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1 Introduction

Data assimilation techniques combine model states, known as forecasts or backgrounds,



in simple model experiments in both variational [Stewart, 2010] and ensemble [Li et al.,
2009, Miyoshi et al., 2013, Waller et al., 2014a] data assimilation systems and to estimate
time varying observation errors [Waller et al., 2014a]. Thediagnostic has also been applied
to operational NWP observation types such as ATOVS, AIRS andIASI to calculate inter-
channel error covariances [Stewart et al., 2009, 2014, Bormann and Bauer, 2010, Bormann
et al., 2010, Weston et al., 2014]. When the correlated errors calculated using the diagnostic



matrix variance increases as assumed observation error variance increases.

The power in the largest length scales can be obtained by considering the eigenstructure
of the estimated matrix and provides some insight into the behaviour of the estimated
correlation length scale. These results provide an understanding of the diagnostic that can
aid the interpretation of results when the diagnostic is used to estimate spatial correlations
in an operational setting e.g. Waller et al. [2014c]. We notethat in the cases presented
here, the statistical nature of the estimation is not considered since results are calculated



is the di�erence between the observationy and the mapping of the forecast vector,xb, into
observation space by the observation operatorH . The analysis innovations,

do
a = y � H (xa); (2)

are similar to the background innovations, but with the forecast vector replaced by the
analysis vectorxa. Desroziers et al. [2005] assume that the analysis is determined us-
ing,

xa = xb + eBH T (H eBH T + eR)� 1do
b; (3)

whereH is the observation operator linearised about the current state and eR and eB are the
assumed observation and background error statistics used to weight the observations and
background in the assimilation. Taking the statistical expectation of the outer product of
the analysis and background innovations and assuming that the forecast and observation
errors are uncorrelated results in

E[do
ado

b
T ] = eR(H eBH T + eR)

� 1
(HBH T + R) = R e; (4)

whereR e is the estimated observation error covariance matrix andB and R are the exact



M�enard et al. [2009] also show, again in the scalar case, that if both variances are iterated
concurrently then the diagnostics converge in one iteratio



observation operator so long asHBH T and H eBH
T





In our case we are considering the eigenvalues ofn � n correlation matrices with ones on
the diagonal, and therefore the trace of such a matrix and hence the sum of the eigenvalues
will be n. This allows the estimated error variance to be written as,

� e =
1
n

X

k

�� k + �
 k

1 + ( ~�= ~� )~



where sk = �� k +







� The misspeci�ed length scale ineB results in correlations in the estimated observation



Table 1: Estimated observation error variances when lengthscales (de�ned using the SOAR
function in equation (22)) and variances ineR and eB used in the assimilation are incorrect.
The exact observation and background error variances are set to � = � = 1 and length
scales toL = 2 and L = 5 respectively. The matrix eR used in the assimilation is always
diagonal.

Exp. ~� ~� eB � e

Label Length scale (L)
Control 1 1 5 0.94

� 0:5 0.5 1 5 0.68
� 1:1 1.1 1 5 0.98
� 2 2 1 5 1.22
� 10 10 1 5 1.73
� 0:5 1 0.5 5 1.22
� 0:75 1 0.75 5 1.06
� 0:99 1 0.99 5 0.94
� 1:5 1 1.5 5 0.78
� 2 1 2 5 0.68
L3 1 1 3 0.91
L4 1 1 4 0.92
L6 1 1 6 0.97
L7 1 1 7 1.00

� 1:5L6 1 1.5 6 0.82
� 2L6 1 2 6 0.73

� 1:5L7 1 1.5 7 0.87
� 2L7 1 2 7 0.77

� 2� 1:5L6 2 1.5 6 1.08
� 2� 2L6 2 2 6 0.97

� 2� 1:5L7 2 1.5 7 1.10
� 2� 2L7 2 2 7 1.00
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estimated �rst eigenvalue, and hence the power in the lowestwave numbers, to increase as
a function of ~� .

We plot the estimated correlation function and corresponding eigenvalues in Figure 5. From
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Figure 7: Estimated observation error correlations and corresponding eigenvalues for Ex-
periments � 0:5 (~� = 0:5, dashed line circles),� 0:75 (~� = 0:75 , dashed line squares),
Control ( ~� = 1:0, dashed line triangles),� 1:5 (~� = 1:5, dashed line crosses) and� 2
( ~� = 2:0, dashed line diamonds) when the variance in the backgrounderror covariance
matrix is misspeci�ed in the assimilation. The exact observation correlation function C r

(solid line) is plotted for comparison.

background error variance is largest. The observation error correlation length scale remains
underestimated as the background error variance decreases. The observation error corre-
lation length scale is only overestimated when the assumed background error variance is
half the value of the actual background error variance or less. Considering the eigenvalues
of R e we see that unless the assumed background error variance is much smaller than the
true background error variance, the power in the low wave numbers (large scales) will be
underestimated and the power in the high wave numbers (smallscales) will be overesti-
mated. This is consistent with the theoretical result that the �rst eigenvalue decreases as
~� increases.

In summary, in the case of misspeci�ed background error variances we are able to show
that:

� As the assumed background error variance increases the estimated observation error
variance decreases.

� As the assumed background error variance increases the estimated power in the
largest scales decreases.

� In the multi-dimensional case, where observation errors are neglected, it does not
hold that an assumed observation error variance that is too small (large) will result
in an estimated observation error variance that is overestimated (underestimated).

19



5.3.4 Impact of misspecifying the background error correla tion length scale

We now consider what happens when the background error variance is correctly speci-
�ed but the correlation length scale is misspeci�ed. We givethe assumed background
correlation function length scales and estimated observation error variances in Table 1,
Experiments L3, L4, L6 and L7 and we plot the estimated observation error correlation
functions and corresponding eigenvalues in Figure 8. Againwe plot the result from the
control experiment for comparison.

From the table and �gure we see that:

� As the assumed background error length scale increases the estimated observation
error variance increases.

� as the assumed background error length scale increases the estimated correlation
length scale and leading eigenvalues decrease.







5.3.6 Impact of misspecifying the background error varianc e and correlation
length scale



(18) we proved that as the assumed background error variancewas increased the estimated
observation error variance decreased and this can be seen bycomparing any given row of
Figure 10(a). However, it is more complex to say whether the variance will be over or under
estimated in any given circumstance. It is clear in this casethat it is the assumed variance
that has the largest impact on the estimated error variance as the horizontal gradient is
much larger than the vertical gradient.

It is clear from Figure 10(b) that the estimated leading eigenvalue decreases as assumed
background error variance and length scale increases. Hence it is likely that the correlation
length scale will decrease as assumed background error variances and length scales are
increased. When estimating the leading eigenvalue it appears that the largest change is
caused by the change in assumed background error length scale rather than background
error variance.

We now consider some cases that we hypothesize may re
ect cases that will arise in op-
erational assimilation. We investigate what happens to theestimate of the observation
error variance and correlation length scale when both the background error variance and
correlation length scale are overestimated. We show results in Table 1 Experiments� 1:5L6,
� 2L6, � 1:5L7 and � 2L7 and Figure 11.

We see in all cases that the observation error variances and c
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5.3.8 Impact of misspecifying all assumed error variances a nd length scales





are also able to prove that:

� Estimated observation error variance increases as assumedobservation error variance
increases.

� Estimated observation error variance decreases as assumedbackground error variance
increases.

We are able to verify this through our simple experiments andshow that the bounds on
the variance are respected in the experimental cases. Underthe additional assumption of
the exact and assumed correlation matrices having non-negative coe�cients, we are also
able to prove results relating to the �rst eigenvalue, whichprovide some information about
the estimated correlation length scale. We prove that:

� The power in the large scales of the estimated observation error correlation matrix
increases as assumed observation error variance increases.

� The power in the large scales of the estimated observation error correlation matrix
decreases as assumed background error variance increases.

This provides some insight into the behaviour of the estimated correlation length scale.
In general we are able to show that if observation error correlations are neglected in the
assumed observation error covariance matrix, then it is likely that the diagnostic will
underestimate the strength of the correlations, though theresult from the diagnostic will
be better a estimate ofR than one that is assumed diagonal.

The theoretical results are more complex when the background error length scales are
mispeci�ed, so to aid our understanding we considered the results of some simple exper-
iments. A more detailed knowledge of the exact and assumed spectra are required to
predict whether the variance will increase or decrease as the assumed background error
length scales are increased. It does appear, however, in thecase of the SOAR function
that an increase in the assumed background error length scales causes a reduction in the
estimated observation error length scales.



Another important conclusion drawn from the illustrative examples is that if the observa-
tion error covariance matrix is assumed diagonal in the assimilation, then the observation
error correlation matrix calculated by the diagnostic is li
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