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Abstract. Given the supremal functional Ei1 (u;
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R", the respective PDE is thel -Laplace equation

X
(1.3) 1u:=Du Du:D% = DiuDjuDf u = 0:

ij =1
Despite the importance for applications and the deep analytical interest of the area,
the vectorial case ofN 2 remained largely unexplored until the early 2010s. In
particular, not even the correct form of the respective PDE systems associated to
L! variational problem was known. A notable exception is the early vectorial con-
tributions [ , ] wherein (among other deep results) L versions of lower
semi-continuity and quasiconvexity were introduced and studied and the existence
of Absolute Minimisers was established in some generality wittH depending onu
itself but for minfn; N g
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di erent sets of variations. In [K2] we proved the following variational characteri-

sation in the class of classical solutions. AC2 map u : R" ! RN is a solution
to
(1.5) Du Du:D?u=0

if and only if it is a Rank-One Absolute Minimiser on , namely whenforall D b
all scalar functions g 2 C}(D) vanishing on @Dand all directions 2 RN, uis a
minimiser on D with respect to variations of the form u+ g (Figure 1):

(1.6) KDuk_1 (p) Du + Dg . (D)
| — | 1( —
% AN
s
u(Q) u
g )
S
Figure 1.
Further, if rk(D u) const., u is a solution to
(1.7) jiDUj?[bu]> u=0

if and only if u() has 1l -Minimal Area, namely when for allD b , all scalar
functions h 2 CY(D) (not vanishing on @D and all vector elds 2 C(D;RN)
which are normal to u(), u is a minimiser on D with respect to normal free
variations of the form u+ h (Figure 2):

(1.8) kDuk; 1 (D) Du+D(h) L1 (D):

Figure 2.
We called a map1 -Minimal with respect to functional kD( )ki:
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In this paper we consider the obvious generalisation of the rank-one minimality
notion of (1.6) adapted to the functional (1.1). To this end, we identify a large class
of rank-one Absolute Minimisers: for anyc 0, every solutionu : R'! RN
to the vectorial Hamilton-Jacobi equation

(1.9 H x;Du(x) =c¢ x2 ;

actually is a rank-one absolute minimiser. Namely, for any °b , any 2
Wyt (9 andany 2 RN, we have

ess sufH x; Du(x) ess sufH x; Du(x) + D (x) :
x2 © x2 0

For the above implication to be true we need the solutions to be inC'( ;RN) and
not justin WXt ( ;RVN). This is not a technical di culty: it is well known even in
the scalar case that if we allow only for 1 non-di erentiability point, strong solutions
of the Eikonal equation jDuj = 1 are not absolutely minimising for the L' norm
of the gradient (e.g. the cone functionx 7! jxj). However, due to regularity results
which available in the scalar case, it su ces to assume everywhere di erentiability
(see [CEG, CC]).

Our only hypothesis imposed onH is that for any x 2 the partial function
H(x; ): RN "1 Risrank-one level-convex This means that for anyt 0, the
sublevel sets H(x; ) t are rank-one convex sets iRN ". AsetC RN Mis
called rank-one convex when for any matricesA;B 2 C with rk(A  B) 1, the
convex combination A + (1 )B is in Cfor any O 1. An equivalent way
to phrase the rank-one level-convexity ofH (x; ) is via the inequality

H x; A +(1 )B max H(x;A);H(x;B) X;
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Theorem 1. Let R" be an open seth;N 2 N andH : RN "1 [0;1)
a continuous function, such that for allx 2 , P 7! H(x;P) is rank-one level-
convex, that is

H(x; ) t is arank-one convex inRY " forallt 0;x?2

Let u2 C*( ;RN) be a solution to the vectorial Hamilton-Jacobi PDE
H(;Du)=c¢ on ;

for somec 0. Then, u is a rank-one Absolute Minimiser of the functional

E; (u; 9= esszstij x;Du(x) ;  °b ;u2wi'( ;RV):

X

In addition, the following marginally stronger result holds true: for any °b
any 2Wy' ( 9andany 2 RN, we have

E: (u; 9 BZB”RT N E, u+ : B

whereB(; 9
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We illustrate the idea by assuming rst in addition that 2 Wkl ( GRN)\
Cl( %RN). In this case, the point x is a critical point of ( u) and we have
D ( u) (x) =0. Hence,

D( W) =[FD( wx+[1"D( u)x)
= D ( uw+DI[T( u®X
=0
because []° [Puon © Thus,
E1 (u; 9= c= H(xDu(x))
= H x D(  u)(x) + [ ]’ Du(x)
and hence

Ex(u; 9=H x D( )X)+[ 1D (x)
= H(x;D (x))

ess suiH (y;D (y))
y2B (x)

= E; ; B ()

2.2)

forany B (x) B ( u); 9, whence the conclusion ensues.
Now we return to the general case of 2 WYt ( RN). We extend by u on
n Cand consider the sets

8
2 0. 4 . do . .
X2 : dist(x; > — : k2N;
(2.3) kZ:> ( @O) K

wheredy > 0 is a constant small enough so that 1 6 ;. We set
(2.4) Vg = kN k 1, k2N

g consider a partition of unity ( Wiy  CL( 9Yover %sothat
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j =1, we have

i p3 e p3
k Ke vy = sup K ) K
Vi k=1 k=1
*
sup k =«
(2.7) Vi k=1
e
- =k
= Sup k
Vilk=1 1
"=k .
3|<:|mlz;i|;)|(+1 c( 9
whilst, for | =1 we similarly have
. "=k )
(2.8) k Ke (V1) 2 kaaé c(Y"
By the standard properties of molli ers, we have that the function
(2.9) 1 (t) := sup cy O<t<d g;
O< <t

is an increasing continuous modulus of continuity with! (0" ) = 0. By (2.7)-(2.9),
we have that

. I . .
(2.10) k Ke wn) 3! I b2
21 ("); I=1:
Since the C! regularity of " is obvious (becauseu by assumption is such and
[7 [ 17 u), the claim has been established.

Note now that since u2 Wit (( %RV), the setB
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our continuity assumption and the W% regularity of  imply that there exists a
positive increasing modulus of continuity ! ; with ! 1(0*) = 0 such that on the ball
B - »(Xo) we have

. X
H(;D )= H ; k D)
k=1
# I
R = ?
+ D«( ) ™ +[TD
k=1
" ” [
(2.13) X — ,
H kDC ) & +[ID
k=1 |
b3 o '
+ 1 Dv( ) ™)
k=1
= A+ B:
By further restricting "< = 2, we may arrange
(2.14) B-(x) B (xo)
x2B= 2(x)
and by (2.4)-(2.5), there existsK ( ) 2 N such that
(2.15) B (Xo) Vi
k=1;:5K ()
This implies that for any x 2 B (Xp),
X KX)+1
(2.16) k(X) = k(x)=1
1 1
forming a convex combination. We now recall for immediate use right below the
following Jensen-like inequality for level-convex functions (see e.g. [ , 1):

for any probability measure onanopenset) R" andany -measurable function
f:U R"I [01 ),\éve have

(2.17) f(x)d (x) esssup f(x) ;
u x2U
when : R" ! R is any continuous level-convex function. Further, by our rank-

one level-convexity assumption orH and if is as above, foranyx 2 and 2 RN
with j j = 1, the function

(2.18) (Pp=Hx; p+[T’D (x) ; p2RY,

is level-convex. Indeed, ?iverp;qz R"andt Owith ( p); (g t, weset
P=  p+[I'D (0;
Q= a+[I'D (x):

Then,P Q= (p gy andhencerkP Q) 1. Moreover,H(x;P)=( p) t

and H(x;Q)= ( g t which gives
p+@2 )g=HXxP+1 )Q t
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forany 2 [0; 1], as desired.
Now, by using (2.4)-(2.5),

of (2.18), for any x 2 B-5(Xg) we have the estimate
0

(2.14)-(2.16) and the level-convexity of the function

g # 1
A(x) = H @x; «x) D( ) " (x) +[TD (xA
0 k=1 1
K §)+1
= @ k() D( ) T (A
(2.19) -
k=1 ml?)f )+l D( ) G
Z !
= max - D( )y) ™ (x yidy

Since for anyx and "; k, the map

= Gx L

is a probability measure on the ball B-—, (x) which is absolutely continuous with
respect to the Lebesgue measurke", in view of (2.17), (2.19) gives
!

A(X) _ max

(2.20) - max

esssup  D(  )(y)
y2B (X) |

esssupH x; D( YY)+[ I’D (x)
y2Bezy (X)

esssupH x;  D( )W+[I'D (x) :

y2B- (x)

By the continuity of H and Du, there is a positive increasing modulus of continuity

I, with ! ,(0* %: 0 such that
S HEXP)
Du(x)

H(y;Q) 2 jx yj+ P Qj;
Du(y) P2 Jxyj s

for all x;y 2 B (xo) and jPj;jQj k D k.1 ( o +1. By using that[ ]’ [TPu

on 9 (2.20) and the above g

ive

A(x) esssupH x;[I’D (\)+[ I’D (x)

y2B- (x)

(

esssup H vy;[]
y2B-(x)

>88(0f)]TI/F11 9.9626 Tf 89.385 0 Td [(H)]TI/F8 9.9626 Tf 11.961 0 Td [(and)-288(D)]TI/F11 9.9626 Tf 26.532 0 1
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By (2.14), (2.21) gives
A(x) esssuH y;D (y) + sup !z jx yj+ Du(y) Du(x)
y2B-(x) y2B-(x)

esssupH y;D (y) + '2 "+ 1(") ;]
y2B (xo)
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