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In health-related behaviour change context, for an intervention to work at
the individual level, it is often of the utmost importance that a support network
exist (see e.g.[]8]). In this way an individual is surrounded with social support.
Also, a support network needs to have a major in uence on the individual, as
possible negative in uences also come from her/his social network (for example
in interventions aimed at addictive behaviours).

For these reasons, one often needs to nd a set of nodes/individuals such
that all other or indeed all individuals are connected to that set. In graph the-
ory such a set is called a dominating set and a problem of nding a dominating
set of minimal cardinality is NP complete [7]. The notion was generalised in-
troducing k-domination where each node needs to have at leadt neighbours
in the dominating set, and  domination where 0 < 1, where each node
not in the dominating set needs at least 100 percentage of neighbours in the
dominating set [12]), and -rate domination [6] where each node (including ones
in the dominating set) needs to have at least 100 percentage of neighbours
in the dominating set. Again, nding minimum cardinalities of and -rate
dominating sets is NP-complete.

Here, we introduce -rate dominating sets problems on weighted networks.
Why weighted networks? It might be that the \best" candidates (from structural
perspective) for dominating sets are not feasible for di erent reasons: they cannot
be a part of intervention because they do not have desired attributes, or they do
not have time to invest into intervention. We want to overcome this assigning
a cost to be part of intervention to each node. Thus, our goal is to nd a most
cost e ective set that we can control or dominate network from. Note that here
we do not model negative in uences that come from a social network, but just
require at least 100 percents of neighbours to be in the support network.

In the next section we give preliminaries and formally de ne the problem.
In Section [ an overview of the previous work is given. In Sectiofi|3 theoret-
ical upper bound on weighted -rate dominating set is given which leads to
simple randomised rounding algorithm using linear programming formulation of
the problem. In Section[4 we analyse the results obtained from the algorithm's
application on a Twitter network and generated graphs and compare them for
non-weighted case with the existing algorithm in [5] for -rate domination. We
conclude in the Section’b.

1 Preliminaries

In this section we introduce the notation and de nitions that we use throughout
this paper.

A graph or undirected graph G is an ordered pairG = (V; E) where V is a
set, elements of which are called vertices or nodes, arid is a set of unordered
pairs of distinct vertices called edges. IfG is a graph of ordern, then V(G)
fvy;vo; i vag is the set of vertices inG, d, denotes the degree of/, and d,
dy + 1. Let N(v) denote the neighbourhood of a vertex v. Also, let N (V)
[vavN(v)and N[V]= N(V)[ V:Thend, = jN[v]}. Denote by (G) and (G)



the minimum and maximum degrees of vertices 06, respectively. Put = (G)
and = (G).

A set D is called adominating setif every vertex not in D is adjacent to one
or more vertices inD. The minimum cardinality of a dominating set of G is the
domination number (G).

Let be a real number satisfying 0< 1. A set X V(G) is called
an -dominating set of G if jN(v)\ Xj d, for every vertexv 2 V(G) nX,
i.e. v is adjacent to at leastdd , e vertices of X. The minimum cardinality of
an -dominating set of G is called the -domination number (G). It is easy
to see that (G) (G),and (G)= (G)if s suciently close to 0. A
set X V (G) is considered an -rate dominating set of G if for any vertex
v2V(G), jN[v]\ Xj d,:The minimum cardinality of an -rate dominating
set of G is called the -rate domination number (G). It is easy to see that

(G) (G).

Now we consider the vertex-weighted graphs. These are nite and undirected
graphs with no loops and multiple edges in which each vertex has been assigned
a weight. Let w, be the weight (cost) of each vertexv of graph G. Let ,(G)
denote a minimum weight of a dominating setX of G and let ., denote a
minimum weight of ap -rate dominating set D. Finding an -rate dominating
setD of G such that ,, wy is minimised is the main problem studied in this
paper.

2 Previous work

Variants of domination have been studied extensively and have various applica-
tions for real life problems. Smaller number of studies in domination parameters
consider weighted graphs in particular.

The minimum weighted dominating set problem is one of the classi®N P -hard
optimisation problems in graph theory. Zou et al. [20] studied the minimum-
weighted dominating set and the minimum-weighted connected dominating set
problems on a node-weighted unit disk graph and devised approximation algo-
rithms for these problems with performance ratios of 5+" and 4 + " respec-
tively. In [L8] Polynomial Time Approximation Scheme (PTAS) was generalised
for weighted case in polynomial growth bounded graphs with bounded degree
constraint. A variant of the weighted dominating set problem - the weighted
minimum independent k-domination (WMIkD) problem was studied by Yen in
[I9]. An algorithm linear in the number of vertices of the input graph for the
WMIKD problem on trees is presented.

Discussing a more general domination set problen[3], where the direct con-
nections are replaced with shortest paths corresponding to some measufede-
ned on the vertices of a graph, the authors give an approximation algorithm
for the vertex-weighted version. Using randomised rounding they prove the ap-
proximation ratio of O(log ) for their randomised algorithm, where is the
maximum cardinality of the sets of vertices that can be dominated by any single
vertex, or in our case a maximum degree of the vertices in the graph.



In [2], the maximum spanning star forest problem is discussed, which is the
complement problem of domination set. A Q71-approximation algorithm for this
problem is given, and for vertex-weighted case a:64-approximation algorithm
is presented.

The -domination was introduced by Dunbar et al. in [I2Z]. Introduced by
Zverovich et al.[6] the concept of -rate domination can be considered as a
particular case of an dominating set in the same graph. Note that both the

and -rate domination problems are known to be NP -complete. Thus it is
of importance to determine bounds for and -rate domination numbers and
various similar parameters. In [5] and [6] the authors explicitly provide new upper
bounds and randomised algorithms for nding the and -rate domination sets
in terms of a parameter and graph vertex degrees on undirected simple nite
graphs by using probabilistic constructions. Their algorithm is bounded by:
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where & is a closed -degree ofG and b=p (1 )c+ 1.

Studies of the propagation of in uence in the context of social networks car-
ried out by Wang et al. in [L6] resulted in introducing new variants of domination
such as the positive in uence dominating set (PIDS) and total positive in uence
dominating set (TPIDS). From the de nitions given in [16]lit is easy to see that
PIDS and TPIDS problems are equivalent to -dominating and -rate domi-
nating set problems respectively for a special case when = 1=2. Wang et al.
proved that both these problems areNP -hard. Thus, it is important to study
approximability of the problems. In their work Dinh et al. [4]l generalise PIDS
and TPIDS by allowing any 0 < < 1 and show that both problems can be ap-
proximated within a factor In + O(1) and present linear time exact algorithm
for trees.

3 Randomised rounding algorithm



of an integer program IP:

min



Showing our goal [4) is equivalent to showing

1 XX Y Y
5 ( x) @ x))=Prk X) 5)
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o we are looking for a minimum of the right hand side of ) subject to
?;1 Xi Kk (this minimum must exist by continuity and compactness). Clearly

the minimum will be found when id;l Xi = k; increasing one of thex;s without
changing the others will clearly only increase the RHS. So we may assume that

v
X; = k: (6)

i=1

Now we can use the result from[[1D], Theorem 5, that shows that tail distribution
function of Poisson's binomial distribution attains its minimum in binomial dis-
tribution, i.e. when all probabilities are equal. The theorem states that for two
integersb, and csuchthat 0 b np ¢ n, the probabilty P(b X ¢
reaches its minimum where all the probabilitiesp; = ::: = p, = p, unlessb=0
and c = n. Here p;s are probabilities (or parameters) of Poisson's binomial dis-
tribution, and n and p are parameters of related binomial distribution. We apply
that theorem taking two integers b and c to be our k and d, respectively. We
have that p, the equal probability is % from @ whence np equals ourk. The
theorem gives us

d
IV p@a p ! Pr(k  X):
I=k

Thus, we will be done if we can show that

R dv dy |

, PA PpY (7)
I=k

is at least % Let Y be a random variable of binomial distribution with d, trials

each of probability p. Then observe that in fact Pr(Y k) is equal to @) above.

The median of Y is bounded by bd, pc and dd, pe [13], but d,p is exactly the

integer k, sok is the unique median ofY . It follows from the de ning property

of medians that Pr(Y k) 3, and thus Pr(Y < k) < } and the proof is

complete.

Hence, the probability is lower bounded by 3, and the feasibility follows. Let
A; denote the event that vertex v; is -rate dominated and let B = \ L, A;
be the event that all vertices are dominated. Using a technique identical to one
carried out in [3], with ampli cation approach (repeating randomised rounding
t = O(log, ) times) which results in Pr([xi =1])=1 (1 X)'. We obtain



that the expected value of the solution resulted from randomised rounding, given
that event B happens, (i.e. that the solution is feasible) is
" #
X
E wixjjB = w;iPr([x; =1]jB)
i=1 i=1

%

Pr(Bjlxi =1])

= [ Pr[B] Pr(xi =1)

o 1
=1 izne PTA)

@ @ x)

T Wi X
2 =1
O(log, OPT ):

Hence, there exists a particular solution that it is within (Olog, ) ratio to the
optimal solution. u
A simple randomised rounding algorithm AIgRR follows immediately, by
rst solving LP and then rounding the solutions to zero or one. All vertices with
ones then create an -rate domination set with the sum of the weights within
O(log, ) factor of the optimal solution. We implemented AIgRR in Python.

4 Twitter UK mentions network

The Twitter data-set was collected on our behalf by Datasift, a certi ed Twitter
partner, which allowed us to access the full Twitter rehose rather than being
rate-limited. The data-set consists of all UK basel Twitter users that sent
tweets with at least one mention between 8 Dec 2011 and 4 Jan 2012 (28 days
in total). Mentions are messages that include an @ followed by a username and
are used to address people. Thus, if persoA posts a tweet containing \@B"
that means A is addressing the tweet toB speci cally. Mentions are not private
messages and can be read by anyone who searches for them. A tweet can be
addressed to several users simultaneously using @ repetitively.

4.1 Data

We preprocessed the data, removing empty mentions and self-addressing which
left us with 3;614; 705 time-stamped arcs (individual mentions) from a total of
819 081 distinct usernames, or nodes. We then removed all users who didn't
tweeted but just received messages, as we did not have a weight measure for
them. There were approximately 50k nodes that appeared both as tweeters and
receivers. We aggregated data on weekly basis and kept only two-directional arcs
(thus if person A mentioned B and person B mentioned A at least once during

3 All Twitter users appearing in our data-set had selected the UK as their location.



a week there is a bi-directional edge between A and B in a weekly graph). For
simplicity, we treated those bi-directional edges as undirected. This left us with 4
undirected weekly graphs with around 5k nodes in each and around:Bk edges in
average. For each vertex we retrieved itKlout score and used it as a weight. The
Klout score measures an individual's in uence based on her/his social media ac-
tivity ﬂ It is a single number that represents the aggregation of multiple pieces of
data about individuals' social media activity, based on a score model which is not
publicly available [14]. The descriptive statistics of the Twitter mentions weekly
graphs are given in Tablg 1 below. As the 4 mentions graphs are quite sparse, we

Table 1. Twitter mentions network statistics, ME denotes number of multi-edges in



4.2 Results

In this section we investigate how our randomised rounding algorithm AlgRR
performs on some real and created networks. We also compare it with the existing
-rate domination algorithm for simple (hon-weighted) graphs from [5] (denoted

here as AlgA). We have run both algorithms on 4 weekly Twitter random and
preferential graphs. As algorithms are randomised, we have run both algorithms
100 times taking averages. Results are presented in Tablé$ 3 ahdl 4 below. The
results show that for dense networks (networks denoted withpref-d and rnd-
d) the algorithm AIgRR outperforms algorithm A signi cantly and not only
on minimum weights (which would be expected, as algorithm A optimises the
size of -rate dominating set, while algorithm AIgRR optimises the weights)
but also on the sizes of -rate dominating sets. According to the theoretical
bounds of algorithm A the probability with which each candidate vertex for
-rate dominating set is selected gets close to 1 for dense netwogkef-d, thus
resulting in selecting all the nodes of the network. However on sparse networks
such astwitt1-4 Algorithm A slightly outperforms algorithm AlgRR.

Table 3. Alpha-rate domination sets' sizes (#), weights(W) and running times(T) for
AlgA, for di erent graphs and = 0:25;0:5; 0:75 respectively.

Avg# AvgW Min# Max# MaxW MinW AvgT(ms)
5000 193419 193419 12.71

Graph

pref-d0.25 5000
pref-d0.5 5000
pref-d0.75 5000
rnd-d0.25 4730
rnd-d0.5 4991
rnd-d0.75 4998
twitt10.25 4328
twitt10.5 5291
twitt10.75 5056
twitt20.25 4612
twitt20.5 5453
twitt20.75 5259
twitt30.25 3960
twitt30.5 4897
twitt30.75 4753
twitt40.25 4195
twitt40.5 5127
twitt40.75 5036

193419 5000
194267 5000
188938 5000
182675 4689
191934 4985
194278 4994
146960 4259
179701 5222
171733 4993
157207 4539
185872 5436
179254 5217
135557 3879
167738 4854
162770 4697
142143 4119
173809 5069
170727 4979

5000
5000
4768
4998
5000
4408
5334
5113
4670
5475
5297
4031
4946
4794
4289
5183
5092

194267 194267 12.87
188938 188938 13.09
184149 180909 12.11
192222 191573 12.35
194343 194082 12.58
149577 144171 3.21
181377 176986 4.21
173600 169609 3.80
159495 154516 3.22
186780 185343 3.77
180618 177888 3.58
138291 132624 2.70
169551 165730 3.60
164233 160732 3.24
145122 139323 3.24
175550 171776 3.64
172826 168874 3.53

Since the algorithm AIgRR is based onLP -relaxation technique it runs in
polynomial time. Our resetwOur



di erent graphs and

Table 4. Alpha-rate domination sets' sizes, weights and running times for AlgRR, for
= 0:25; 0:5; 0:75 respectively.

Graph

Avg# AvgW Min# Max# MaxW MinW AvgT(ms)

pref-d0.25 979

pref-d0.5 2158
pref-d0.75 3489
rnd-d0.25 1604
rnd-d0.5 2688
rnd-d0.75 3901
twitt10.25 4628
twitt10.5 4817
twitt10.75 5665
twitt20.25 4443
twitt20.5 4595
twitt20.75 5431
twitt30.25 4191
twitt30.5 4360
twitt30.75 5159
twitt40.25 4459
twitt40.5 4637
twitt40.75 5468

16647 578

51541 1498
109794 2661
28367 960

68953 1843
130250 2747
153367 4607
159901 4792
191648 5665
148065 4413
153249 4566
184481 5431
140094 4166
145765 4321
175854 5159
147854 4447
153552 4624
184486 5468

1512
2777
4279
2420
3664
4770
4655
4837
5665
4469
4625
5431
4220
4391
5159
4471
4651
5468

30845 7124

75523 28143
149581 71461
56342 10869
115395 34074
180502 70105

65.70
139.24
256.96
341.29
870.87
1180.02

154355 152560 8.79
160658 158939 9.11
191648 191648 9.29
148980 147007 7.77
154311 152196 8.06
184481 184481 8.13
141094 139172 6.99
146869 144362 7.13
175854 175854 7.26
148289 147384 7.80
154067 153058 8.12
184486 184486 8.16

The analysis of AlgA has shown similar spread of solutions for di erent runs,
and were relatively stable. For algorithm AIgRR the results in Table 4 show
signi cant di erence between minimum and maximum cardinalities of -rate
dominating sets for dense networkspref-d and rnd-d. This indicates that the
values of variables in the solutions obtained byLP relaxation are spread out over
(0;1) interval (i.e. are fractional). We have veri ed the spread and consistency by
performing additional 200 runs for algorithm AlgRR where = 0:25 for pref-d
and rnd-d

O



-rate dominating sets does not change signi cantly compared with the results
obtained from 100 runs. Thus it can be concluded that more runs are unlikely
to achieve better results.

Fig. 1. Variation in size and weight for 100 runs of AIgRR, for rnd-d, =0:5

On Figure [J given are sizes and weights for 100 runs for AlgRR omnd-d
networks where = 0:5. Similar plots were obtained for all graphs and for both
algorithms.

5 Conclusion

We have explored how to pick optimal sets of individuals for interventions in so-
cial networks. If each person in network has assigned a cost, the aim was to nd a
group of people having minimum sum of costs so that each individual in network
has at least 100 percent of its neighbourhood in this designated group. We
presented a randomised algorithm for nding approximation of minimum weight

rate domination set in graphs. We proved that this algorithm's output is within
O(log,
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