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EIGENVALUE OF HYPOELLIPTIC OPERATORS
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Abstract. Sub-Riemannian geometry is a generalization of Riemannian one, to include
nonholonomic constraints. In this paper we prove a nonholon omic version of the classical
Santab formula: a result in integral geometry that descri bes the intr

a compact domain M with piecewise C2 boundary. Moreover, we prove a universal

(i.e. curvature independent) lower bound for the rst Diric hlet eigenvalue (M) of the

intrinsic sub-Laplacian,

2
)y K

Tz
in terms of the rank k of the distribution and the length L of the longest reduced sub-
Riemannian geodesic contained inM . All our results are sharp for the sub-Riemannian
structures on the hemispheres of the complex and quaternionic Hopf brations:
sty g cpt; ) ST oppY dog
where the sub-Laplacian is the standard hypoelliptic operator of CR and quaternionic
contact geometries, L = and k = 2d or 4d, respectively.

1. Introduction and results

Let (M;g) be a compact Riemannian manifold with boundary @M Santab formula
[19,(43] is a classical result in integral geometry that degibes the Liouville measure of
the unit tangent bundle UM in terms of the geodesic ow {: UM ! UM. Namely, for
any measurable functionF : UM ! R we have

z z 'z z- ! #

\'%

) F o= . F( «(v)dt g(ving) ov) (a);
Uum @M Uui@m o

where is the surface form on@Minduced by the inward pointing normal vector n,
is the Riemannian spherical measure ortUgM , UJ @Mis the set of inward pointing unit
vectors at g2 @Mand " (v) is the exit length of the geodesic with initial vector v. Finally,
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andrP;RP:M ! R areZ
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@M

Figure 2. Visibility angle on a 2D Riemannian manifold. Only the
geodesics with tangent vector in the dashed slice go t@M
where diamy denotes the horizontal diameter of the Carnot group.

In particular, if M is the metric ball of radius R, we obtain 1(M) k 2=(2R)2. Clearly
@) is not sharp, as one can check easily in the Euclidean case

1.5. Isoperimetric-type inequalities. In this section we relate the sub-Riemannian
area and perimeter of M with some of its geometric properties. SinceM is compact,
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We can apply Proposition[4 to Carnot groups equipped with theHaar measure. In this
case# = # =1and  =diam'(M)=diamy(M). Moreover, ! is the Lebesgue volume
of R" and is the associated perimeter measure of geometric measuregry [16].

Corollary 9. Let M be a compactn-dimensional submanifold with piecewiseC? boundary
of a Carnot group of rank k, with the Haar volume. Then,

(@M 2y
(M)  jSKjdiamy (M)’
where diamy (M) is the horizontal diameter of the Carnot group.

This inequality is not sharp even in the Euclidean case, buti is very easy to compute
the horizontal diameter for explicit domains. For example, if M is the sub-Riemannian
metric ball of radius R, then diamy (M) = 2R.

1.6. Remark on the change of volume. Fix a sub-Riemannian structure (N; D;g), a
compact setM with piecewise C? boundary and a complementV such that (H1) holds.
Now assume that, for some choice of volume formi, also (H2) is satis ed, so that we
can carry on with the reduction procedure and all our resultshold. One can derive the
analogous of Proposition§ P[1314]7 for any other volumé®= e ! , with * 2 C1 (M). In
all these results, it is su cient to multiply the r.h.s. of th e inequalities by the volumetric
constant 0 < 1dened as = fof and indeed replace! with 1%2= e ! in

Propositions [2 and[3, O I
O o O
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Furthermore, the
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Remark 4. This construction gives a canonical way to de ne a measure ol M and its
bers in the general sub-Riemannian case, depending only othe choice of the volume!
on the manifold M . It turns out that this measure is also invariant under the Hamiltonian
ow. Notice though that in the sub-Riemannian setting, ber s have in nite volume.

3.3. Invariance. Here we focus on the case of interest wheile T M is a rank k vector
sub-bundle andE® E is a corank 1 sub-bundle as de ned in Sectioi 312. We stress #t
ECis not necessarily a vector sub-bundle, but typically its bers are cylinders or spheres.

Recall that the sub-Riemannian geodesic ow ¢ : T M | T M is the Hamiltonian
owof H: T M ! R. Moreover, in our picture, M N is a compact submanifold with
boundary @M of a larger manifold N, with dim M =dim N = n.

De nition 2. A sub-bundleE T M isinvariant if {( )2 E forall 2 E andt such
that «( )2 T M is dened. A volume form 2 " K(E)is invariant if Ly =0.

Our de nition includes the case of interest for Santab formula, where sub-Riemannian
geodesics may cros® M6 ;. In other words, E is invariant if the only way to escape from
E through the Hamiltonian ow is by crossing the boundary (@M. Moreover, if is
an invariant volume on an invariant sub-bundle E, then ; = .

Lemma 12 (Invariant induced measures) LetE T
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Writing XY u(x) = r (Yu)(x) X(x), where v w is the Euclidean scalar product of
v;w 2 R", proves the claim.

The above implies that the bracket [X;Y ] is tangent to @M a.e. onC(@M for any
X;Y 2 (D). In particular, this contradicts the bracket-generating assumption (I1).

4.2. (Sub-)Riemannian Santal o formula. For any covector 2 UyM, the exit length
“( )isthe rsttime t 0 at which the corresponding geodesic (t) = t( ) leaves
M crossing its boundary, while { ) is the smallest between the exit and the cut length
along (t). Namely

“()=supft 0j (t)2Mg
T )=supft ()] Jpy is minimizingg:
We also introduce the following subsets of the unit cotangenbundle :U M! M:
Uur@M=f 2U Mjgmjh; ni > 0g;
U
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Remark 5. Even if M is compact and hence™< +1 ,ingeneral0 M ( U M. Moreover,
if also” < +1 (that is, all geodesics reach the boundary ofM in nite time), then

U M = U M. Thus, our statement of Santab formula contains [19, Theaem VII.4.1].

Remark 6. If @Mis only Lipschitz and C(@M has positive measure, the above Santab

formulas still hold by removing on the left hand side fromU M andU M the setf ()]
()2 C(@M andt 0g. Nothing changes on the right hand side as (C(@M) =0 by
de nition of n.

Proof. Let A [0;+1) U*@Mbe the set of pairs ; ) suchthat0 <t<" (). By

Lemmal[I5 it follows that A is measurable. Letalsaz = (@M U M which clearly
has zero measure il M. Dene :A! U MnZas (tf )= (). Thisis a smooth
di eomorphism, whose inverse is () = ( “( )( ); (). In particular, U M is
measurable. Then, using Lemma 17 (see below),

Z Z Z
(17) F = F = (F ) =

u ™ (A) A . |

z 'z Z- #

) [
= . F(C«( )dt h;ngi q() (9):

@M U; @M
by Fubini Theorem. Analogously, with A= f(t; )jO<t< T )gandZ = Z[f ()]

2U"@Mgthemap :A! U M nZ is adieomorphism with the same inverse. Then,
the same computations as[(1l7) replacingA with A" and Z with Z yield (I&).

Lemma 17. The following local identity of elements of 2" (R U*@M holds

i y= h; ngidtr A~ 2 U @M;
where, in canonical coordinates(p;x) on T M
1
= e = mdp; = =1 (x)dx:
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Putting together (I8), (I9), and (2Z0) completes the proof ofthe statement.

4.3. Reduced Santal o formula. The following reduction procedure replaces the non-
compact setU M in Theorem[18 with a compact subset that we now describe.

To carry out this procedure we X a transverse sub-bundleV  TM such that TM =
D V . We assume thatV is the orthogonal complement ofD w.r.t. to a Riemannian metric
g such that gjp coincides with the sub-Riemannian one and the associated Bmannian
volume coincides with! . In the Riemannian case, whereV/ is trivial, this forces | = | g, the
Riemannian volume. In the genuinely sub-Riemannian case tére is no loss of generality
since this assumption is satis ed for any choice of .

De nition 3.  The reduced cotangent bundlas the rank k vector bundle : T M'! M
of covectors that annihilate the vertical directions:

TM':=f 2T Mjh;vi=0forall v2Vg:
The reduced unit cotangent bundlésU M":=U M\ T M".

Observe thatU M ' is a corank 1 sub-bundle off M ', whose bers are sphere§" 1f
T M'isinvariant in the sense of De nition E] we can apply the congruction of Section 3.3.
The Liouville volume on T M induces a volume onT M' as follows.

Let Xq;:::;Xkand Z1;:::;Zn « belocal orthonormal frames forD and V, respectively.
Let ui( ):= h;X j)andv;( ):= h;Z ;i smooth functions onT M. Thus
TM'=f 2T Mjvi()=::=vy «()=0g:

For all g2 M where the elds are de ned, (u;v) : T,M ! R" are smooth coordinates on
the ber and hence @,;:::; @, ,@,;:::;@, , are vectors onT (TqM) T (T M) for all
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Lemma 18 (Explicit reduced vertical measure). Let g 2 M and x a set of canonical
coordinates (p; x) such that gy has coordinatesxy and

In these coordinates! jx, = ngqo. Then ¢ =volge and ¢ =vol« 1. In particular,

=18 Bm2M;
UM’

wherejS¢ 1j denotes the Lebesgue measure 8f ! and
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q reach the whole Euclidean planeq ?fz = 0g (the left-translation of R  R24*1) At
g = (x;z) this is the plane orthogonal to the vector %Jx; 1 w.r.t. the Euclidean metric.

5.2.
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5.2.1. Riemannian submersions. A Riemannian submersion : (M;g) ! (M; g) is triv-
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The orthogonal complementD := V? with the restriction gjp of the round metric de ne
the standard sub-Riemannian structure on the complex Hopf brations. In real coordi-
nates, as subspaces d®%%*2 | the hemisphere and its boundary are

( ) ( )
M = S+ = x2+y2=1jxo 0 ; @M= x2+y2=1jx0=0
i=0 i=0
A di erent set of coordinates we will use is the following '
pia Wlei# Wdei# )
#wg w7l —, P —
( 1 a) L 1+ joZ ~ 1+ joZ P 1+ JWJ2
where# 2 ( ; )and w = (wg;:::;Wq) 2 CY. In particular ( wy;:::;wg) are inohomge-

neous coordinates forCP? given by wj = zj=z and # is the ber coordinate. The north
pole corresponds to# = 0 and w = 0. The hemisphere is characterized by# 2 [ ;



[ -
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Consider the subsetD = U @M \f "< +1g. Let f (t):= f( t( ). For 2D we
havef (0)= f ("( )) =0 and the one-dimensional Poincae inequality (E5) gives

Z:() Z:() 2 2
. P24 — 07412 2 -
(27) he );rficdt= fR()dt < f (t)“dt:
0 0 ()
Indeed we can replace with L, which is ¢-invariant. Then
s 5% z

K ir wf (@i (@ 2
M @M
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Proof of Proposition @ With L :=sup 5,y v+ L( ), the Hardy inequality (4) can be fur-
ther simpli ed into
z K 22
jirufj®@  — 2
M L2 R

By the min-max principle (L3), whenever anyf 2 C3 (M) such that M f21 =1, we have

z 2

. .2 .

1(M) " jr nfje! 1z

Proof of Proposition Bl Fix a north pole gy and the hemisphereM
O
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De nition 7.  The sub-Riemanniandiameter and reduced diameterare:

diam(M) :=supfd(x;y) j x;y 2

25
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Denote @ = (@,;:::;@, Jand @ =(@,;:::;@,) and @ = (@,;:::;@,). Recall
that "(@: @)= ( @@ @) =( D" ¥ ( @a@:@) Then, using twice (L, )(w)=

H( (w)) (L4 (w)) for any "-form and "-uple w, we obtain
Ly N@: @)= HA( r(@;(%)) "Ly(@: @) i
=( W Al @ae) (@L,(@a)
=( DY L @@ @)+ ( Lg(@):@(( @9(7184 -20 10.909Td [(@)
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