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which we refer to as theinhomogeneous attractorof the inhomogeneous IFS. Note that the attractors of
classical (or homogeneous) IFSs are inhomogeneous attractors with condensation equal to the empty set.
It turns out that FC is equal to the union of F; and all images ofC by compositions of maps from the
de�ning IFS. This means that for countably stable dimensions, like the Hausdor� dimension dimH , one
immediately obtains

dimH FC = max f dimH F; ; dimH Cg;

but establishing similar formulae for dimensions that are not countably stable is more challenging. As
such it is natural to study the upper and lower box dimensions,dimB and dimB . In what follows we will
focus on inhomogeneous self-similar sets, i.e. inhomogeneous attractors where the de�ning contractions
are similarities. For this class of attractors it was shown in [OS] that if the de�ning system satis�es
an `inhomogeneous strong separation condition', then the `expected formula' also holds for upper box
dimension, i.e.

dimB FC = max f dimB F; ; dimB Cg: (1.1)

It was shown in [Fr2] that the analogous formula fails for lower box dimension, even if one has good
separation properties, and that (1:1) remains valid even if the separation condition from [OS] is relaxed
to the open set condition (OSC), which, in particular, does not depend onC. See [F2, Chapter 9] for the
de�nition of the OSC. In [Fr3] the problem was addressed for inhomogeneous self-a�ne sets and in this
context (1.1) does not generally hold for upper box dimension even if the OSC is satis�ed.

In this paper we focus on the overlapping situation (i.e. without assuming the OSC) and prove that
(1.1) does not hold in general by considering a construction based on number theoretic properties of
certain Bernoulli convolutions (Section 2). In Section 3, relying on a speci�c spectral gap property of
SO(d) for d > 3, we provide another construction inRd where dimB FC = d � 1 � " with F; and C being



which proves (1.1) in many situations, most notably when the open set condition is satis�ed.
Let I � =

S
k> 1 I k denote the set of all �nite sequences with entries inI and for I =

�
i 1; i 2; : : : ; i k

�
2 I �

write
SI = Si 1 � Si 2 � � � � � Si k

and
cI = ci 1 ci 2 : : : ci k

which is the contraction ratio of SI . The orbital set is de�ned by

O = C [
[

I 2I �

SI (C)

and it is easy to see thatFC = F; [ O = O (cf. [S, Lemma 3.9]).

2 Inhomogeneous Bernoulli convolutions and failure of (1.1)

We begin by computing the box dimensions of a family of overlapping inhomogeneous self-similar sets
based on Bernoulli convolutions. Fix � 2 (0; 1), let X = [0 ; 1]2 and let S0; S1 : X ! X be de�ned by

S0(x) = �x and S1(x) = �x + (1 � �; 0):

To the homogeneous IFSf S0; S1g associate the condensation set

C = f 0g � [0; 1]

and observe that F; = [0 ; 1] � f 0g and so dimB F; = dim B C = 1. We will denote the inhomogeneous
attractor of this system by F �

C to emphasise the dependence on� . In this section we construct several
counterexamples to (1.1). Our �rst counterexample makes use of a well known class of algebraic integers
known as Garsia numbers. We de�ne a Garsia number to be a positive real algebraic integer with norm
� 2, whose conjugates are all of modulus strictly greater than 1: Examples of Garsia numbers includen

p
2

and 1:76929: : :, the appropriate root of x3 � 2x � 2 = 0: In [G] Garsia showed that whenever� is the
reciprocal of a Garsia number, then the associated Bernoulli convolution is absolutely continuous with
bounded density.

Figure 1: Three plots of F �
C , where � is chosen to be 1/2 (where there are no overlaps), the reciprocal of

the golden mean (which is Pisot), and the reciprocal of
p

2 (which is Garsia).

Theorem 2.1. If � 2 (1=2; 1) is the reciprocal of a Garsia number, then

dimB F �
C =

log(4� )
log 2

> 1:

We defer the proof of Theorem 2.1 to Section 2.2 below. For every� 2 (1=2; 1) which is the reciprocal of
a Garsia number, the setF �

C provides a counterexample to (1.1) for the upper (and lower) box dimension,
but it is also worth noting that this example is `sharp' in that, given the data:



and s = � log 2=log � , we prove that this is as large asdimB FC can be. For more details, see Corollary
4.9 and Remark 4.10.

Our second source of counterexamples to (1.1) is a much larger set. As the following statement shows,
F �

C typically provides a counterexample to (1.1) whenever� lies in a certain subinterval of (1=2; 1).

Theorem 2.2. For Lebesgue almost every� 2 (1=2; 0:668) we have

dimB F �
C =

log(4� )
log 2

:

The appearance of the quantity 0:668 is a consequence of transversality arguments used in [BS]. Our
proof of Theorem 2.2 will rely on counting estimates appearing in this paper and will be given in Section
2.3. We note that the value log(4� )=log 2 also appears as the dimension of a related family of sets. In
particular, for � 2 (1=2; 1), let A � be the (homogeneous) self-a�ne set associated to the IFS consisting
of a�ne maps T0; T1 : X ! X de�ned by

T0(x; y) = ( �x; y= 2) and T1(x) = ( �x + 1 � �; y= 2 + 1=2):

It follows from standard dimension formulae for self-a�ne sets that the box dimension of A � is given by
log(4� )=log 2 for every � 2 (1=2; 1), see for example [Fr1, Corollary 2.7]. Also, forevery � 2 (0; 1=2], we
have dimB F �

C = dim B A � = 1, but this case is not so interesting because the IFS de�ningF �
C does not

have overlaps. The relevance of this comparison is purely aesthetic, noting that the projection of this IFS
onto the �rst coordinate gives the Bernoulli convolution and onto the second coordinate gives a simple
IFS of similarities yielding C as the attractor.

Figure 2: Three plots of A



dimB E �
; 6 1 + s("; � ). By choosing " su�ciently small (after �xing � ), s("; � ) can be made arbitrarily

small, in particular to guarantee

maxf dimB E �
; ; dimB Cg 6 1 + s("; � ) <

log(4� )
log 2

6 dimB E �
C

and so (1.1) fails despite the fact thatE �
C is not contained in a subspace. For more discussion on possible

mechanisms for violating (1.1), see Section 5.

2.1 Notational remark

For real-valued functions A and B , we will write A(x) . B (x) if there exists a constantc > 0 independent
of the variable x such that A(x) 6 cB(x), A(x) & B (x) if there exists a constant c0 > 0 independent
of the variable x such that A(x) > c0B (x) and A(x) � B (x) if A(x) . B (x) and A(x) & B (x). In our
setting, x is normally some� > 0 from the de�nition of box dimension or somek 2 N and the comparison
constant c; c0 can depend on �xed quantities only, like � and the de�ning parameters in the IFS.

2.2 Proof of Theorem 2.1

Before we get to the proof we state a useful separation property that holds for the reciprocals of Garsia
numbers and demonstrate the relevance to our situation via (2.1) below.

Lemma 2.3 (Garsia [G]). Let � 2 (1=2; 1) be the reciprocal of a Garsia number and(i k )n
k=1 ; (i 0

k )n
k=1 2

f 0; 1gn be distinct words of lengthn. Then

�
�
�(1 � � )

nX

k=1

i k � k � 1 � (1 � � )
nX

k=1

i 0
k � k � 1

�
�
� >

K
2n :

For some strictly positive constant K that only depends on�:

This lemma is due to Garsia [G]. For a short self-contained proof of this fact we refer the reader to
[B1, Lemma 3.1]. We note that for any I = ( i 1; : : : ; i n ) 2 f 0; 1gn we have

SI (C) = f SI (0; 0)g � [0; � n ] =

(

(1 � � )
nX

k=1

i k � k � 1

)

� [0; � n ]: (2.1)

Combining Lemma 2.3 with (2.1), we see that whenever� is the reciprocal of a Garsia number the images
of C will be separated by a factorK � 2� n . This property is the main tool we use in our proof of Theorem
2.1.

Proof of Theorem 2.1. Fix � > 0 and decompose the unit square into horizontal strips of height� k � � k+1

for k ranging from 0 to k(�; � ), de�ned to be the largest integer satisfying � k ( �;� )+1 > � . Observe that
the only part of F �

C which intersect the interior of the kth vertical strip is

k[

l =0

[

I 2f 1;2gl

SI (C)

which is a union of vertical lines. Within the kth vertical strip, each line intersects on the order of � k =�
squares from the�



where the � � 1 comes from the intersections below thek(�; � )th strip. It follows from Lemma 2.3 and
subsequent discussion that

N � (�( k)) � minf 2k ; � � 1g

which is the maximum value possible and where the `comparison constants' are independent of� and k,
but do depend on � , which is �xed. Let k0(� ) be the largest integer satisfying 2k0 ( � ) < � � 1. It follows
that

N �
�
F �

C

�
� � � 1 +

k0 ( � )X

k=0

�
� k =�

�
2k +

k ( �;� )X

k= k0 ( � )+1

�
� k =�

�
� � 1

= � � 1 + � � 1
k0 ( � )X

k=0

(2� )k + � � 2
k ( �;� )X

k= k0 ( � )+1

� k

� � � 1 + � � 1 (2� )k0 ( � ) + � � 2�
� k ( �;� ) � � k0 ( � ) �

� � � 1 + � � 1 � � log(2 � )= log 2 + � � 2�
� � � � log �= log 2 �

� � � 1� log(2 � )= log 2

which yields

dimB F �
C = dim B F �

C = 1 + log(2 � )=log 2 =
log(4� )

log 2

as required.



Theorem 2.5 (Theorem 2.1 from [BS]). There existsC1 > 0 such that
Z

J

# R2(s; �; n )
2n 6 C1s

for all n 2 N and s > 0.

Theorem 2.5 will be essential when it comes to showing that a generic� 2 J satis�es a separation
property. Importantly the C1 appearing in Theorem 2.5 does not depend onn or s. In [B2] the �rst author
studied the approximation properties of � -expansions. To understand these properties the following set
was studied

T(s; �; n ) :=
n

a 2 An (� ) : 9b 2 An (� ) satisfying a 6= b and ja � bj 6
s

2n

o
:

In [B2] it was shown that
# T(s; �; n ) 6 # R2(s; �; n ): (2.2)

If T(s; �; n ) is a small set then the elements ofAn (� ) are well spread out within [0; 1]: As was seen in the
proof of Theorem 2.1, if the elements ofAn (� ) are well spread out thenF �

C can be a counterexample to
(1.1). We do not show that a separation condition as strong as Lemma 2.3 holds for a generic� 2 J ; but
we can prove a weaker condition holds, a condition which turns out to be su�cient to prove Theorem
2.2.

Proposition 2.6. For Lebesgue almost every� 2 J ; the following inequality holds for all but �nitely
many n 2 N:

2n � 1 6 #
n

a 2 An (� ) : ja � bj >
1

n22n for all b 2 An (� ) n f ag
o

:

To prove Proposition 2.6 we use the Borel-Cantelli lemma and the counting bounds provided by
Theorem 2.5. The following lemma gives an upper bound on the Lebesgue measure of the set of� which
exhibit contrary behaviour to that described in Proposition 2.6. The proof of this lemma is based upon
an argument given in [B2]. We write L for Lebesgue measure.

Lemma 2.7. We have

L
�

� 2 J : 2n � 1 6 # T(n� 2; �; n )
�

6
2C1

n2 :

Proof. Observe that

L
�

� 2 J : 2n � 1 6 # T(n� 2; �; n )
�

6 L
�

� 2 J : 2n � 1 6 # R2(n� 2; �; n )
�

(by (2:2))

=
2n L

�
� 2 J : 2n � 1 6 # R2(n� 2; �; n )

�

2n

6 2
Z

� 2J :2n � 1 6 # R 2 (n � 2 ;�;n )

# R2(n� 2; �; n )
2n

6 2
Z

J

# R2(n� 2; �; n )
2n

6
2C1

n2 (by Theorem 2:5)

as required.

Applying Lemma 2.7 we see that

1X

n =1

L
�

� 2 J : 2n � 1 6 # T(n� 2; �; n )
�

6
1X

n =1

2C1

n2 < 1 :

Thus, the Borel-Cantelli lemma implies that for almost every � 2 J there exists �nitely many n satisfying
2n � 1 6 # T(n� 2; �; n ): If � does not satisfy a height one polynomial then #An (� ) = 2 n : Combining this
statement with the above consequence of the Borel-Cantelli lemma we may conclude Proposition 2.6.
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Note that Proposition 2.6 implies that for Lebesgue almost every� 2 J , there exists a constant� > 0
for which

2n � 1 6 #
n

a 2 An (�



Proof. Let Sd� 1 be the unit sphere inRd endowed with the probability Lebesgue measure. LetL 2(Sd� 1)
denote theL 2 space of real valued functionsf : Sd� 1 ! R. By Drinfeld [D] (when d = 3) and by Margulis
[M] and Sullivan [Su] (when d > 4), there exist rotations g1; : : : ; gk and " > 0 for which the operator

A : L 2(Sd� 1) ! L 2(Sd� 1);

Af (x) =
1
k

kX

i =1

f (g� 1
i (x))

has a spectral gap, namely

kAf k2 6 (1 � " )kf k2 whenever
Z

f = 0 :

Let f be the function which is 1 on the � neighbourhood of x in Sd� 1, and zero otherwise. ThenR
f � � d� 1. We have




 An f �

R
f






2 =



 An (f �

R
f )






2 6 (1 � " )n



 f �

R
f






2 6 O(1)(1 � " )n � (d� 1)=2: (3.1)

Notice that
R

An f =
R

f . Let E � Sd� 1 denote the support of An f and � denote the measure ofE .
Observe that E is contained by the � -neighbourhood ofGn (x), which implies

� = O(1)� d� 1N � (Gn (x)) : (3.2)

Then Z

Sd � 1 nE
(An f �

R
f )2 = (1 � � )(

R
f )2

and by Cauchy{Schwarz,

Z

E
(An f �

R
f )2

Z

E
1 >

� Z

E
An f �

R
f

� 2

= (1 � � )2(
R

f )2:

Combining these two, we obtain
Z

Sd � 1
(An f �

R
f )2 >

�
1 � � + (1 � � )2=�

�
(
R

f )2 = (1 =� � 1)(
R

f )2:

Comparing this to (3.1) gives
1=� 6 1 + O(1)(1 � " )2n � � (d� 1) :

Using (3.2) we obtain
1=N� (Gn (x)) 6 O(1)� d� 1 + O(1)(1 � " )2n :

This implies the theorem (with a di�erent " ).

Theorem 3.2. Let d > 3. For every " > 0 there is an IFS of similarities in Rd such that the attractor,
F; , consists of 1 point, but

dimB FC > d � 1 � "

wheneverC is a singleton not equal toF; .

Proof. Let g1; : : : ; gk and " > 0 be as in Theorem 3.1. Fixc < 1 su�ciently close to 1. Consider the
contractive similarities

Si (x) = c � gi (x):

Then F; = f 0g and let C = f xg for somex 6= 0, which we may assume satis�eskxk = 1. Then



It can be shown that (1 + ")n > "c(n � m )( d� 1) for n = � (c)m + O(1) where

� (c) :=
(d � 1) log 1=c

log(1 + ") � (d � 1) logc
:

Note that � (c) ! 0 asc ! 1. This choice ofn then yields

dimB (FC ) > (1 � � (c))( d � 1):

Choosingc su�ciently close to 1 proves our result.

Remark 3.1. When C and F; are singletons, the (lower and upper) box dimension ofFC is always less
than d � 1 (see Corollary 4.12).

4 New upper bounds

4.1 Upper bound for the box dimension of an inhomogeneous self-similar set

Recall that Si : Rd ! Rd (i 2 I ) are contracting similarity maps with scaling ratio ci de�ning the
self-similar set F; � Rd. We assume thatC � Rd. To simplify notation in this section, we will write:

s = similarity dimension of F; (with the given similarities);

� = dim H F; = dim B F; ;

� = dimB C:

Recall that the box dimension of a (homogeneous) self-similar set always exists and equals the Hausdor�
dimension, see [F1, Corollary 3.3].

De�nition 4.1. Assuming Si (x) = ci M i (x) + bi for an orthogonal matrix M i and bi 2 Rd, let Ti (x) =
ci M i (x). Let GC be the inhomogeneous self-similar set de�ned by the mapsTi (i 2 I ) and C.

De�nition 4.2. For k > 0 let I k denote the set of those multi-indicesI for which 2� k � 1 < c I 6 2� k .

The similarity dimension s gives the bound

jI k j 6 2(s+ ok (1)) k (4.1)

where we use the standardok notation; i.e. ok (f (k))=f (k) tends to zero ask ! 1 (this sequence may
depend on the IFS). To see this, observe that

jI k j 6
X

I 2I k

�
2k+1 cI

� s
6 2sk + s

X

I 2I k

cs
I 6 2sk + sO(1) = 2 (s+ ok (1)) k :

From the de�nition of upper box dimension, we immediately have

N2� n (C) 6 2�n + on (n ) : (4.2)

De�nition 4.3. Let 
 > 0 be the unique real number for which

lim sup
k !1

jf TI : I 2 I k gj1=k = 2 
 :

(In fact, this sequence is essentially sub-multiplicative and therefore the limit exists.)

Note that 
 6 s by (4.1).

Lemma 4.4. If d = 1 or d = 2 (that is, FC is a subset ofR or R2) or the matrices M i are commuting,
then 
 = 0 .
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Proof. If the matrices are commuting then the mapsTi are commuting, hence everyTI (I 2 I ) is of the
form Y

i 2I

Tn i
i

with cn i
i > 2� k � 1. Therefore jf TI : I 2 I k gj is at most polynomial in k, implying 
 = 0.

If d = 1 then the maps are commuting. For d = 2, notice that it is enough to show that jf M I : I 2
I k gj1=k ! 0. This then follows by noticing that rotations of R2 commute and that RM = M � 1R for any
re
ection R and rotation M .

For sets X; Y � Rd, let X + Y = f x + y : x 2 X; y 2 Yg and when X � R let XY = f xy : x 2 X; y 2
Yg.

Lemma 4.5. Let X; Y � Rd. Then N � (X + Y) 6 2dN � (X )N � (Y ):

Proof. Consider the product setX � Y � Rd � Rd and the mapp : Rd � Rd ! Rd de�ned by p(x; y) = x+ y.
Let f Ui gi and f Vj gj be the half open � -cubes intersectingX and Y respectively. Then f p(Ui � Vj )gi;j

is the set of half open 2� -cubes intersectingX + Y . Each of these cubes intersects 2d half open � -cubes,
which proves the result.

De�nition 4.6. Let
F k

C =
[

I 2I k

SI (C) and Gk
C =

[

I 2I k

TI (C):

Proposition 4.7. Let 0 6 k 6 n. Then

N2� n (F k
C ) 6 2on (n ) 2ks +( n � k ) � (4.3)

N2� n (F k
C ) 6 2on (n ) 2k� +( n � k )d (4.4)

N2� n (F k
C ) 6 2on (n ) 2n� +( n � k )( � + d� 1) (4.5)

N2� n (F k
C ) 6 2on (n ) 2n� + k
 +( n � k ) � : (4.6)

Proof of (4.3). For I 2 I k we have

N2� n (SI (C)) = N2� ( n � k ) (2k � SI (C)) 6 N2� ( n � k ) (C):

Using (4.1),

N2� n (F k
C ) 6 jI k jN2� ( n � k ) (C) 6 2sk + ok (k ) N2� ( n � k ) (C)

6 2sk + ok (k ) 2(n � k ) � + on � k (n � k ) 6 2on (n ) 2ks +( n � k ) � :

Proof of (4.4). Let B (X; r ) stand for the r -neighbourhood of a setX . Assuming C � B (F; ; r ), we
clearly have F k

C � B (F; ; r 2� k ). As F; intersects at most 2k� + ok (k ) grid cubes of side-length 2



where in the last step we used that 2k cI 6 1 for I 2 I k . Since multiplication of scalars is commutative,
jf 2k cI : I 2 I k gj is polynomial in k, bounded by kD for someD 2 N say. The upper box dimension of
jCjSd� 1 is at most � + d � 1. Therefore (4.7) implies

N2� n (F k
C ) 6 2d2n� + on (n ) kD 2(n � k )( � + d� 1)+ on � k (n � k )

6 2on (n ) 2n� +( n � k )( � + d� 1) :

Proof of (4.6). For I 2 I k ,
SI (C) = SI (0) + TI (C) � F; + TI (C);

so
F k

C � F; +
[

I 2I k

TI (C):

We again haveN2� n (F; ) 6 2n� + on (n ) , and

N2� n ([ I 2I k TI (C)) 6 jf TI : I 2 I k gjN2� n (TI (C)) 6 2k
 + ok (k ) 2(n � k ) � + on � k (n � k ) :

So by Lemma 4.5,

N2� n (F k
C ) 6 2d + 7i9738 Tf 5.822 -1.494 Td [(I)]TJ/F8 9.9626 Tf 4.571 1.494 Td [(()]TJ/F11 9.9626 Tf 3.875 0 Td [(C)]TJ/F8 9.9626 Tf 7.833 0 Td [()))]TJ/F41 9.9626 Tf 10.516 0 Td [(6)]TJ/F8 9.9626 Tf 10.516 0 Td [(2)]TJ/F10 6.9738 Tf 4.981 4.114 Td [(k)-24(
)]TJ/F7tn4 1.799 rTf 3.875 16871 131T 6)(+d� o



Proof of Corollary 4.9. We will use the �rst and the fourth estimate of Theorem 4.1. Let f (x) = xs +
(1 � x)� and g(x) = � + (1 � x)� . Both function are monotone. We havef (x) = g(x) if x = �=s and at
this point, the common value is � + (1 � �=s )� = � + � � ��=s . We also havef (0) = � and g(1) = � .



Theorem 5.1. If FC is an inhomogeneous self-similar set, then

maxf dimB F; ; dimB Cg 6 dimB FC 6 maxf s� ; dimB Cg:

Proof. It su�ces to show that dimB FC 6 maxf � (r ); dimB Cg for all r 2 (0; 1), recalling that the lower
bound is trivial. Fix r 2 (0; 1) and let

J (r ) = f I 2 I � : I is a subword ofI 0 for someI 0 2 I (r )g:

Let
C(r ) =

[

I 2J ( r )

SI (C) [ C

and observe that this is a �nite union of compact sets and so is itself compact and, moreover, has upper
box dimension equal to that of C. This latter fact is due to upper box dimension being stable under
taking �nite unions and bi-Lipschitz images, see [F2, Chapter 3]. Let FC (r ) denote the inhomogeneous
attractor of the reduced IFS corresponding toI (r )= � along with the compact condensation setC(r ). It
follows from (1.2) that
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