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Diagnosing observation error correlations for Doppler
radar radial winds in the Met O ce UKV model using
observation-minus-background and



to the use of superobservations or the background error coveance matrix used in
the assimilation. The large horizontal correlation length scales are, however, in part,






Desroziers et al. [2005]. We describe the DRW observationsdaheir model representations
in Section 3 and in Section 4 we describe the experimental dgs In Section 5 we consider
the estimated observation error statistics from four di eent cases. Finally we conclude in
Section 6.

2 The diagnostic of Desroziers et al. [2005]

Data assimilation techniques combine observations2 RN’ with a model prediction of the
state, the backgroundx® 2 RN™, often determined by a previous forecast. HerdP and
N™ denote the dimensions of the observation and model state @ respectively. In the
assimilation the observations and background are weightéy their respective errors, using
the background and observation error covariance matric& 2 RN" N" andR 2 RN? N°|
to provide a best estimate of the statex® 2 RN" , known as the analysis. To calculate the
analysis the background must be projected into the observah space using the possibly
non-linear observation operatorH : RN 1 RN"



3 Doppler Radar radial wind observations and their
model representation

3.1 The Met O ce UKV model and 3D variational assimilation
scheme

The operational UKV model is a variable resolution conveain permitting model that



et al. [2000], rst interpolates the NWP model horizontal an



of melting ice resulting in intense re ectivity return [Kit



creating the superobservations using the background doestrintroduce any background
error into 39) if:

1. The observation and background errors are independent;
2. The background state errors are fully correlated withinhe superobservation cell;

3. The background state errors in a superobservation cell &lave the same magnitude
and

4. The background residuals are equally weighted within a parobservation cell.

However, for DRWs it is not clear that all the assumptions wilhold. In particular assump-

tions 1 and 2 are valid at close range to the radar where the seiqpbservation cells are small.
However, at far range the superobservation cells are largadathe assumptions are likely
to be invalid. Therefore, it is possible that at large rangethere is a small in uence of the
background errors on the error associated with the superasation.



with the observation operator described in equation (11). ¥Wsummarise the di erent cases
in Table 1.

Table 1 { Summary of experimental design for di erent cases

Case| B Superobservations| Observation Operator
1 New Yes Old
2 Oold Yes Oold
3 New No Oold
4 New No New

For each case the available data for each radar scan is stoned3D arrays of sizeN*

N" N@& where N*® is the number of scans containing dataN" = 16 is the number of
ranges andN? = 120 is the number of azimuths. Figure 1 shows a radar scan withe
typical superobservation cells. The data is also separatég elevation, with data available
at elevation angles 3, 2°, 4° and &. (We do not estimate the observation error statistics
for the 9° beam due the lack of avaliable data). The position of these sérvations at these
elevations are shown in Figure 2, we note that the color schenfior each given elevation
is used throughout the gures in this manuscript. It is impotant to note that these
observations are only available in areas where there is pitation and it is possible that
only part of the scan contains observations. Furthermorehe use of the superobservations,
thinning and quality control results in a limited amount of data in each scan. The amount
of data available di ers for each elevation, with data for tlke lower elevations available at
far range, and for higher elevations available for near raag This lack of data means that
standard deviations and correlations are not available foevery range at each elevation.
Results are not plotted for standard deviations unless 1508amples were available; for
correlations the required number of samples is 500. Obsetiegas may be correlated along
the beam, horizontally or vertically. Here we consider botlnorizontal correlations and
those along the beam.

Horizontal correlations consider how observations at a gim height are correlated. The blue
cells in Figure 1 show a set of observations that would be coamed for a given height. For
each radar scan, data is sorted into 200m height bins. Hereetlheight takes into account
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the observation located at 30km range, the correlation witthe 18km observation (-12km
separation) will have a smaller measurement volume wheretl® observation at 42km
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It is also possible to compare observations at the same rangdservations will have the

same measurement volume but will be at di erent heights in tB atmosphere. In this case
we nd that for each elevation the correlation length scalesi similar, e.g. at a range of
40km each elevation has a correlation length scale of23km (not shown). This suggests
that the the measurement volume of the observation has therlgest impact on the hori-

zontal correlation length scale, with correlation length sle increasing with measurement
volume.

5.1.2 Along-beam correlations

Next we calculate the along-beam observation errors usiniget data from Case 1. We begin



reassuring and suggest that we are obtaining a reasonabléreate of the observation error
correlations.

Next we calculate the error statistics along the beam for e@levation. In Figure 8 (square
symbols) we plot the change in standard deviation with heigtfor beam elevations 2, 2°,
4° and €. (For the horizontal correlations the height of the radar abve sea level was






angles have larger beam gradients, di erent gates sample ader range of heights in the
atmosphere; this results in small observation error coraions.
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Figure 11 { Correlations along the beam at range 40km for elevations ad approximate
heights 1°  0:8km (black), 2°  1:5km (blue), 4° 3:0km (red) and , 6° 4:3km (cyan)
for superobbed data (solid lines) and thinned raw data (dasled lines). Error correlations are
deemed to be insigni cant below the horizontal line at 0.2.

5.1.3 Summary

For this case we have calculated observation error statist using data from the January






When considering the standard deviations for each elevatiove again see that they are
reduced (see diamonds Figure 8). Though the change in standa



observation error correlation length scales for observatis that are at lower elevations



Using thinned raw data has little impact on the estimated obsrvation error standard



5.4.2 Along-beam correlations

In this case Table 2 and Figure 8 show that the error standardediation is reduced com-
pared to Case 3 suggesting that the more sophisticated obgsion operator is indeed an
improved map from background to observation space. Both Fig



horizontally, vertically or along the path of the radar beam In this work we consider both
the horizontal and along-beam error statistics.

Initially error statistics were calculated for observatios assimilated into the UKV model
operational in January 2014. This provided information onhe general structure of the
observation errors and how they vary throughout the atmospdre. Error statistics were
also calculated using data from an assimilation run using taknative background error
statistics. This provided information on how sensitivity d the results to the speci cation
of the background error statistics. The diagnostic was theapplied to data from a further
two assimilation runs. These evaluated the impact that the se of superobservations and
errors in the observation operator have on the estimated od&awation error statistics.

Results from all four cases showed similar behaviour for thestimated statistics. We are
able to conclude that most DRW error standard deviations, hazontal and along-beam
correlation length scales increase with height, as a funeti of the increase in measurement
volume. Thus at least part of the correlated errors are likglto be related to the uncertainty
in the observation operator. The exceptions are the standadrdeviations at the lowest
heights. Observations at the lowest heights have the smataneasurement volumes, smaller
than the model grid spacing, and hence representativity esrs may well account for the
larger standard deviations at lower heights.

Results showed that the estimated standard deviations ar@wlar those used operationally.
However for the majority of cases, with exception of the°@eam, the correlation length
scales are much larger than those found in Simonin et al. [Z}&and the operational thinning
distance of 6km. Despite the di erences in operational sysi, our estimated average along-
beam correlations are similar to those calculated by Meb-France [Wattrelot et al., 2012].
Furthermore, observation error statistics estimated whemsing an alternative background
error covariance matrix in the assimilation and the resultédrom Waller et al. [2015] imply
that the observation error correlation length scale is undestimated. This suggests that the
errors are correlated to a degree that it should be accountddr in the assimilation.

In an attempt to understand the source of the error correlatins, the e ect of using su-
perobservations and an improved observation operator arersidered. The use of the
superobservations does not a ect the error standard devi@ins. However, results suggest
that the use of superobservations introduces correlatedrer at far range, possibly as a
result of an invalid assumption in the superobservation cagion. The use of an improved
observation operator reduces the error standard deviatisnparticularly at low elevations
and at far range where observations have large measuremeniumes. This is expected
since the new observation operator takes into account the &@ broadening and bending,
both of which a ect the beam most at far range. The improvemenin the low elevations is
related to the inclusion in the observation operator of inflanation from more model levels.
These are denser in the lower atmosphere where the low elésas provide observations.
The use of the new observation operator results in an increasf the along-beam correla-
tion length scale. We hypothesize that this is a result of nelay observation residuals now
sharing information from the same model levels. However, gmhorizontal correlations were
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slightly reduced. This suggests not only that some of the hiaontal correlations previously
seen were a result of omissions in the observation operatbyt also that the horizontal
correlation length scale may be further reduced with the usef on even more complex
observation operator.

These results provide a better understanding of DRW obsertian error statistics and the
sources that contribute to them. We have shown that these obssation errors exhibit
large spatial correlations that are much larger that the op@ational thinning distance. This
implies that either the data must be thinned further to ensue the errors are uncorrelated
or the correlated errors must be accounted for in the assiratlon.
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