

Department of Mathematicand Statistics

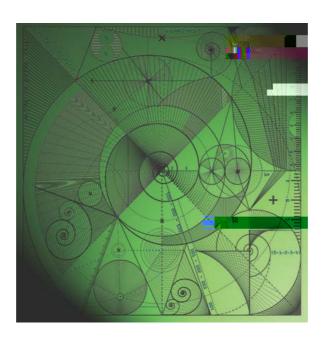
Preprint MP\$201604

15 April 2016

Solutions of vectorial Hamilton-Jacobi equations are rankone Absolute Minimisers in L[∞]

by

Nikos Katzourakis



SOLUTIONS OF VECTORIAL HAMILTON-JACOBI EQUATIONS ARE RANK-ONE ABSOLUTE MINIMISERS IN $\ensuremath{\mathsf{L}}^1$

NIKOS KATZOURAKIS

Abstract. Given the supremal functional E₁ (u;

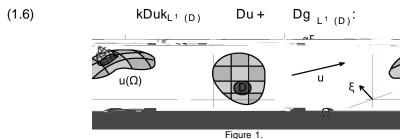
Rⁿ, the respective PDE is the 1 -Laplace equation

Despite the importance for applications and the deep analytical interest of the area, the vectorial case of N $\,^2$ remained largely unexplored until the early 2010s. In particular, not even the correct form of the respective PDE systems associated to L 1 variational problem was known. A notable exception is the early vectorial contributions [BJW1, BJW2] wherein (among other deep results) L 1 versions of lower semi-continuity and quasiconvexity were introduced and studied and the existence of Absolute Minimisers was established in some generality with depending onu itself but for min f n; N g

di erent sets of variations. In [K2] we proved the following variational characterisation in the class of classical solutions. \mathcal{K}^2 map $u: \mathbb{R}^n ! \mathbb{R}^N$ is a solution to

(1.5) Du Du:
$$D^2u = 0$$

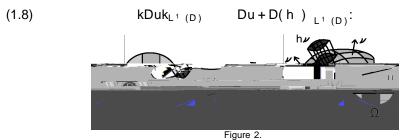
if and only if it is a Rank-One Absolute Minimiser on , namely when for all D b , all scalar functions g 2 $C_0^1(D)$ vanishing on @Dand all directions 2 R^N , u is a minimiser on D with respect to variations of the form u + g (Figure 1):



Further, if rk(D u) const., u is a solution to

(1.7)
$$jDuj^2[Du]^? u = 0$$

if and only if u() has 1 -Minimal Area, namely when for all D b , all scalar functions h 2 $C^1(\overline{D})$ (not vanishing on @D) and all vector elds 2 $C^1(D; R^N)$ which are normal to u(), u is a minimiser on D with respect to normal free variations of the form u + h (Figure 2):



We called a map 1 -Minimal with respect to functional $\,kD(\,)k_{L^{\,1}\,(\,)}\,$ when it is a Rank-One Absolute Minimiser on $\,$ and $\,$ u() has $\,$ 1 -Minimal Area.

Perhaps the greatest di culty associated to (1.1) and (1.4

In this paper we consider the obvious generalisation of the rank-one minimality notion of (1.6) adapted to the functional (1.1). To this end, we identify a large class of rank-one Absolute Minimisers: for any c 0, every solution u: R^n ! R^N to the vectorial Hamilton-Jacobi equation

(1.9)
$$H x; Du(x) = c; x 2;$$

actually is a rank-one absolute minimiser. Namely, for any 0 b $\,$, any $\,$ 2 $W_0^{1;1}$ ($^0\!)$ and any $\,$ 2 R^N , we have

$$\underset{x2}{\text{ess supH}} \hspace{0.2cm} x; \hspace{0.05cm} \text{Du}(x) \hspace{0.5cm} \underset{x2}{\text{ess supH}} \hspace{0.2cm} x; \hspace{0.05cm} \text{Du}(x) + \hspace{0.5cm} D \hspace{0.2cm} (x) \hspace{0.2cm} : \hspace{0.2cm}$$

For the above implication to be true we need the solutions to be in $C^1(\ ; R^N)$ and not just in $W^{1;1}_{loc}(\ ; R^N)$. This is not a technical di culty: it is well known even in the scalar case that if we allow only for 1 non-di erentiability point, strong solutions of the Eikonal equation jDuj = 1 are not absolutely minimising for the L^1 norm of the gradient (e.g. the cone functionx 7! j xj). However, due to regularity results which available in the scalar case, it su ces to assume everywhere di erentiability (see [CEG, CC]).

Our only hypothesis imposed onH is that for any x 2 the partial function $H(x;): R^{N-n} ! R$ is rank-one level-convex This means that for any t 0, the sublevel sets H(x;) t are rank-one convex sets irR^{N-n} . A set $C R^{N-n}$ is called rank-one convex when for any matricesA; B t C with rk(A B) 1, the convex combination A t (1 B) is in C for any 0 1. An equivalent way to phrase the rank-one level-convexity ofH(x;) is via the inequality

$$H x; A + (1) B max H(x; A); H(x; B) x;$$

Theorem 1. Let R^n be an open set,n; N 2 N and H : R^{N-n} ! [0;1) a continuous function, such that for all x 2 , P 7! H(x;P) is rank-one level-convex, that is

$$H(x;)$$
 t is a rank-one convex in R^{N-n} , for all t 0; x 2 :

Let u 2 C1(; RN) be a solution to the vectorial Hamilton-Jacobi PDE

$$H(;Du) = c \text{ on } ;$$

for some c 0. Then, u is a rank-one Absolute Minimiser of the functional

$$E_1$$
 (u; 0) = $\underset{x2}{\text{ess supH}}$ x; Du(x); 0 b ; u 2 $W_{loc}^{1;1}$ (; R^N):

In addition, the following marginally stronger result holds true: for any $\,^0$ b $\,$, any $\,^2$ W $_0^{1;1}$ ($\,^0\!)$ and any $\,^2$ R $^N\!$, we have

$$\mathsf{E_1} \ (\mathsf{u}; \ ^0) \quad \inf_{\mathsf{B2B} \ (\ ; \ ^0)} \mathsf{E_1} \ \mathsf{u+} \ ; \ \mathsf{B}$$

where B(; 0)

We illustrate the idea by assuming rst in addition that $2 W_u^{1;1} ({}^0, R^N) \setminus C^1({}^0, R^N)$. In this case, the point x is a critical point of (u) and we have D (u) (x) = 0. Hence,

because []? []? u on 0. Thus,

$$E_1 (u; ^0) = c = H(x; Du(x))$$

= H x; D(u)(x) + [][?] Du(x)

and hence

(2.2)
$$E_{1} (u; ^{0}) = H x; D()(x) + []^{?} D (x)$$
$$= H(x; D (x))$$
$$= ss supH(y; D (y))$$
$$= E_{1} ; B (x)$$

for any B (x) B (u); 0 , whence the conclusion ensues.

Now we return to the general case of $\ 2\ W_u^{1;1}$ ($^0,R^N$). We extend by u on n 0 and consider the sets

where $d_0 > 0$ is a constant small enough so that $d_0 \in \mathcal{C}$. We set

$$(2.4) V_k := {\scriptstyle k \ n \overline{\scriptstyle k \ 1}}; \quad k \ 2 \ N$$

and consider a partition of unity ($_k)_{k=1}^1$ $\ \ \, C_c^1$ ($^0\!)$ over 0 so that

9 .398 w 0 0 m 22.295 0 I S Q BT

_

j j = 1, we have

whilst, for I = 1 we similarly have

(2.8)
$$k = k_{C(\overline{V_1})} = 2 \max_{k=1.2} = k_{C(\overline{V_1})}$$

By the standard properties of molli ers, we have that the function

$$(2.9) \hspace{1cm} ! \hspace{1mm} (t) := \sup_{0 < \, t} \hspace{1cm} {}_{C \, (\hspace{-.4mm} ^{-_0} \hspace{-.4mm})}; \hspace{1cm} 0 < t < d_0;$$

is an increasing continuous modulus of continuity with ! $(0^+) = 0$. By (2.7)-(2.9), we have that

we have that
$$(2.10) \qquad \qquad k \qquad k_{C(\overline{V_{l}})} \qquad \begin{matrix} (&&&&\\&3!&&\\&&2!&(");&&l=1:\end{matrix}$$

our continuity assumption and the W^{1;1} regularity of imply that there exists a positive increasing modulus of continuity $\frac{1}{1}$ with $\frac{1}{1}(0^{+}) = 0$ such that on the ball $B_{=2}(x_0)$ we have

By further restricting " < = 2, we may arrange

(2.14)
$${}^{L}_{x2B_{=2}(x)} B_{"}(x) B (x_{0})$$

and by (2.4)-(2.5), there exists K () 2 N such that

(2.15) B
$$(x_0)$$
 V_k

This implies that for any $x \ge B$ (x_0),

forming a convex combination. We now recall for immediate use right below the following Jensen-like inequality for level-convex functions (see e.g. [BJW1, BJW2]): for any probability measure on an open set U Rⁿ and any -measurable function [0; 1), we have Z $f:U R^n!$

(2.17)
$$\int_{U}^{-} f(x) d(x) = \underset{x \ge U}{\text{ess sup }} f(x);$$

R is any continuous level-convex function. Further, by our rankone level-convexity assumption or H and if is as above, for any 2 and 2 RN with j j = 1, the function

(2.18)
$$(p) := H x; p + []^{?} D (x); p 2 R^{n};$$

is level-convex. Indeed, giverp; q 2 Rⁿ and t 0 with (p); (q) t, we set $P := p + [\]^? \ D \ (x);$

$$P := p + []^? D (x);$$

 $Q := q + []^? D (x):$

Then, P Q = $(p \ q)$ and hence $rk(P \ Q)$ 1. Moreover, H(x; P) = (p) t and H(x; Q) = (q) t which gives

$$p + (1) q = H x; P + (1) Q$$

for any 2 [0; 1], as desired.

Now, by using (2.4)-(2.5), (2.14)-(2.16) and the level-convexity of the function of (2.18), for any \times 2 B₌₂(\times 0) we have the estimate

Since for any x and "; k, the map

$$:=$$
 $=^{k} (jx \quad j) L^{n}$

is a probability measure on the ball $B_{-k}(x)$ which is absolutely continuous with respect to the Lebesgue measure, in view of (2.17), (2.19) gives

(2.20)
$$\begin{aligned} & \underset{k=1 \text{ ;::::;} K \text{ ()}+1}{\text{max}} & \underset{y \text{ 2B}_{-k} \text{ (x)}}{\text{ess sup}} & D() \text{ (y)} \\ & = \underset{k=1 \text{ ;:::;} K \text{ ()}+1}{\text{max}} & \underset{y \text{ 2B}_{-k} \text{ (x)}}{\text{ess supH}} & x \text{ ; } & D() \text{ (y)} + []^? D \text{ (x)} \\ & \underset{y \text{ 2B}_{-k} \text{ (x)}}{\text{ess supH}} & x \text{ ; } & D() \text{ (y)} + []^? D \text{ (x)} \text{ :} \end{aligned}$$

By the continuity of H and Du, there is a positive increasing modulus of continuity $\binom{1}{2}$ with $\binom{1}{2}(0^+) = 0$ such that

for all x; y 2 B (x_0) and jPj; jQj k D k_{L^1} (x_0) + 1. By using that [x_0]? u on x_0 , (2.20) and the above give

A(x) ess supH x; [] D (y) + [] D (x)
$$y \ge B \cdot (x)$$

ess sup H y; []>88(of)]TJ/F11 9.9626 Tf 89.385 0 Td [(H)]TJ/F8 9.9626 Tf 11.961 0 Td [(and)-288(D)]TJ/F11 9.9626 Tf 26.532 0 Tg 22 B- (x)

By (2.14), (2.21) gives

- BJW2. E. N. Barron, R. Jensen, C. Wang, Lower Semicontinuity of L¹ Functionals Ann. I. H. Poincae AN 18, 4 (2001) 495 517.
- CC. L.A. Ca arelli, M.G. Crandall, Distance Functions and Almost Global Solutions of Eikonal Equations, Communications in PDE 03, 35, 391-414 (2010).
- C. M. G. Crandall, A visit with the 1 -Laplacian, in Calculus of Variations and Non-Linear Partial Di erential Equations , Springer Lecture notes in Mathematics 1927, CIME, Cetraro Italy 2005.
- CEG. M. G. Crandall, L. C. Evans, R. Gariepy, Optimal Lipschitz extensions and the in nity Laplacian, Calc. Var. 13, 123 139 (2001).
- CIL. M. G. Crandall, H. Ishii, P.-L. Lions, User's Guide to Viscosity Solutions of 2nd Order Partial Di erential Equations , Bulletin of the AMS 27, 1-67 (1992).
- D. B. Dacorogna, Direct Methods in the Calculus of Variations , 2nd Edition, Volume 78, Applied Mathematical Sciences, Springer, 2008.
- DM. B. Dacorogna, P. Marcellini, Implicit Partial Di erential Equations , Progress in Nonlinear Di erential Equations and Their Applications, Birkhauser, 1999.
- E. L.C. Evans, Partial Di erential Equations , AMS, Graduate Studies in Mathematics Vol. 19, 1998.
- K1. N. Katzourakis, L¹ -Variational Problems for Maps and the Aronsson PDE system , J. Differential Equations, Volume 253, Issue 7 (2012), 2123 2139.
- K2. N. Katzourakis, 1 -Minimal Submanifolds , Proceedings of the AMS, 142 (2014) 2797-2811.
- K3. N. Katzourakis, On the Structure of 1 -Harmonic Maps, Communications in PDE, Volume 39, Issue 11 (2014), 2091 2124.
- K4. N. Katzourakis, Explicit 2D 1