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Abstract

We present and analyse a space{time discontinuous Galerkin method for wave prop-



While the literature on Tre�tz �nite elements for time-harmonic wave propagation prob-
lems is nowadays quite developed (see e.g. [4,6,11,14,23,29,32] for di�erent approaches using
Tre�tz-type basis functions and e.g. [2, 15, 19, 20] for theoretical analyse



in Remark 2.1 (in one space dimension) and again in Remark3.4 (in any space dimension).
Given a space domain 
 = ( xL ; xR ) and a time domain I = (0 ; T), we set Q := 
 � I .

We denote by nQ = ( nx
Q ; nt

Q ) the outward pointing unit normal vector on @Q.
We assume the electric permittivity " = " (x



3.1 Mesh and DG notation

We introduce a mesh Th on Q, such that its elements are rectangles with sides parallel
to the space and time axes, and all the discontinuities of the parameters " and � lie on
interelement boundaries (note that the method described in this paper can be generalised to
allow discontinuities lying inside the elements as in [25]). The mesh may have hanging nodes.

We denote with Fh =
S

K 2T h
@Kthe mesh skeleton and its subsets:

F hor
h := the union of the internal horizontal element sides (t = constant) ;

F ver
h := the union of the internal vertical element sides (x = constant) ;

F 0
h := [ xL ; xR ] � f 0g;

F T
h := [ xL ; xR ] � f Tg;

F L
h := f xL g � [0; T ];

F R





where

a



awave
T DG (vhp ; � hp ; w; � ) = `wave

T DG (w; � ) 8(w; � ) 2 V p(Th ); (11)

with

awave
T DG (vhp ; � hp ; w; � ) :=

Z

F hor
h

�
c� 2v�

hp [[w]]t + � �
hp � [[� ]]t

�
dx +

Z

F T
h

(c� 2vhp w + � hp � � ) dx

+
Z

F ver
h

�
ff vhp gg[[� ]]N + ff � hp gg � [[w]]N + � [[vhp ]]N � [[w]]N + � [[� hp ]]N [[� ]]N

�
dS

+
Z

F @
h

�
� � n 
 + �v hp

�
w dS;

`wave
T DG (w; � ) :=

Z

F 0
h

(c� 2v0w + � 0 � � ) dx +
Z

F @
h

g(�w � � � n 
 ) dS;

where � 0 = �r U(�; 0) and v0 = @U
@t (�; 0) are (given) initial data. Here, the jumps are

de�ned as follows: [[w]]t := ( w� � w+ ) and [[� ]]t := ( � � � � + ) on horizontal faces, [[w]]N :=
wj K 1

nx
K 1

+ wj K 2
nx

K 2
and [[� ]]N := � j K 1

� nx
K 1

+ � j K 2
� nx

K 2
on vertical faces.



In particular, the bilinear form aT DG (� ; �) is coercive in the spaceT (Th ) with respect to the
DG norm, with coercivity constant equal to 1.

Proof. Using the elementwise integration by parts in time and space

X

K 2T h

ZZ

K

@F
@t

dx dt =
Z

F hor
h

[[F ]]t dx +
Z

F T
h

F dx �
Z

F 0
h

F dx

X

K 2T h

ZZ

K

@F
@x

dx dt =
Z

F ver
h

[[F ]]x dt +
Z

F R
h

F dt �
Z

F L
h

F dt 8F 2 W 1;1(Th );
(14)

and the jump identity

v� [[v]]t �
1
2

[[v2]]t =
1
2

[[v]]2t on F hor
h ; 8v 2 H 1(Th ); (15)

we obtain the identity in the assertion:

aDG (vE ; vH ; vE ; vH )
(7)
= �

X

K 2T h

ZZ

K

�
1
2

@
@t

�
"v 2

E + �v 2
H

�
+

@
@x

(v



Proof. To prove uniqueness, assume thatEL = ER = E0 = H0 = 0. Proposition 4.2 implies
Ehp = Hhp = 0. Existence follows from uniqueness. For (16), the triangle inequality gives

jjj (E; H ) � (Ehp ; Hhp )jjj DG � jjj (E; H ) � (vE ; vH )jjj DG + jjj (Ehp ; Hhp ) � (vE ; vH )jjj DG (17)

for all ( vE ; vH ) 2 V p(Th ). Since (Ehp ; Hhp ) � (vE ; vH ) 2 V p(Th ) � T (Th ), Proposition 4.2,
consistency (which follows by construction and from the consistency of the numerical 
uxes),
and Proposition 4.3 give

jjj (Ehp ; Hhp ) � (vE ; vH )jjj 2
DG = aT DG (E � vE ; H � vH ; Ehp � vE ; Hhp � vH

�

� 2 jjj (E; H ) � (vE ; vH )jjj DG



for �;  2 L 2(Q). More precisely, we will need a bound on theL 2 norm of the traces ofvE

and vH on horizontal and vertical segments in terms of theL 2(Q) norm of (�;  ):
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L 2 (Q)

�
8(�;  ) 2 L 2(Q)2; (19)

for some Cstab > 0. We have inserted the numerical 
ux parameters within the third and
fourth term on the left-hand side of (19) because this is what we need in the proof of
Proposition 4.7 below; then the constant Cstab will also depend on� and � .

Proposition 4.7. Assume that the estimate(19) holds true for (vE ; vH ) solution of prob-
lem (18). Then, for any Tre�tz function (wE ; wH ) 2 T (Th ), the L 2(Q) norm is bounded by
the DG norm:
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L 2 (Q)

� 1=2
�

p
2Cstab jjj (wE ; wH )jjj DG ;

with Cstab as in (19).

Proof. Let (vE ; vH ) be the solution of the auxiliary problem (18



we obtain the desired estimate.

Recalling that the error (( E � Ehp ); (H � Hhp )) 2 T (Th ), and combining Proposition 4.7
and the quasi-optimality in DG norm proved in Theoremosition



which in turns implies

E(t) = E(0)
| {z}

=0

+
ZZ


 � (0 ;t )

�
vE  + vH �

�
d



(18)
=

2A
hx

ZZ

K

�
� � 1v2

E + " � 1v2
H + 2( x � xK )

�
�

@
@t

(vE vH ) + � � 1vE � + " � 1vH  
� �

dx dt

�
2A
hx

ZZ

K

�
2� � 1v2

E + 2 " � 1v2
H + ( x � xK )2

�
� � 1� 2 + " � 1 2

� �
dx dt

+
2A
hx

Z

@KSN
2 j(x � xK )vE vH j dx

Using 2vE vH � (�v 2
E + 1

� v2
H ) with weight � = "c = ( �c )� 1, we have the bound
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�
;

recalling that c1 = kckL 1 (Q) .
This, together with ( 26), gives the bound (19) with constant C2

stab as in (21).

In case of a tensor product mesh with all elements having horizontal edges of lengthhx

and vertical edges of lengthht = hx =c, the constant Cstab is proportional to ( hx )� 1=2. We
stress that we cannot expect a bound like (19) with Cstab independent of the meshwidth:
indeed if the mesh is re�ned, say, uniformly, while the term in the brackets in the right-hand
side of (19) is not modi�ed, the left-hand side grows (consider e.g. the simple case � = � ,
 = 0, vE = 0, vH = t).

One could attempt to derive the stability bound ( 19) by controlling with ( �;  ) either
the H



�
1
2

Z



for all (E; H ); (vE ; vH ) 2 T (T



and denote their length by
hD := x1 � x0 + c(t1 � t0): (32)

Their relevance is the following: the restriction to D of the solution of a Maxwell initial value
problem posed inR � R+ will depend only on the initial conditions posed on 
 �

D [ 
 +
D ; see

Figure 1.

t

D

x

 �

D 
 +
D

x0 x1

t0

t1

Figure 1: The intervals 
 �
D in (31) corresponding to the space{time rectangleD .

Let � = ( � x ; � t ) 2 N2
0 be a multi-index; for a su�ciently smooth function v, we de�ne

its anisotropic derivative D �
c v as

D �
c v(x; t ) :=

1
c� t

D � v(x; t ) =
1

c� t

@j � j v(x; t )
@� x

x @� t
t

:

Note that, if u and w satisfy

u(x; t ) = u0(x � ct); w(x; t ) = w0(x + ct); (33)

with u0 and w0 de�ned in 
 �
D and 
 +

D , respectively, then

D �
c u(x; t ) = ( � 1)� t u( j � j )

0 (x � ct);

D �
c w(x; t ) = w( j � j )

0 (x + ct):

We de�ne the Sobolev spacesW j; 1
c (D ) and H j

c (D ) as the spaces of functions whoseD �
c

derivatives, 0 � j � j � j , belong to L 1 (D ) and L 2(D ), respectively. We de�ne the following
seminorms:

jvjW j; 1
c (D ) := sup

j � j = j
kD �

c vkL 1 (D ) ; jvj2H j
c (D ) :=

X

j � j = j

kD �
c vk2

L 2 (D ) :

Note that for j = 0 te



A similar result holds for w(x; t ) = w0(x + ct), with 
 +
D instead of 
 �

D .

Proof. For the W j; 1
c (D )-seminorms in (i) , we have

jujW j; 1
c (D ) = sup

j � j = j
kD �

c ukL 1 (D ) = sup
j � j = j






 u( j � j )

0 (x � ct)







L 1 (D )
= ju0jW j; 1 (
 �

D ) :

For the bound of ju0j2H j (
 �
D ) in (ii) , we have

ju0j2H j (
 �
D ) =

Z


 �
D

�
�
�u

( j )
0 (z)

�
�
�
2

dz �
�
� 
 �

D

�
� sup

z2 
 �
D

�
�
�u

( j )
0 (z)

�
�
�
2

=
�
�
 �

D

�
� sup

j � j = j
sup

(x;t )2 D
jD �

c u(x; t )j2

= hD juj2W j; 1
c (D ) :

Considd
[(2)1.169416 0 Td
[(1)996864 Tf
13.6801 0 Td
[())2.56329].15739]TJ
/R14880-1.4,75T618



This suggests a construction of discrete subspaces ofT (D): given p 2 N0 and two sets of
p+1 linearly independent functions � � = f ' �

0 ; : : : ; ' �
p g � Cm (


�
D ) and � + = f ' +

0 ; : : : ; ' +
p g �

Cm (

+
D ) we de�ne the space

V p(D ) := span
� � ' �

0 (x � ct)
2"1=2

;
' �

0 (x � ct)
2� 1=2

�
; : : : ;

� ' �
p (x � ct)

2"1=2
;

' �
p (x � ct)

2� 1=2

�
;

� ' +
0 (x + ct)

2"1=2
; �

' +
0 (x + ct)
2� 1=2

�
; : : : ;

� ' +
p (x + ct)

2"1=2
; �

' +
p (x + ct)

2� 1=2

� �
;

which is a subspace ofT (D) \ Cm (D )2 with dimension 2(p + 1).
By virtue of Proposition 5.1, the approximation properties of V p(D ) in T (D) only de-

pend on the approximation properties of the one-dimensional functions f ' �
0 ; : : : ; ' �

p g: for all
(E; H ) 2 T (D) \ W j; 1

c (D )2, de�ning u, w, u0 and w0 from (E; H ) using (35) and (33),

inf
(E hp ;H hp )2 V p (D )

� �
�
�"1=2(E � Ehp )

�
�
�
W j; 1

c (D )
+

�
�
� � 1=2(H � Hhp )

�
�
�
W j; 1

c (D )

�
(36)

(35)
= inf

u0;p 2 spanf ' �
0 ;:::;' �

p g;

w0;p 2 spanf ' +
0 ;:::;' +

p g

�
1
2

ju(x; t ) � u0;p(x � ct) + w(x; t ) � w0;p (x + ct)jW j; 1
c (D )

+
1
2

ju(x; t ) � u0;p (x � ct) � w(x; t ) + w0;p (x + ct)jW j; 1
c (D )

�

Prop. 5.1 (i)
� inf

u0;p 2 spanf ' �
0 ;:::;' �

p g
ju0 � u0;p jW j; 1 (
 �

D ) + inf
w0;p 2 spanf ' +

0 ;:::;' +
p g

jw0 � w0;p jW j; 1 (
 +
D ) ;

while for all (E; H ) 2 T (D) \ H j
c (D )2

inf
(E hp ;H hp )2 V p (D )

� �
�
�"1=2(E � Ehp )

�
�
�
D )

�
��



Following the second route, we prove simple approximation bounds inH 1
c (Q), for a general

rectangle



6 Convergence rates

We now derive the convergence rates of the Tre�tz-DG method with polynomial approximat-
ing spaces

V p(Th ) =
�

(vE ; vH ) 2 L 2(Q)2 : (vE ; vH ) j K are as in (38) with p = pK
	

: (43)

The two main ingredients are the quasi-optimality results investigated in section 4 and the
best approximation bounds proved in section5. To combine them, we need to control the
DG+ norm (12) of the approximation error with its H 1

c (Q) norm, weighted with " and � , to
be able to use the bound (40). To this purpose, we de�ne the following parameters:

� K := max
� 



 �"



If the bound (19) holds true for the solution of the auxiliary problem(18), we also have
the following bound inL 2(Q):

� 




 � � 1=2(E � Ehp )








2

L 2 (Q)
+






 " � 1=2(H � Hhp )








2

L 2 (Q)

� 1=2

�
12

p
2

p
c

Cstab

X

K 2T h

�
6
�

c +
hx

K

ht
K

�
+ 8 � K

�
1 + c

ht
K

hx
K

� � 1=2

(e=2)
s 2

K
p K

�
hx

K + cht
K

� sK + 3
2

psK
K

�
� �

�
�"1=2E

�
�
�
W

s K +1 ; 1
c (K )

+
�
�
� � 1=2H

�
�
�
W

s K +1 ; 1
c (K )

�
: (47)

with Cstab from (19).

Proof. Given an element K 2 Th , we denote by @KN , @KS, @KW , and @KE its North,



where the last inequality follows noting that f (x) = (1 � x)
1
x � 1(1 + x)� 1

x � 14x e2� 2x � 1 for
all 0 < x < 1 (which in turn can be veri�ed by checking the convexity of log f and its limit
values for x ! 0 and 1).

The estimate in



(What we actually need is only that eu0 and ew0 are analytic in a su�ciently large complex
neighbourhood of the�nite segments 
 �

Q and 
 +
Q , respectively.)

For every mesh elementK as above, we �x hK := length(
 �
K ). The complex ellipses with

foci at the extrema of 
 �
K and sum of the semiaxes equal tor +

p





Figure 3 shows convergence of theh-version for degree zero through three. Solid lines
correspond to results obtained with the Tre�tz basis whereas the dashed lines were ob-
tained using the non-Tre�tz basis. Uniform mesh step sizes are applied by reducing hx and
ht simultaneously. The Tre�tz method exhibits optimal algebraic convergence rateshp+1 .
However, in the non-Tre�tz case, the results seem to suggest anodd-even pattern of the
convergence rates, with convergence being suboptimal for odd degrees (by one order). Nu-
merical odd-even e�ects in the convergence rates of DG methodshave also been reported,
e.g. in [18, section 6.5], although it has been shown in [17] that in some situations this might
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n 



 (�" )� 1 + ( �� )� 1





L 1 (F ver
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L 1 (F L
h [F R
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o
:

Proof. We assume that� and  are continuous inQ; the general case will follow by a density
argument.

First, we extend the initial problem to the entire space R. De�ne evE ; evH ; e�; e in R� R+ as
the 2(xR � xL )-periodic functions in x that satisfy evE jQ = vE ; evH jQ = vH ; e� jQ = �; e jQ =  
and such that evE and e are odd aroundxL (and consequently also aroundxR ), and evH and
e� are even around the same points, i.e.

evE (xL + x; t ) = � evE (xL � x; t ); evH (xL + x; t ) = evH (xL � x; t );

e� (xL + x; t ) = e� (xL � x; t ); e (xL + x; t ) = � e (xL � x; t ); 8(x; t ) 2 R � R+ :

(Note that the absolute values are (xR � xL )-periodic in x.) Since time derivatives preserve
parities and space derivatives swap them, the extended functionsevE and evH are continuous
and satisfy the extended initial problem

@evE

@x
+

@(� evH )
@t

= e� in R � R+ ;

@evH

@x
+

@("evE )
@t

= e in R � R+ ;

evE (�; 0) = 0 ; evH (�; 0) = 0 on R:

Second, we split the right- and the left-propagating components.De�ne

u := "1=2evE + � 1=2evH ; w := "1=2evE � � 1=2evH ; so that evE =
u + w
2"1=2

; evH =
u � w
2� 1=2

:

They satisfy the inhomogeneous transport equations inR � R+

@u
@x

+
@(c� 1u)

@t
= "1=2 e� + � 1=2 e =: f;

@w
@x

�
@(c� 1w)

@t
= "1=2 e� � � 1=2 e =: g;

recalling that ( "� )1=2 = c� 1, so they can be written explicitly with the following representa-
tion formula (e.g. [9, section 2.1.2, equation (5)], recall that from the assumptions made in
the proof, f and g are piecewise continuous)

u(x; t ) =
Z t

0
cf

�
x + c(s � t); s

�
ds; w(x; t ) = �

Z t

0
cg

�
x � c(s � t); s

�
ds:

We �rst bound the L 2 norm of u and w on horizontal and vertical segments with the data
f; g ; from the triangle inequality ( evE ; evH ) will be bounded by e� and e , and the bound for
vE and vH will follow. For all 0 � t � T
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� �
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x L + c(s� t )
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�
dy ds

= 2 tc2
� 





 "1=2�








2

L 2 (
 � (0 ;t ))
+






 � 1=2 








2

L 2 (
 � (0 ;t ))

�

(the last equality follows from the symmetries of e� and e which ensure the equality of
their L 2 norms on the rectangle (xL ; xR ) � (0; t) and on the parallelogram with vertices
(xL � ct; 0); (xR � ct; 0); (xR ; t); (xL ; t)). Similarly, for all x 2 
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