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Abstract
We present and analyse a space{time discontinuous Galerkin method for wave prop-



While the literature on Tre tz nite elements for time-harmonic wave propagation prob-
lems is nowadays quite developed (see e.d, §,11,14,23,29,32] for di erent approaches using
Tre tz-type basis functions and e.g. [2, 15,19, 20| for theoretical analyse



in Remark 2.1 (in one space dimension) and again in Remarld.4 (in any space dimension).
Given a space domain = (X_;Xgr) and a time domain| = (0;T), we setQ := l.
We denote byng = (nXQ;ntQ) the outward pointing unit normal vector on @Q
We assume the electric permittivity " = "(x



3.1 Mesh and DG notation

We introduce a meshT, on Q, such that its elements are rectangles with sides parallel

to the space and time axes, and all the discontinuities of the paramters " and lie on

interelement boundaries (note that the method described in this pger can be generalised to

allow discontinuities lying isnside the elements as in 25]). The mesh may have hanging nodes.
We denote with Fn = o7 @Kthe mesh skeleton and its subsets:

F o' := the union of the internal horizontal element sides (t = constant) ;
F e := the union of the internal vertical element sides (x = constant) ;
F=[xL;xr] f Og;
Fio:=[x_;xg] f Tg;
Fi:=fxeg [0;T];
ER






where
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where o = r U(;0) and vp = %’( ;0) are (given) initial data. Here, the jumps are
de ned as follows: [w]; := (w w)and [ It :=( *) on horizontal faces, Wy =
Wi, N, Fw ng,and [ I = g, nk,+ g, Nk, on vertical faces.



In particular, the bilinear form atpg ( ; ) is coercive in the spaceT (T,) with respect to the
DG norm, with coercivity constant equal to 1.

Proof. Using the elementwise integration by parts in time and space

x ZZ @F z z z
——dxdt = [FI: dx + F dx F dx
k Ot F or Fr Fo
K 2T h h h
x ZZ @F Z Z y4 (14)
——dxdt = [F1x dt + F dt Fdt  8F 2 Wh(Ty);
K o7 Kk @x e FR FL
h

and the jump identity

v vl %[v2]|t= %Mf onFM: 8v2HYT); (15)

we obtain the identity in the assertion:
ZZ
X
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Proof. To prove uniqueness, assume thaE;, = Egr = Eg = Hp = 0. Proposition 4.2 implies
Enp = Hnp = 0. Existence follows from uniqueness. For {6), the triangle inequality gives

(E;H)  (EnpiHnp)iioe il (E;H)  (Ve;vh)iioe + i (EnpiHnp) (Ve vk )iiioe (17)

for all (Ve;vH) 2 Vp(Th). Since Enp;Hnp)  (VE;VH) 2 Vo(Th)  T(Th), Proposition 4.2,
consistency (which follows by construction and from the consisteay of the numerical uxes),
and Proposition 4.3 give

iii(EnpsHnp)  (Ve;vh)iiids =aros (E Ve;H  ViuiEpp  Ve;Hpp Vi
2jjji(E;H)  (ve:;vu)iiipe



for ; 2 L?(Q). More precisely, we will need a bound on theL? norm of the traces ofvg
and vy on horizontal and vertical segments in terms of theL ?(Q) norm of (; ):

2 2
nl:ZVE + 1:2VH
L2(Frr110r [F J) LZ(F:.;"jr [F J)
2 2
+ 12y + P2y,
L2(Fyer) L2(F e [F #[F lf)
2 2
C2 nl=2 + 1=2 8 : 2 L2 Q 2; 19
2 o o (; )2L%Q%  (9)

for some Cgq > 0. We have inserted the numerical ux parameters within the third and
fourth term on the left-hand side of (19) because this is what we need in the proof of
Proposition 4.7 below; then the constant Cgap Will also depend on  and

Proposition 4.7.  Assume that the estimate(19) holds true for (vg;vy) solution of prob-
lem (18). Then, for any Tre tz function (wg;wy) 2 T(Th), the L2(Q) norm is bounded by
the DG norm:

2 _ 2 1=2
E + gy

L2(Q) L2(Q)
with Cgap as in (19).

Proof. Let (Vg ; vy ) be the solution of the auxiliary problem (18

p_
2 Cstab Jij (WeE ; WH)jii pG ;



we obtain the desired estimate. O

Recalling that the error ((E  Enp);(H  Hnp)) 2 T(Th), and combining Proposition 4.7
and the quasi-optimality in DG norm proved in Theoremosition



which in turns implies
zZ

E(t) = F§g+ o VE + VH



2A
® 24 W2+ W2 +2(x xk) @{vaH)+ Ive +" vy dx dt
h* _ « @
YAV
h_x ) 2 lVé"‘z" 1Vﬁ+(X XK)Z 1 2+|| 1 2 dx dt
z
2A . .
Rl 2j(X Xk )VeVn] dx
h*  gksn
Using 2evy  (vZ + 1vZ) with weight = "c=(c) *, we have the bound
X 1=2 2 1=2 2
B VE LZ(@KWE ) + ) VH LZ(@KWE )
K 2T h
- ﬁ l=2VE 2 + ﬁ n 1:2VH 2 + AhX 1=2 2 + AhX n 1=2 2
e L2(Q  hx L2(Q 2 L2Q 2 L2(Q)
+2A c("vZ + v 3)dx
Fio P ]
(27):(26) 472 X 2 B 2
A ¢t + =& +2¢ Npore! 172 + 172
h< 1 " 2 1 hor L2(Q) L2(Q)
recalling that ¢; = kck; 1 (q)-
This, together with ( 26), gives the bound (19) with constant C2,, as in (21). O

In case of a tensor product mesh with all elements having horizontaedges of lengthh*
and vertical edges of lengthh! = hX=c, the constant Cggp is proportional to (h*) =2, We
stress that we cannot expect a bound like 19) with Cgga, independent of the meshwidth:
indeed if the mesh is re ned, say, uniformly, while the term in the bradkets in the right-hand
side of (19) is not modi ed, the left-hand side grows (consider e.g. the simple cee =

=0, vg =0, vy = t).

One could attempt to derive the stability bound (19) by controlling with ( ; ) either

the H






forall (E;H);(ve;vu) 2 T(T



and denote their length by

hp == X1 Xo+ C(tl to): (32)
Their relevance is the following: the restriction to D of the solution of a Maxwell initial value
problem posed inR  R* will depend only on the initial conditions posed on [ [; see
Figure 1.

g t-----

Figure 1: The intervals [ in (31) corresponding to the space{time rectangleD.

Let = ( x; t) 2 N3 be a multi-index; for a su ciently smooth function v, we de ne
its anisotropic derivative D, v as
1 1 @ iv(x;t)
D.v(x;t):= —D v(xjt) = ————F—:
[ ( ) ct ( ) Cct @x @1
Note that, if u and w satisfy
u(x;t) = up(x ct); w(x;t) = wp(x + ct); (33)

+

with up and wp denedin 5 and [, respectively, then
Doutit)=( 1) ‘ug (x o)
D.w(x;t) = wg j)(x + ct):

We de ne the Sobolev spacesV! ! (D) and H. (D) as the spaces of functions whosB
derivatives, 0 j j |, belongtoL?! (D) and L?(D), respectively. We de ne the following
seminorms:

jvjwé-; 1 (p) = Sup kD¢ VK 1 (py; jvjaé(D) = kD. kaz(D) :
P i =i

Note that for j = 0 te



+

A similar result holds for w(x;t) = wo(x + ct), with [ instead of .

Proof. For the W} ! (D)-seminorms in (i) , we have

jUiwi1 (py = sup kD¢ uk s ) = sup uf)’ Dix  ct) = JUolwir ()¢

i = i i= L+ (®) °

For the bound ofjuojﬁ“-( ) in (i) , we have
D
z

2 - () 2 W)y 2 = - 12
JUojii¢ ) = up’(z) dz p SUP Ug'(z2) =  sup sup jDcu(x;t)]

o z2 j i=] (xt)2D

P .
hp JUjwit (py:

Considd [(2)1.169416 0 Td [(1)996864 Tf 13.6801 0 Td [())2.56329].15739]TJ /R14880-1.4,75T618



This suggests a construction of discrete subspaces ©f(D): given p 2 Ng and two sets of
p+1[r1earlyindependentfunctions =f'o;::5"p9 CM™( p)and T =f' oy e
C™( p) we de ne the space

"o(x ct) ",(x ct) "o ety "p(x Y

V(D) :=span > 12 N iz ' o 1=2 '
Sxtct) p(x+ct) pxre) T E(x+ot)
=2 2 =2 v 2"1=2 2 1=2 ’

which is a subspace off (D) \ C™(D)? with dimension 2(p + 1).
By virtue of Proposition 5.1, the approximation properties of V(D) in T(D) only de-

(E;H)2 T(D)\ Wl (D)?, dening u, w, up and wo from (E; H ) using (35) and (33),

inf "2EE , + H H , 36
(Ewp Hip)2V (D) ( ") it o) ( "®) it o) (30)
(35) . 1. .
= inf Siu(t)  ugp(x )+ wixit)  Wop(X + Ch)jyit p)
Uo;p 2spanf’ o ;i p O 2 ¢
Wop 2spanf' ' g
1. .
+ Eju(x;t) Ugp(X  ct)  w(Xit) + Wop(X + Ct)jyir (p)
Prop. 5.1 (i) i . . inf i i
in jUo  Uo:pjy i + in Wo  Wopiwii, s
Uop 2spanf’ o' p g PIWI (o) Wop 2spanf' ¢ ;' 5 g PIWIE ()

while for all (E;H) 2 T(D)\ Hi(D)?

inf "IF2E Ey
(Emp Hip )2V (D) ( 28



Following the second route, we prove simple approximation bounds irH 2(Q), for a general
rectangle



6 Convergence rates

We now derive the convergence rates of the Tre tz-DG method wih polynomial approximat-
ing spaces

Vo(Th) = (Ve;vu) 2 L3(Q)?: (Ve;Vn)j, are asin 38 with p= px : (43)

The two main ingredients are the quasi-optimality results investigated in section 4 and the
best approximation bounds proved in section5. To combine them, we need to control the
DG™* norm (12) of the approximation error with its H2(Q) norm, weighted with " and , to
be able to use the bound 40). To this purpose, we de ne the following parameters:

K = max



If the bound (19) holds true for the solution of the auxiliary problem(18), we also have

the following bound inL?(Q):

1=2
1=2 n 1=2
E En + H h
( 2 L2(Q) ( 2 L2(Q)

P_ 1=2 2
122 X hx ht s
p—Cstab 6 c+ hTK +8 k 1+ Ch_!‘( (e=2)px

¢ K 2T K K

nl=2 1=2
E grht (K)+ KT (K)

with Cgap from (19).

sk + 3
hX +chf, ™2

SK
Px

(47)

Proof. Given an elementK 2 T,, we denote by @K', @K, @K', and @K its North,



1

where the last inequality follows noting that f (x) = (1 x)* 1(1+ x) x 14Xe2 2 1 for
all 0 <x < 1 (which in turn can be veri ed by checking the convexity of logf and its limit
values forx ! 0 and 1).

The estimate in



(What we actually need is only that 8, and wy are analytic in a su ciently large complex
neighbourhood of the nite segments  and 5, respectively.)

For every mesh elemenK as above, we xhg :=length( )..The complex ellipses with
foci at the extrema of | and sum of the semiaxes equal to +






Figure 3 shows convergence of thén-version for degree zero through three. Solid lines
correspond to results obtained with the Tre tz basis whereas the dashed lines were ob-
tained using the non-Tre tz basis. Uniform mesh step sizes are apled by reducing hy and
hy simultaneously. The Tre tz method exhibits optimal algebraic convergence rateshP**
However, in the non-Tre tz case, the results seem to suggest amdd-even pattern of the
convergence rates, with convergence being suboptimal for oddedrees (by one order). Nu-
merical odd-even e ects in the convergence rates of DG methodbkave also been reported,
e.g. in [18, section 6.5], although it has been shown in17] that in some situations this might









n 0}
— n 1 1 . 1 .
= Mmax ( ) +( ) L1 (F};’e’)' ( ) L1 (F}L_[F }5)

Proof. We assume that and are continuous inQ; the general case will follow by a density

argument.
First, we extend the initial problem to the entire spaceR. Dene e=;e4;€ €in R R" as
the 2(xg X )-periodic functions in x that satisfy ez jo = Ve;@ujo = Vu; So = ; € =

and such that ez and € are odd aroundx, (and consequently also aroundkg), and @y and
€ are even around the same points, i.e.

e (XL +Xxt)= ee(xe Xt); ew(xL +xt)=eq(xe  Xt)
exL + x;t) = €(x. x;t); ExL + x;t) = €(xL xt); 8(x;t) 2R R™:

(Note that the absolute values are kg X )-periodic in x.) Since time derivatives preserve
parities and space derivatives swap them, the extended functiongg and @y are continuous
and satisfy the extended initial problem

%+ @@e':):e inR R";
@y @HEE)_ f + .
@+ ot = € inR R*:
e=(;0)=0; ey(;0)=0 on R:

Second, we split the right- and the left-propagating components.De ne

u+w. u w,
n1=2" :

nl=2 1=2

ni1=2 e ey sothat e =

u:= 1=2

e + B, W=

They satisfy the inhomogeneous transport equations irR R*

1 1
@u @c V) _ 1w, 1. f @w @c W) _ .1 1= 9;

@x @t ' @x ot
recalling that (" )2 = ¢ 1, so they can be written explicitly with the following representa-
tion formula (e.g. [9, section 2.1.2, equation (5)], recall that from the assumptions mad in
the proof, f and g are piecewise continuous)
z t z t

u(x;t) = cf x+c(s t);s ds; w(x;t) = cgx c(s t);s ds:
0 0

We rst bound the L? norm of u and w on horizontal and vertical segments with the data
f;g; from the triangle inequality (&g ;eq) will be bounded by € and €, and the bound for
ve and vy will follow. Forall0 t T

Z XR Zt 2
ku(;t)kfz() = cf x+c(s t);s ds dx
X
LZ XR %t 2
tc? f x+cs t);s “dsdx
XL 0
z t z Xr+c(s t) 5
= tc? f(y;s) “dyds
0 x_+tc(s t)
t Xr+cC(s t)
2tc? "j®y;8)i*+ (&(y;9)i® dyds
0 x_+c(s t)
2 2
:2tC2 nl=2 + 1=2

Lz2( (i) L2(  (O;t)

(the last equality follows from the symmetries of € and € which ensure the equality of
their L2 norms on the rectangle &, ;xg) (0;t) and on the parallelogram with vertices
(xL ct;0);(xg  ct;0); (Xgr;t); (xL;t)). Similarly, for all x 2
, Z; Z, )
ku(x; )KL 2.1y = cf x+c(s t);s ds dt
0 0

28



t f x+c(s t);s ? dsdt

tf x+c(s t);s % dtds
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