Department of Mathematics and Statistics Preprint MPS-2016-06 15 April 2016 \mathcal{D} ∞ ## **Nikos Katzourakis** # D-SOLUTIONS TO THE SYSTEM OF VECTORIAL CALCULUS OF VARIATIONS IN L^1 VIA THE BAIRE CATEGORY METHOD FOR THE SINGULAR VALUES GISELLA CROCE, NIKOS KATZOURAKIS AND GIOVANNI PISANTE Abstract. For H 2 C²(R^{N n}) and u : Rⁿ! R^N, consider the system (1) H_P $$H_{P} + H[H_P]^2 H_{PP}$$ (D u) : D²u = 0: The PDE system (1) is associated to the supremal functional (2) $$E_1(u; ^0) = H(Du)k_{L^1(0)}; u 2 W_{loc}^{1;1}(; R^N); ^0b;$$ and rst arose in recent work of the 2nd author as the analogue of the Euler-Lagrange equation. Herein we employ the Dacorogna-Marcellini Baire Category method to construct D-solutions to the Dirichlet problem for (1), an apt notion of generalised solutions recently proposed for fully nonlinear systems. Our D-solutions to (1) are W $^{1;1}$ -submersions corresponding to \critical points" of (2) and are obtained without any convexity hypotheses. Along the way we establish a result of independent interest by proving existence of strong solutions to the singular value problem for general dimensions $n \in \mathbb{N}$. #### 1. Introduction Let H 2 $C^2(\mathbb{R}^{N-n})$ be a given function and \mathbb{R}^n a given open set,n; N 2 N. In this paper we are interested in the problem of existence of appropriately de ned generalised solutions with given Dirichlet boundary conditions to the second order PDE system (1.1) $$A_1 u := H_P + H_I H$$ In the above, the subscript P denotes the derivative of H with respect to its matrix variable, while denote respectively the gradient matrix and the hessian tensor of (smooth) maps $u: R^n ! R^N$. The notation \[H_P]^? " symbolises the orthogonal projection on the orthogonal complement of the range of the linear map $\not\vdash (P): R^n ! R^N$: (1.2) $$[H_P(P)]^? := Proj_{R(H_P(P))^?}$$: 1 Key words and phrases. Vectorial Calculus of Variations in L¹; Generalised solutions; Fully nonlinear systems; 1 -Laplacian; Young measures; Singular Value Problem, Baire Category method; Convex Integration. In index form, (1.1) reads = 1; :::; N. Our general notation is either self-explanatory or a convex combination of standard symbolisations as e.g. in [E, D, EG, DM2]. The system (1.1) is the analogue of the Euler-Lagrange equation when one considers nonstandard vectorial variational problems in the spaceL1 for the supremal functional (1.3) $$E_1(u; ^0) := H(Du)_{L^1(_{^{0}})}; u 2 W_{loc}^{1;1}(_{^{\circ}}; R^N); ^0 b$$ and rst arose in recent work of the second author ([K1]). Calculus of Variations in L¹, as the eld is known today, was initiated by G. Aronsson in the 1960s who studied the scalar caseN = 1 quite systematically ([A1]-[A7]). Since then the area has been developed marvellously due to both the intrinsic mathematical interest and the importance for applications. In particular, the theory of Viscosity Solutions of Crandall-Ishii-Lions played a fundamental role in the study of the generally singular solutions to the scalar version of (1.1). When N = 1, the respective single equation simpli es to (1.4) $$A_1 u = H_P(Du) H_P(Du) : D^2u = 0$$ and is known as the \Aronsson equation". For a pedagogical introduction to the scalar case with numerous references see e.g. [K7, C]. See also [Pi] for a comparison between the Viscosity Solutions approach and the Baire Cathegory one. On case of rankrk(D u) 2, the appropriate minimality notion connecting (1.1) to (1.3) is not the obvious extension of Aronsson's scalar notion of Absolute Minimiser (see [K2, K10, K13]). Perhaps the greatest di culty associated to the study of (1.1) is that it is quasilinear, non-divergence and non-monotone and all standard approaches in order to de ne generalised solutions based on integration-by-parts or on the maximum principle seem to fail. Motivated partly by the systems arising in Calculus of Variations in L^1 , the second author has recently proposed in [K8] a new e cient theory of of Du in the Young measures valued into the sphere \overline{R}^N_s n^2 : $_{D^{1,h}\,_m\,Du} \ ^*\ D^2u; \quad \text{in } Y \quad ; \overline{R}^N_s \quad ^{n^2} \ ; \quad \text{as } m \ ! \ 1 \quad : \ .$ $$_{D^{1:h} \, m \, Du} \, * \, D^2u; \quad \text{in Y} \quad ; \overline{\mathbb{R}}_s^{N-n^2}; \quad \text{as m } ! \, 1$$ Our main ingredient for the solvability of (1.11) is a result of independent interest about the solvability of the following fully non-linear system, usually referred to as the prescribed singular value problem (1.13) $$i(Du) = 1;$$ a.e. on ; $i = 1; ...; n ^ N;$ $u = g;$ on @: In (1.13), f $_1(Du)$; :::; $_{n^N}(Du)g$ denotes the set of singular values of the matrix Du, namely the eigenvalues of the matrix $(DPDu)^{1=2}$ in increasing order and we symbolise $n^N = \min f n$; N g. Systems of PDEs involving singular values, mostly related to non-convex problems in Calculus of Variations, have been considered by several authors (cf. for instance [Cr, BCR, DR, DPR]). In particular the problem of nding su cient conditions on the boundary datum g in order to get existence of solutions to problem (1.13) has been addressed, in the special case N, in [DM1, DM2, DT]. To the best of our knowledge no results are known for the case N. Accordingly, we establish the following result. Theorem 5. Let R^n be an open set. Assume that $2 A_{pw}(\bar{R}^N)$ is such that $n^N(Dg) < 1$, a.e. on . Then, there exists an in nite set of solutions $u \ 2 \ W_q^{1;1}(\bar{R}^N)$ to the system (1.13). The proof of the previous theorem can be obtained as an application of the general existence theory for di erential inclusion via the Baire Category method (cf. [PD]), in the same spirit as in the N = n case. It relies on the characterisation of the rank-one convex envelope of the set of matrices which is as proved in Theorem 11. In order to address the question of the existence of solutions to the problem (1.11) with g 2 W $^{1;1}$ (; R^N), some comments on the admissible regularity of the boundary datum in Theorem 5 are in order. Indeed, the piecewise a nity of the datum g can be weakened to Lipschitz continuity if we restrict slightly the bound on the norm n^N (Dg). This result, precisely stated in Corollary 6 that follows, is a simple consequence of the convexity of the rank-one convex hull E (cf. Theorem 11) and of the approximation result proved in [DM2, Corollary 10.21]. Corollary 6. Let R^n be an open set. Assume that $2 \ W^{1;1}$ (; R^N) is such that for some > 0 we have $_{n^{\wedge}N}$ (Dg) 1 , a.e. on . Then there exists a in nite set of solutions u 2 $W_g^{1;1}$ (; R^N) to the system (1.13). The rest of the paper is organised as follows. In the next section we recall some known results about Young measures valued into spheres. In Section 3 we provide the proof of the existence of solutions for the prescribed singular value problem and in the last section we prove existence and geometric properties \$\omega\$-solutions to the problem (1.10). ### 2. Young measures valued into spheres Here we collect some basic material taken from [K8] which can be found in di erent guises and in greater generality e.g. in [CFV, FG]. Let E^n be measurable and consider the E^1 space of strongly measurable maps valued in the continuous functions over the sphere \overline{R}_s^N e^n (for details on these spaces see e.g. [Ed, FL]): $$L^1$$ E; C $\overline{R}_s^{N-n^2}$: This space consists of Caratheodory functions : E $\overline{R}_s^{N-n^2}$! R for which $$k \ k_{L^{1}(E;C(K))} = (x;)_{C(\overline{R}^{N-n^{2}}_{s})} dx < 1 :$$ The dual of this (separable) Banach space is $$L_w^1$$ $E; M$ \overline{R}_s^N n^2 = L^1 $E; M$ \overline{R}_s^N n^2 : The dual space above consists of measure-valued maps \vec{s} ! #(x) which are weakly* measurable, that is, for any xed 2 C $\vec{R}_s^{N-n^2}$, the function Z E 3 x 7! $$\mathbb{R}^{N-n^2}$$ (X) d[#(1 Ed, #### 3. The prescribed singular value problem In this section we prove Theorem 5 and Corollary 6. To this aim we start by recalling for the convenience of the reader some well known results about generalised convex hulls of sets of matrices (for further details we refer to the books [DM2] and For Q 2 R^{N n} we set $$T(Q) := Q; adj_2Q; \dots; ; adj_{N^n}Q 2 R^{(N;n)};$$ where adj, Q stands for the matrix of all s s subdeterminants of the matrix Q, 1 s $N \wedge n = \min f N; ng and$ $$(N;n) := {N X^n \choose s=1} {N \choose s} {n \choose s} {n \choose s} = {N! \over s! (N - s)!}$$ De nition 7. Consider a function $f: R^{N-n}! R[f+1g]$. - (1) f is said to be polyconvex if there exists a convex function g: R (N;n)! R[f + 1g such that f(Q) = g(T(Q)). - (2) f is said to be rank one convexif $$f Q + (1) R f (Q) + (1) f (R)$$ for every 2 [0; 1] and every Q; R 2 \mathbb{R}^{N} with rk(\mathbb{R} Q) = 1. It is well known that if a function is polyconvex, then it is rank one convex. Next we recall the corresponding notions of convexity for sets. if OMEGIT Let E be a subset ofR^N ! n. De nition 8. conve) one 9 2 1] an RC dore (/IFRa) sets-4(/6rywe) RR (1) We say that E is polyconvex if there exists a convex s[(De nition)-383(8.3f28(v)2g8(e)-292(rp)51(olyc) Analogous representations to (32 such that $(Z)_{n^{\wedge}N;n^{\wedge}N}=1$ and the other entries of Z are null. Then Q + "Z would 4. D-solutions to the PDE system arising in vectorial Calculus of Variations in $\ L^1$ In this section we establish the proofs of Theorem 3 and of Proposition 4 by utilising Corollary 6 Now we complete the proof of the proposition. By our assumptions on H (see Theorem 3), for any u as above we have $$H(Du) = h Du Du^2 = h c^2 I$$ and by splitting the identity as $$c^2I = [cljO][cljO]^{>}$$ where [cl j O] 2 R N N R^{N} for a.e. $x \ 2$. Since D u 2 L¹ (F 5 #### References - AK. H. Abugirda, N. Katzourakis, Existence of 1D vectorial Absolute Minimisers in L^1 under minimal assumptions , ArXiv preprint, http://arxiv.org/pdf/1604.03068.pdf - AM. L. Ambrosio, J. May, Very weak notions of di erentiability , Proceedings of the Royal Society of Edinburgh A 137 (2007), 447 455. - A1. G. Aronsson, Minimization problems for the functional $\sup_x F(x; f(x); f^{0}(x))$, Arkiv for Mat. 6 (1965), 33 53. - A2. G. Aronsson, Minimization problems for the functional $\sup_{x} F(x; f(x); f^{0}(x))$ II, Arkiv fer Mat. 6 (1966), 409 431. - A3. G. Aronsson, Extension of functions satisfying Lipschitz conditions , Arkiv fer Mat. 6 (1967), 551 561. - A4. G. Aronsson, On the partial di erential equation $u_x^2 u_{xx} + 2 u_x u_y u_{xy} + u_y^2 u_{yy} = 0$, Arkiv fer Mat. 7 (1968), 395 425. - A5. G. Aronsson, Minimization problems for the functional $\sup_x F(x; f(x); f^0(x))$ III , Arkiv for Mat. (1969), 509 512. - A6. G. Aronsson, On Certain Singular Solutions of the Partial Di erential Equation $u_x^2 u_{xx} + 2u_x u_y u_{xy} + u_y^2 u_{yy} = 0$, Manuscripta Math. 47 (1984), 133 151. - A7. G. Aronsson, Construction of Singular Solutions to the p-Harmonic Equation and its Limit - FL. I. Fonseca, G. Leoni, Modern methods in the Calculus of Variations: L^p spaces Springer Monographs in Mathematics, 2007. - HJ. R.A. Horn, Ch.R. Johnson, Matrix Analysis , Cambridge University Press, 2012. - K1. N. Katzourakis, L¹ -Variational Problems for Maps and the Aronsson PDE system , J. Differential Equations 253 (2012), 2123 2139. - K2. N. Katzourakis, 1 -Minimal Submanifolds, Proceedings of the AMS 142 (2014), 2797 2811. - K3. N. Katzourakis, On the Structure of 1 -Harmonic Maps, Communications in PDE 39 (2014), 2091 - 2124. - K4. N. Katzourakis, Explicit 2D 1 -Harmonic Maps whose Interfaces have Junctions and Corners, Comptes Rendus Acad. Sci. Paris, Ser.I 351 (2013), 677 680. - K5. N. Katzourakis, Optimal 1 -Quasiconformal Immersions, ESAIM Control, Opt. and Calc. Var., to appear (2015) DOI: http://dx.doi.org/10.1051/cocv/2014038. - K6. N. Katzourakis, Nonuniqueness in Vector-valued Calculus of Variations in L¹ and some Linear Elliptic Systems, Comm. on Pure and Appl. Anal. 14 (2015), 313 - 327. - K7. N. Katzourakis, An Introduction to viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L¹, Springer Briefs in Mathematics, 2015, DOI 10.1007/978-3-319-12829-0. - K8. N. Katzourakis, Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems, ArXiv preprint, http://arxiv.org/pdf/1501.06164.pdf - K9. N. Katzourakis, Absolutely minimising generalised solutions to the equations of vectorial Calculus of Variations in L^1 , ArXiv preprint, http://arxiv.org/pdf/1502.01179.pdf - K10. N. Katzourakis, A new characterisation of 1 -Harmonic and p-Harmonic maps via a ne variations in L¹, ArXiv preprint, http://arxiv.org/pdf/1509.01811.pdf - K11. N. Katzourakis, Molli cation of D-solutions to fully nonlinear PDE systems, ArXiv preprint, http://arxiv.org/pdf/1508.05519.pdf - K12. N. Katzourakis, Equivalence between weak and D-solutions for symmetric hyperbolic rst order PDE systems, ArXiv preprint, http://arxiv.org/pdf/1507.03042.pdf - K13. N. Katzourakis, Solutions of vectorial Hamilton-Jacobi equations are rank-one Absolute Minimisers in L¹, ArXiv preprint, http://arxiv.org/abs/1604.00802 - KP. N. Katzourakis, T. Pryer, On the numerical approximation of 1 -Harmonic mappings , ArXiv preprint, http://arxiv.org/pdf/1511.01308.pdf - P. P. Pedregal, Parametrized Measures and Variational Principles , Birkhauser, 1997. - Pi. G. Pisante, Su cient conditions for the existence of viscosity solutions for nonconvex Hamiltonians, SIAM J. Math. Anal., 36(1):186203, 2004. - V. M. Valadier, Young measures, in \Methods of nonconvex analysis", Lecture Notes in Mathematics 1446, 152-188 (1990). Normandie Univ, UNIHAVRE, LMAH, 76600 Le Havre, France E-mail address : gisella.croce@univ-lehavre.fr Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK E-mail address: n.katzourakis@reading.ac.uk Dipartimento di Matematica e Fisica, Seconda Universit a degli Studi di Napoli - S.U.N., Viale Lincoln, 5, c.a.p. 81100 Caserta, Italy E-mail address : giovanni.pisante@unina2.it