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Abstract. We study the spectra and pseudospectra of semi-in�nite and bi-in�nite tridiagonal random
matrices and their �nite principal submatrices, in the case where each of the three diagonals varies
over a separate compact set, say U; V; W � C. Such matrices are sometimes termed stochastic Toeplitz
matrices A + in the semi-in�nite case and stochastic Laurent matrices A in the bi-in�nite case. Their
spectra, � = spec A and � + = spec A + , are independent of A and A + as long as A and A + are
pseudoergodic (in the sense of E.B. Davies, Commun. Math. Phys. 216 (2001), 687{704), which holds
almost surely in the random case. This was shown in Davies (2001) for A ; that the same holds for A +
is one main result of this paper. Although the computation of � and � + in terms of U, V and W is
intrinsically di�cult, we give upper and lower spectral bounds, and we explicitly compute a set G that
�lls the gap between � and � +



with entries ui 2 U, vi 2 V and wi 2 W for all i under consideration. The setsU, V and W are
nonempty and compact subsets of the complex planeC, and the box marks the matrix entry of A at
(0; 0). We will be especially interested in the case where the matrix entries are random (say i.i.d.)
samples fromU, V and W . Trefethen et al. [54] call the operator A a stochastic Laurent matrix
in this case and A+ a stochastic Toeplitz matrix . We will adopt this terminology which seems
appropriate given that one of our aims is to highlight parallels between the analysis of standard
and stochastic Laurent and Toeplitz matrices.

It is known that the spectrum of A depends only on the setsU, V , and W , as long asA is
pseudoergodic in the sense of Davies [19], which holds almost surely ifA is stochastic (see the
discussion below). Via a version, which applies to stochastic Toeplitz matrices, of the famous
Coburn lemma [17] for (standard) Toeplitz matrices, a main result of this paper is to show that,
with the same assumption of pseudoergodicity implied by stochasticity, also the spectrum ofA+

depends only onU, V , and W . Moreoever, we tease out very explicitly what the di�erence
is between the spectrum of a stochastic Laurent matrix and the spectrum of the corresponding
stochastic Toeplitz matrix. (The di�erence will be that certain `holes' in the spectrum of the
stochastic Laurent case may be `�lled in' in the stochastic Toeplitz case, rather similar to the
standard Laurent and Toeplitz cases.)

The second main result is to show that in�nite linear systems, in which the matrix, taking
one of the forms (1), is a stochastic Laurent or Toeplitz matrix, can be solved e�ectively by the
standard �nite section method, provided only that the respective in�nite matrices are invertible.
In particular, our results show that, if the stochastic Toeplitz matrix is invertible, then every �nite
n � n matrix formed by taking the �rst n rows and columns ofA+ is invertible, and moreover
the inverses are uniformly bounded. Again, this result, which can be interpreted as showing that
the �nite section method for stochastic Toeplitz matrices does not su�er from spectral pollution
(cf. [40]), is reminiscent of the standard Toeplitz case.

Related work. The study of random Jacobi operators and their spectra has one of its main
roots in the famous Anderson model [1, 2] from the late 1950's. In the 1990's the study of a non-
selfadjoint (NSA) Anderson model, the Hatano-Nelson model [30, 42], led to a series of papers on
NSA random operators and their spectra, see e.g. [24, 19, 18, 41]. Other examples of NSA models
are discussed in [15, 16, 54, 35]: one example that has attracted signi�cant recent attention (and
which, arguably, has a particularly intriguing spectrum) is the randomly hopping particle model
due to Feinberg and Zee [20, 21, 11, 13, 12, 26, 27, 28]. A comprehensive discussion of this history,
its main contributors, and many more references can be found in Sections 36 and 37 of [55].

A theme of many of these studies [54, 55, 11, 13, 12], a theme that is central to this paper, is the
relationships between the spectra, norms of inverses, and pseudospectra of random operators, and
the corresponding properties of the random matrices that are their �nite sections. Strongly related
to this (see the discussion in the `Main Results' paragraphs below) is work on the relation between
norms of inverses and pseudospectra of �nite and in�niteclassical Toeplitz and Laurent matrices
[49, 3, 5]. In between the classical and stochastic Toeplitz cases, the same issues have also been
studied for randomly perturbed Toeplitz and Laurent operators [8, 9, 10, 7]. This paper, while
focussed on the speci�c features of the random case, draws strongly on results on the �nite section
method in much more general contexts: see [33] and the `Finite sections' discussion below. With
no assumption of randomness, the �nite section method for a particular class of NSA perturbations
of (selfadjoint) Jacobi matrices is analysed recently in [40].

We will build particularly on two recent studies of random Jacobi matrices A and A+ and their
�nite sections. In [26] it is shown that the closure of the numerical range of these operators is the
convex hull of the spectrum, this holding whether or not A and A+ are normal operators. Further,
an explicit expression for this numerical range is given: see (33) below. In [37] progress is made
in bounding the spectrum and understanding the �nite section method applied to solving in�nite
linear systems where the matrix is a tridiagonal stochastic Laurent or Toeplitz matrix. This last
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paper is the main starting point for this present work and we recall key notations and concepts
that we will build on from [37] in the following paragraphs.

Matrix notations. We understandA and A+ as linear operators, again denoted byA and A+ ,
acting boundedly, by matrix-vector multiplication, on the standard spaces `p(Z) and `p(N) of bi-
and singly-in�nite complex sequences withp 2 [1; 1 ]. The sets of all operatorsA and



specpB is independent ofp (and so abbreviated as specB ), the set specp" B depends onp in general.
It is a standard result (see [55] for this and the other standard results we quote) that

specB + "D � specp" B; (3)

with D := f z 2 C : jzj < 1g the open unit disk. If p = 2 and B is a normal matrix or operator
then equality holds in (3). Clearly, for 0 < " 1 < " 2, specB � specp" 1

B � specp" 2
B , and specB =

T
"> 0 specp" B (for 1 � p � 1 ). Where S denotes the closure ofS � C, a deeper result, see the

discussion in [52] (summarised in [12]), is that

specp" B = Specp
" B :=

�
� 2 C : k(B � �I ) � 1kp � " � 1	

: (4)

Interest in pseudospectra has many motivations [55]. One is that specp
" B is the union of spec(B + T )

over all perturbations T with kTkp < " . Another is that, unlike specB in general, the pseudospec-
trum depends continuously onB with respect to the standard Hausdor� metric (see (63) below).

Limit operators. A main tool of our paper, and of [37], is the notion of limit operators.
For A = ( aij ) i;j 2 Z 2 BDO( X ) with X = ‘ p(Z) and h1; h2; ::: in Z with jhn j ! 1 we say that
B = ( bij ) i;j 2 Z is a limit operator of A if, for all i; j 2 Z,

ai + hn ;j + hn ! bij as n ! 1 : (5)

The boundedness of the diagonals ofA ensures (by Bolzano-Weierstrass) the existence of such
sequences (hn ) and the corresponding limit operators B . From A 2 BDO(X ) it follows that
B 2 BDO(X ). The closedness ofU, V and W implies that B 2 M (U; V; W) if A 2 M (U; V; W).
WthewriteJ/F11 9.9626 Tf 40.928 0 Td [(h)] 0 J/F51 649738 Tf 6.066 5615 Td [(B)]oTJ/F8 9.9626 Tf 8.59700 T-15 Td [(B)]0



shall approximate the solution x of (6) (in the sense that, for every right hand sideb, it holds as
n ! 1 that kxn � xk ! 0, if 1 � p < 1 , that kxn k = O(1) and xn (j ) ! x(j ) for every j 2 Z, if
p = 1 ). If that is the case then the FSM is said to beapplicable to A



where this supremum is taken over all limits B+ and C� in (9), and is attained as a maximum if
the FSM is applicable to A.

Versions of Lemma 1.2, (10), and (11) hold for semi-in�nite matrices A+ = ( aij ) i;j 2 N 2
BDO( ‘ p(N)), with the modi�cation that ln = 1, which implies that every limit B+ in (9) is
nothing but the matrix A+ again, so that in Lemma 1.2 iii), iv) and (11) it is the invertibility of
only A+ and C� that is at issue.

Remark 1.3 { Re
ections. Often we �nd it convenient to rearrange/re
ect the matrices C� =
(cij )0

i;j = �1 from (9) as B+ = ( c� j; � i )1
i;j =0 . This rearrangementC� 7! B+ corresponds to a matrix

re
ection against the bi-in�nite antidiagonal; it can be written as B+ = RC>
� R, where R denotes

the bi-in�nite 
ip ( x i ) i 2 Z 7! (x � i ) i 2 Z . As an operator on ‘ p, one getskB+ kp = kRC>
� Rkp =

kC>
� kp = kC� kq



sets is. The key to describe the di�erence between specessB+ and specB+ is a new result that
has a famous cousin in the theory of Toeplitz operators: Coburn's Lemma [17] says that, for every
bounded and nonzero Toeplitz operatorT+ , one has� (T+ ) = 0 or � (T+ ) = 0, so that T+ is known
to be invertible as soon as it is Fredholm and has index zero. We prove that the same statement
holds with the Toeplitz operator T+ replaced by anyB+ 2 M + (U; V; W) provided that 0 is not in
(12). So specessB+ and specB+ di�er by the set of all � 2 C for which B+ � �I + is Fredholm
with a nonzero index. We give new upper and lower bounds on the sets specessB+ and specB+ ,
and we �nd easily computable setsG that close the gap between the two, i.e., sets



were the core of [37], our second main tool is a \glueing technique" { see (37) and (38) { that is
used in the proofs of two of our main results, Theorems 2.2 and 3.3



juj < jwj, and collapses into a line segment ifjuj = jwj. From (14) and specC = E (u; v; w) if C is
Laurent, we get that the union of all ellipses E (u; v; w) with u 2 U, v 2 V and w 2 W is a simple
lower bound on �: [

u2 U;v 2 V;w 2 W

E (u; v; w) � �( U; V; W): (16)

Because we will come back to Laurent and Toeplitz operators, let us from now on write

T (u; v; w) := uS + vI + wS� 1 and T+ (u; v; w)

for the Laurent operator T 2 M (f ug; f vg; f wg), acting on ‘ p(Z), and for its compressionT+ to
‘ p(N), which is a Toeplitz operator. Here we write S for the forward shift operator, S : x 7! y
with y(j + 1) = x(j ) for all j 2 Z, and S� 1 for the backward shift. From (13) and (15) (or [4, 6]),
specessT+ (u; v; w) = spec T (u; v; w) = E (u; v; w). Further,

specT+ (u; v; w) = conv E (u; v; w) (17)

is the same ellipse but now �lled [4, 6]. (Here convS denotes the convex hull of a setS � C.) Let
E in (u; v; w) and Eout (u; v; w) denote the interior and exterior, respectively, of the ellipseE (u; v; w),
with the understanding that E in (u; v; w) = ? and Eout (u; v; w) = CnE (u; v; w) when juj = jwj and
the ellipse E (u; v; w) degenerates to a straight line. The reason why the spectrum of a Toeplitz
operator T+ is obtained from the spectrum of the Laurent operator T (which is at the same time
the essential spectrum of bothT+ and T ) by �lling in the hole E in (u; v; w) can be found in the
classical Coburn lemma [17]. We will carry that fact over to stochastic Toeplitz and Laurent
operators. A key role will also be played by the following index formula. Let wind(� ; z) denote the
winding number (counter-clockwise) of an oriented closed curve � with respect to a pointz 62�.
For 0 62E (u; v; w), so that T+ is Fredholm, it holds that [4, 6]

ind T+ (u; v; w) = � wind(E (u; v; w); 0) =
�

0; 0 2 Eout (u; v; w);
sign(jwj � j uj); 0 2 E in (u; v; w): (18)

To get a simple upper bound on �, write A 2 	E( U; V; W) as A = D + T with diagonal part
D = diag( vi ) and o�-diagonal part T and think of A as a perturbation of D by T with jjT jj � " ,
where " := u� + w� and

u� := max
u2 U

juj; w� := max
w2 W

jwj:

Since A is in the " -neighbourhood of D , its spectrum specA = � is in the " -neighbourhood of
specD � V . (Note that D is normal or look at Lemma 3.3 in [37].) In short,

�( U; V; W) � V + ( u� + w� )D (19)

(recall that D := f z 2 C : jzj < 1g is the open unit disk, and D is its closure). Note that the same
argument, and hence the same upper bound, applies to the spectra of all (singly or bi-)in�nite and
all �nite Jacobi matrices over U, V and W .

Sometimes equality holds in (19) but often it does not. ForU = f 1g, V = f 0g and W = T, the
lower (16) and upper bound (19) on � coincide so that equality holds in (19) saying that � = 2 D.
If we changeW from T to f� 1; 1g then the right-hand side of (19) remains at 2D while � is now
smaller (it is properly contained in the square with corners � 2 and � 2i, see [12, 13]). TakingW
even down to just f 1g, the spectrum � clearly shrinks to [ � 2; 2] with the right-hand side of (19)
still at 2 D. So the gap in (19) can be considerable, or nothing, or anything in between, really.

Equality (13) contains the formula

specessB+ =
[

C+ 2 M + (U;V;W )

specessC+ = �
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for all B+ 2 	E + (U; V; W). One of our new results, Corollary 2.5 below, is that

specB+ =
[

C+ 2 M + (U;V;W )

specC+ =: � + (20)

holds independently ofB+ 2 	E + (U; V; W).

Upper and lower bounds on �+ = � + (U; V; W) can be derived in the same way as above for
�. This time, because of (17), the ellipses in the lower bound (16) have to be �lled in, while the
upper bound from (19) remains the same, so that

[

u2 U;v 2 V;w 2 W

convE (u; v; w) � � + (U; V; W) � V + ( u� + w� )D: (21)

The results in this section will also make precise the di�erence between � and � + .

For nonzero Toeplitz operators T+ (semi-in�nite matrices with constant diagonals), acting
boundedly on ‘ p(N), the following classical result �lls the gap between essential spectrum and
spectrum: at least one of the two integers,� (T+ ) and � (T+ ), is always zero. So if their di�erence
is zero (i.e. T+ is Fredholm with index zero) then both numbers are zero (i.e.T+ is injective and
surjective, hence invertible). This is Coburn's Lemma [17], which was also found, some years ear-
lier, by Gohberg [22] (but for the special case of Toeplitz operators with continuous symbol). Here
is a new cousin of that more than 50 year old lemma:

Theorem 2.2 If (U; V; W) is compatible (i.e. (i){(vi) hold in Proposition 2.1) then every B+ 2
M + (U; V; W) is Fredholm and at least one of the non-negative integers� (B+ ) and � (B+ ) is zero.

Proof. Let (U; V; W) be compatible and take B+ 2 M + (U; V; W) arbitrarily. Then B+ , with
matrix representation (~bij ) i;j 2 N, is Fredholm since (i ){( vi ) of Proposition 2.1 hold. Suppose that
� (B+ ) > 0 and � (B+ ) > 0. Then there exist x 2 ‘ p(N) and y 2 ‘ p(N), with x 6= 0 and y 6= 0, such
that B+ x = 0 and B >

+ y = 0. Let a; b2 C, set

z = ( � � � ; ay2; ay1; 0 ; bx1; bx2



Similarly to the situation for Toeplitz operators, one can now derive invertibility of operators
in M + (U; V; W) from their Fredholmness and index. The additional result here that every B+ 2
M + (U; V; W) is Fredholm with the same index was �rst pointed out in [37



complex planeC into four pairwise disjoint parts. To this end, �x an arbitrary B+ 2 	E + (U; V; W).
The �rst part of the plane is our set � = �( U; V; W) from (13),

� = f � 2 C : B+ � �I + is not Fredholmg

= specessB+ =
[

C+ 2 M + (U;V;W )

specessC+

= f � 2 C : (U; V � �; W ) is not compatibleg:

The rest of the complex plane now splits into the following three parts: fork = � 1; 0; 1, let

� k := f � 2 C : ind (B+ � �I + ) = kg = f � 2 C : � (U; V � �; W ) = kg:





Theorem 2.7 It holds that

� + = � [ � � 1 = � [ E � 1 = � [ E \ = � [ E [ (32)

with � � 1 and E � 1 from (30) and E \ and E





b) There is a similar coincidence between the FSM for pseudoergodic bi-in�nite matrices (called



Precisely, with B = ( bij ) i;j 2 Z , we put B+ := ( bij ) i;j 2 N 2 M + (U; V; W) and B � := ( bij ) i;j 2� N.

Now, for a vector x 2 Cn and a complex sequence (r k )k2 Z , put

ex :=

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

...

0

r � 1x

0

r 0x

0

r 1x

0

...

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; leading to B ex =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

...

z� 1

r � 1F x

z0

r 0F x

z1

r 1F x

z2

...

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

; (39)

where 0 and z0 mark the respective 0 positions and

zk = r k � 1uxn + r k wx1



and the FSM cannot apply { no matter how the cut-o�s are placed (e.g. [36, Prop 5.2]). In the
semi-in�nite case the operator A+



Case 2: � = �



If moreover (U; V; W) is compatible then

kA � 1k = max
B 2 M (U;V;W )

kB � 1k =: N (50)

If we have a particular p 2 [1; 1 ] in mind, or want to emphasise the dependence onp, we will write
M p and Np for the expressionsM and N de�ned in Corollary 4.2 (cf. (35)).

The following proposition is a simple consequence of the observations that, ifA; B 2 BDO( ‘ p(Z))
for all 1 � p � 1 , and A = RB > R, where R is the re
ection operator de�ned in Remark 1.3,
then: (i) kAkp = kB > kp = kB kq, for 1 � p � 1 , if p� 1 + q� 1 = 1; (ii) A 2 M (U; V; W)
i� B 2 M (U; V; W); (iii) A is invertible i� B is invertible, and if they are both invertible then
kA � 1kp = k(B > ) � 1kp = kB � 1kq.

Proposition 4.3 For p; q 2 [1; 1 ], with p� 1 + q� 1 = 1 , we have

M p = M q and Np = Nq:

Proof. It is clear from the above observations thatM p = supB 2 M (U;V;W ) kB



Proof. a) If ( U; V; W) is compatible then all operators in M (U; V; W) are invertible and Np = Nq

holds by Proposition



or (53) holds withp replaced byq. If (53) holds we say thatp is favourable (for the triple (U; V; W)).

b) p and q are both favourable i� N+ ;p = N+ ;q . If p and q are both favourable, then

kA � 1
+ kp = N+ ;p = Np = Nq = N+ ;q = kA � 1

+ kq; for all A+ 2 	E + (U; V; W): (54)

In particular this holds for p = q = 2 .

Proof. a) Either kA � 1
+ kp � N p for all A+ 2 M + (U; V; W), or kA � 1

+ kp > Np for some A+ 2
M + (U; V; W). In the �rst case (53) follows immediately from Proposition 4.4 b). In the second
case, by Proposition 4.5 b),kB � 1

+ kq � N q for all B+ 2 M + (U; V; W), and then (53), with p replaced
by q, follows from Proposition 4.4 b).

b) is an immediate corollary of a) and Proposition 4.4 b).

It is unclear to us whether every p 2 [1; 1 ] is favourable for every triple (U; V; W). Indeed,
while, for every triple ( U; V; W), p 2 [1; 1 ], and A+ 2 	E + (U; V; W), it follows from Propositions



for every B 2 M n (U; V; W), A = Rn B > Rn 2 M (U; V; W), where Rn = ( r ij ) i;j =1 ;:::;n is the n � n
matrix with r ij = � i;n +1 � j , where � ij is the Kronecker delta.

Lemma 4.8 For p; q 2 [1; 1 ] with p� 1 + q� 1 = 1 and n 2 N, we have M n;p = M n;q and
Nn;p = Nn;q , so that M �n ;p = M �n ;q and N �n ;p = N �n ;q , where

M n;p := sup
F 2 M n (U;V;W )

kF kp; Nn;p := sup
F 2 M n (U;V;W )

kF � 1kp;

M �n ;p := sup
F 2 M fin (U;V;W )

kF kp and N �n ;p := sup
F 2 M fin (U;V;W )

kF � 1kp:

The following simple lemma relatesM �n ;p to M p, de�ned in Corollary 4.2.

Lemma 4.9 For p 2 [1; 1 ], M �n ;p = lim n !1 M n;p = M p.

Proof. Let A 2 	E( U; V; W) so that kAkp = M p by Corollary 4.2. For F 2 M �n (U; V; W),
kF kp � k Akp, since everyF is an arbitrarily small perturbation of a �nite section of A. On
the other hand, if An is the �nite section of A given by (8), then we have noted in (10) that
lim inf n !1 kAn kp � k Akp.

The following is a more quantitative version of Theorem 3.3:

Proposition 4.10 a) Properties (a){(k) of Theorem 3.1 are equivalent to:

(l) all F 2 M �n (U; V; W) are invertible and their inverses are uniformly bounded.

If (a){(l) are satis�ed then
N �n ;p = max ( N+ ;p ; N+ ;q) ; (56)

for every p; q 2 [1; 1 ] with p� 1 + q� 1 = 1 .

b) In the case thatp and q in a) are both favourable,(56) simpli�es to

N �n ;p = N �n ;q = N+ ;p = N+ ;q = Np = Nq: (57)

Proof. a) If ( l ) holds then, by the equivalence of ii) and iii) in Lemma 1.2 and the de�nition of
stability, ( e) holds. But this implies invertibility of all F 2 M �n (U; V; W) by Theorem 3.3. The
uniform boundedness of the inversesF � 1 (and hence (l)) will follow if we can prove \ � " in (56).

To see that (56) holds, �x p 2 [1; 1 ], n 2 N, and anF 2 M n (U; V; W). To estimate kF � 1kp =: f ,
�x x 2 Cn with kFxkp = 1 and kxkp = f . As in the proof of Theorem 3.3, de�ne B by (37) and
B+ and B � as in (38), and de�ne ~x by



Case 3: p < 1 and ~x+ 62‘ p(N), i.e. (r k )+ 1
k=0 62‘ p(N). Then sm :=

P m
k=0 jr k jp ! 1 asm ! 1 .

Let m 2 N and put ~xm := (~x(1); ~x(2); � � � ; ~x((m + 1)( n + 1)) ; 0; 0; � � � ) 2 ‘ p(N). Then

kB � 1
+ kp

p �
k~xm kp

p

kB+ ~xm kp
p

=

P m
k=0 jr k jpkxkp

pP m
k=0 jr k jpkF xkp

p + jur m xn jp
=

sm f p

sm + jur m xn jp
m !1�! f p = kF � 1kp

p

sincesm ! 1 as m ! 1 and rm is bounded.

So in either case we getkF � 1kp � k B � 1
+ kp if (41) holds. The other case, (42), is analogous and

leads to kF � 1kp � k B � 1
� kp = kC � 1

+ kq, where C+ := RB >
� R is the re
ection of B � as discussed

in Remark 1.3. Since we only know that (41) or (42) applies, but not which one of them, we
conclude kF � 1kp � max(kB � 1

+ kp; kC � 1
+ kq). Since F 2 M �n (U; V; W) 902 1.494 hT76 Tf 11.6rat Tf 4.67 -1.4944 Td [(+)]TJ/F8/F14 9.9626 Tf 11.64-418f 15 them,(U; V; Wxis(



4.4 Pseudospectra

We can rephrase our results on the norms of inverses,kJ � 1k, of Jacobi matricesJ over (U; V; W)
in terms of resolvent normsk(J � �I ) � 1k and pseudospectra, noting thatJ � �I is a Jacobi matrix
over (U; V � �; W ). In particular, J and J � �I are both pseudoergodic at the same time. In the
language of pseudospectra, Corollary 4.2 and Proposition 4.3 can be rewritten as follows:

Corollary 4.12 { bi-in�nite matrices. For all A 2 	E( U; V; W), " > 0 and p 2 [1; 1 ], it holds
that

specp" A = � p
" :=

[

B 2 M (U;V;W )

specp" B and � p
" = � q

" ;

where p� 1 + q� 1 = 1 .

Summarizing Corollary 2.5, Theorem 2.7 and the results in Section 4.2, and recalling the nota-
tions E \ and E [ from (26), we obtain:

Proposition 4.13 { semi- vs. bi-in�nite matrices.

a) For every A+ 2 	E + (U; V; W), " > 0 and all p 2 [1; 1 ], it holds that

� p
" [ � + � specp" A+ � � p

+ ;" :=
[

C+ 2 M + (U;V;W )

specp" C+ : (59)

b) For all A+ ; B+ 2 M + (U; V; W), " > 0 and p; q 2 [1; 1 ] with p� 1 + q� 1 = 1 , it holds that

specp" A+ \ specq" B+ � � p
+ ;" \ � q

+ ;" = � p
" [ G; (60)

for each G 2 f E � 1; E \ ; E [ ; � + g. Equality holds in (60) if A+ ; B+ 2 	E + (U; V; W). If w� � u�

and u� � w� , then E � 1 = ? , so that (60) holds with G = ? .

c) If " > 0 and p 2 [1; 1 ] is favourable, in particular if p



Now suppose that A+ ; B+ 2 	E + (U; V; W) and that � 2 � p
" [ � + . If � 2 � + , then � 2

specA+ = specB+ by Corollary



lim sup Sn = lim sup
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