
The mesh point locationsx j (t) can now be obtained via time integration of the ODE system

dx j

dt
= v(x j ; t); (j = 1 ; :::; N � 1)



We seek a time-stepping scheme which is scale invariant and exact for self-similar solutions. Often used
is the explicit Euler time-stepping scheme,

xn +1
j = xn

j + � t vn
j ; j = 1 ; :::; N � 1 (25)

which although scale invariant is not exact for self-similar solutions.
Observe from (7) that the functiony =



3.4. The numerical algorithm

In summary, a scale-invariant moving mesh algorithm for the approximate solution of nonlinear diffusion
equations of the form (1) is as follows:

Given initial data with mesh pointsx0
j and valuesu0

j , evaluate the�cj 's from (29) at the initial time. Then
for each time step:

(1) Compute the mesh velocitiesvj using (22) (whens = 1 ) or (24) (for anys).

(2) Move the mesh fromtn to tn +1 to obtainxn +1
j using the time-stepping scheme (27).

(3) Update the valuesun +1
j values at the next time step from equation (30).

Remark 3. The solution is propagated exactly when the initial condition is sampled from a self-similar
solution initially. Any vector of nodal values sampled from a self-similar solution is a �xed point of the
scheme.

4. Numerical results

When the moving-mesh algorithm of section 3.4 is implemented in Matlab for the examples described in
section 2.3 (the PME (10) for various positive values ofm) and the SGE (12)) the scheme propagates initial
self-similar solutions exactly at the nodes (to within rounding error), as expected.

Where the time-stepping scheme (step 2 of the algorithm) is replaced by the forward Euler scheme corre-
sponding to putting� = 1 in (27) (as is common with many authors) the scheme reverts to the �nite difference
scheme described in [24] where tests on the PME withm = 1 indicate second order convergence in thel1

norm of the solution error and in the position of the boundary. Form = 2 ; 3 the convergence rate reduced to
superlinear, apparently due to the in�nite slope of the exact solution at the boundary in these cases (cf: [1]).
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