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1 Introduction

Approximate Bayesian computation (ABC) algorithms are a popular method of inference for

a wide class of otherwise intractable probability models in applications such as population

genetics, ecology, and systems biology (Beaumont, 2010; Marin et al., 2012). They select

parameter vectors� for which datasetsy simulated from the model of interest are su�ciently

close to the observations. A bottleneck is the computational cost of producing the large

quantity of model simulations needed, which becomes increasingly severe for more detailed

models. However, it is often clear during a simulation that it is unpromising. For example

it is likely to produce a poor match or to require excessive computation time. This paper

presentslazy ABC, an importance sampling method which abandons some such simulations,

a step referred to asearly stopping, exploiting information from incomplete simulations to



The �nal likelihood estimator is based onX and Y



predictions given� forming X in the notation above) to gain speed bene�ts without incurring

additional approximation errors. More generally, there has been much interest over the past

decade in Bayesian inference algorithms with random weights (e.g. Beaumont, 2003; Andrieu

and Roberts, 2009; Fearnhead et al., 2010; Tran et al., 2014). A novelty of lazy ABC is that

it introduces a random factor to the weights to reduce computation time, rather than to deal

with intractability.

Rejection control in sequential Bayesian algorithms (Liu et al., 1998) uses a similar idea

to lazy ABC. Here after the �rst t stages of the sequential analysis, a proposal (typically

a sequence of latent states at times 1; 2; : : : ; t) with weight w is allowed to continue with

probability � = min(1 ; w=c) for some constantc. On continuation the weight is updated to

w=� and otherwise a new proposal is generated. Novelties of the current work are �nding

an optimal form for � and allowing it depend on information other thanw.

The remainder of the paper is structured as follows. Section 2 contains background mate-

rial. To help later developments this presents ABC within the framework of random weight

importance sampling. Section 3 gives the lazy ABC algorithm and proves it targets the cor-

rect distribution. Section 4 presents theory and practical methods for tuning the algorithm.

A related result is also given on the optimal importance distribution for standard ABC im-

portance sampling. Section 5 contains the application to spatial extremes and Section 6 is

a discussion. Appendices contain proofs and material on lazy ABC with multiple stopping

decisions.

2 Importance sampling

Consider analysing datayobs under a probability model with density � (yj� ) and param-

eters � . The likelihood is de�ned asL(� ) = � (yobsj� ). Bayesian inference introduces a

prior distribution with density � (� ) and aims to �nd the posterior distribution � (� jyobs) =

� (� )L(� )=� (yobs), where � (yobs) =
R

� (� )L(� )d� , or at least to estimate the posterior expec-
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tation E[h(� )jyobs] of a generic functionh(� ). Importance sampling is a simple method to do

this. Parameter values� 1:N are simulated independently from an importance densityg(� )

and given weightswi = L(� i )� (� i )=g(� i ) (n.b. � 1:N represents the sequence (� i )1� i � N . Similar

notation is used later.) It is assumed throughout thatg(� ) > 0 whenever� (� ) > 0. Each of

the (� i ; wi ) pairs can be computed in parallel, allowing for e�cient implementation.

A Monte Carlo estimate of E[h(� )jyobs] is � h =
P N

i =1 h(� i )wiP N
i =1 wi

. Two properties of importance

sampling estimates are

� h ! E[h(� )jyobs] almost surely asN ! 1 ; (1)

E[N � 1
NX

i =1

wi ] = � (yobs): (2)



be seen by noting that Algorithm 1a is equivalent to a deterministic weight importance



Input (general):

� Prior density � (� ) and importance densityg(� ).

� Number of iterations to performN .

Input (RW-IS):

� Likelihood estimator L̂ .

Input (ABC):

� Observed datayobs.

� Summary statisticsS(�), distance functiond(�;



choice ofS(�) involves a trade-o� between low dimension and informativeness. For further

background details on all aspects of ABC see the review articles of Beaumont (2010) and

Marin et al. (2012).

3 Lazy ABC

This section de�nes lazy ABC and shows it produces valid results.

De�nition 1. Lazy ABC is Algorithm 1a, using a likelihood estimator of the form(3) under

conditions C1-C3.

L̂ lazy =

8
>><

>>:

L̂ABC =� (�; X ) with probability � (�; X )

0 otherwise
(3)

C1 � (�; x ) is a function with codomain[0; 1].

C2 � (�; x ) > 0 wheneverPr(L̂ABC > 0j�; x ) > 0.

C3 The random variableX is such that bothX j� and Yj�; x can be simulated from.

The following theorem shows that the estimator̂L lazy can be used in a RW-IS algorithm,

or a pseudo-marginal MCMC algorithm, and give valid results.

Theorem 1. Conditional on � , L̂ lazy is a non-negative unbiased estimator ofLABC (� ).

Proof. Non-negativity is immediate. For unbiasedness �rst observe that E(̂L lazy j�; x ) equals

zero when� (�; x ) = 0 and E(L̂ABC j�; x ) otherwise. By C2 if � (�; x ) = 0 then Pr( L̂ABC >

0j�; x ) = 0 and so E(L̂ABC j�; x ) = 0. Hence E(L̂ lazy j�; X ) = E( L̂ABC j�; X ). Taking expecta-





the continuation simulation stage. It is often useful later to have� (�; x ) = � (� (�; x )) where

� (�; x ) is referred to as thedecision statistics.

Notation is now introduced for expected CPU times: �T1(� ) is for steps 1 and 2 above

conditional on � , �T2(�; � ) is for step 3 conditional on (�; � ) and �T(� ) is for simulation from

L̂ABC conditional on � . The �rst two are roughly the times of the initial simulation and

continuation stages, but are de�ned to cover all steps involved in simulating from̂L lazy .

It is assumed that

�T(� ) � �T1(� ) + E[ �T2(�; � )j� ]: (4)

Roughly speaking this states that drawing from̂L lazy conditional on no early stopping takes

at least as long as drawing from̂LABC . The di�erence is due to computational overheads of

considering stopping. It is also convenient to de�ne�T1 = E[ �T1(� )] and �T2(� ) = E[ �T2(�; � )j� ].

3.1 Lazy importance sampling

The above approach can be generalised to non-ABC situations to givelazy importance sam-

pling (LIS). This is Algorithm 1a using a likelihood estimator of the form:

L̂ lazy =

8
>><

>>:

L̂=� (�; X ) with probability � (�; X )

0 otherwise

In addition to conditions C1 and C2 above assume:

C4 The distribution (X; L̂ )j� is such that L̂ j� is a non-negative unbiased estimator ofL(� ),

and both X j� and L̂ j�; x can be simulated from.

This framework can be used when̂L is an expensive unbiased estimator. It also allows cases

where either or both ofX and L̂ are non-random. For example,X may be a deterministic

approximation of the likelihood andL̂ j� may be a point mass atL(� ).
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All theorems and proofs of this paper also hold for lazy importance sampling, replacing

LABC (� ) and L̂ABC with L(� ) and L̂ , and making other small modi�cations noted in the text.

In particular Theorem 1 shows that given conditions C1, C2 and C4,̂L lazy j� is a non-negative

unbiased estimator ofL(� ). However the practical application of lazy importance sampling

is challenging as discussed in Section 6.

4 Tuning

There is considerable freedom to tune lazy ABC through the choice ofX (when to consider

stopping) and � (the function assigning continuation probabilities). Section 4.1 proves a

result on the most e�cient choice of � . This theory is used in Section 4.2 to motivate

practical tuning methods.

Note that the case where� (� ) is based on� 2 A for discrete A does not require the

theoretical results below. Here� (� ) values can be selected by numerical optimisation of an

estimate of the algorithm's e�ciency based on pilot simulations. The methods that follow

detail construction of such an estimate.

4.1 Theory

A commonly used tool for the analysis of importance sampling algorithms is the e�ective

sample size (ESS). Liu (1996) argued that typically the variance of the importance sampling

estimator is roughly equal to that ofNe� independent samples where

Ne� = NE (W)2=E(W)2;

and the random variableW is the weight generated in an iteration of importance sampling.

The argument of Liu generalises immediately to RW-IS algorithms through the interpretation

of them as importance sampling algorithms on an augmented parameter space given in

Section 2.2.
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De�ne e�ciency as Ne� =T whereT is the CPU time of the algorithm (i.e. ignoring any

execution time savings due to parallelisation.) Assume thatT follows a central limit theorem

in N . Then the delta method gives that for largeN e�ciency asymptotically equals

E(W)2=E(W 2)
E(T)=N

:

Theorem 2. Fix some decision statistics� (�; x ). Amongst continuation probability func-

tions of the form � (�; x ) = � (� (�; x )) , asymptotic e�ciency is maximised by the following

expression for some� > 0,

� (� ) = min

8
><

>:
1; �

2

4
E[L̂ABC

� (� )2

g(� )2 j� ]
�T2(� )

3

5

1=2
9
>=

>;
: (5)

Proof. See Appendix B.1.

Remark 1. Suppose� (� )=g(� ) = u(� ) i.e. this fraction is completely determined by� . For

example this is the case in ABC rejection sampling whereg(� ) � � (� ). Then (5) becomes

� (� ) = min

(

1; �u (� )
�


 (� )
�T2(� )

� 1=2
)

; (6)

where
 (� ) = E[ L̂ABC j� ] = Pr ( d(S(Y); S(yobs)) � � j� ).

Remark 2. Theorem 2 and Remark 1 hold for LIS witĥLABC replaced byL̂2.

A simple closed form expression for� does not appear possible. In the practical tun-

ing methods below� is found numerically, and the behaviour of this numerical estimate

investigated by simulation study (see Figure 1B).

By viewing ABC-IS as a special case of lazy ABC, Theorem 2 can be applied to �nd the

optimal choice ofg(� ) for ABC-IS.

Corollary 1. The asymptotic e�ciency of ABC-IS is maximised byg(� ) / � (� )
�


 (� )
�T(� )

� 1=2

,

where
 (� ) = E( L̂ABC j� ).
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Proof. See Appendix B.2.

Remark 3. A corresponding result to Corollary 1 holds for RW-IS with
 (� ) = E( L̂2j� ).

Remark 4. The special case of Corollary 1 with�T(� ) constant matches the result of Appendix

A in Fearnhead and Prangle (2012).

Note that it is not clear what the optimal choice ofg(� ) is for lazy ABC. The examples

later use typical choices from the ABC literature, but a better choice may improve lazy ABC

performance further.

4.2 Methods

Theorem 2 motivates choosing� by estimating (6). This section details a method to imple-

ment this approach. Its e�ectiveness is discussed in Section 6.

Tuning begins with a pilot run of N 0 iterations of ABC-IS. This is used to estimate
 (� )

and �T2(� ) for various choices ofX and � , considering only� is such that Remark 1 can be

applied. Under each of these choices,� is found by numerically maximising an estimate of

e�ciency. The optimal choice of X and � is then made. Note that estimation of
 (� ) and

�T2(� ) is challenging if � is high dimensional e.g. for� = ( �; x ). Therefore a low dimensional

� is recommended. To ensure Remark 1 applies� (� )=g(� ) can form one component of� if

necessary. Following tuning,N iterations of lazy ABC are performed (unless the estimated

e�ciency gains are judged inadequate). Detailed comments on several aspects of this method

follow.

4.2.1 Estimation of �T2(� )

It may often su�ce to treat �T2(� ) as constant and estimate it as the mean CPU time of the



shows�T2(� ) varies little relative to 
 (� ). Alternatively, statistical methods such as regression

can be used for estimation, which is straightforward when� is low dimensional.

4.2.2 Estimation of 
 (� )

Estimation of 
 (� ) is more di�cult. Two approaches are suggested: the \standard" ap-

proach, producing ^
 (1) , attempts accurate estimation but involves strong assumptions; the

\conservative" approach, producing ^
 (2ves strongi5



4.2.3 Estimating e�ciency

The tuning method outlined above requires the use ofN 0 pilot run iterations to estimate

the e�ciency of lazy ABC under various choices of tuning details (in particularX , � and

� ). It is su�cient to estimate [E( W 2) E(T)]� 1, as this equals e�ciency up to a constant

of proportionality. This can be used to estimate e�ciency relative to ABC-IS, which is a

particularly interpretable form of the results as it shows the e�ciency improvement of using

lazy ABC.

Assume that for a particular choice of tuning details the following are available for 1�

i � N 0: t (1)
i - initial simulation stage time; t (2)

i - continuation simulation stage time; � i

- continuation probability; 
̂ i - estimate of E(̂LABC j� i ); ui - ratio � (� )=g(� ). An estimate

up to proportionality of e�ciency is then [ dW 2T̂ ]� 1 where dW 2 = N 0� 1
P N 0

i =1 u2
i 
̂ i =� i and

T̂ =
P N 0

i =1 t (1)
i +

P N 0

i =1 � i t
(2)
i . An estimate of e�ciency of ABC-IS is formed by taking � � 1.

Note that this typically overestimates T due to the overheads of considering stopping (see

(4)). A more precise estimate would be possible using further pilot simulations of standard

ABC.

4.2.4 Combining pilot and main run output

To make e�cient use of the pilot run, it can be used in the �nal output as well as for

tuning. This is done by appending the pilot sequence of (�; w ) pairs to that from the main

algorithm. Loosely speaking, since each individual sequence targets the same distribution,

so does the combined sequence. More technically, it is straightforward to see that ABC

versions of relations (1) and (2) are roughly true for the combined sequence whenN and N 0

are large, and are exactly true asN ! 1 regardless ofN 0. Also note that on appending

the sequences, gains in e�ciency are possible by multiplying the weights of one sequence

by a constant, but this is not implemented here as little improvement was observed in the

application later.
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4.2.5 Choice of �

In ABC-IS, an appropriate value � is often unknown a priori and is instead chosen based

on the simulated d(S(Y); s(yobs)) values. For lazy ABC in this situation one can use the

pilot run to select a preliminary conservative choice of� 1 as in Section 4.2.2 and perform

lazy ABC with � = � 1. Alternative values of � can then be investigated by updating the

realisedL̂ABC values in the weight calculations. For� < � 1 this simply reduces the number of

non-zero weights. However� � � 1 is not recommended as this may introduce large weights

and destabilise the importance sampling approximation.



Erhardt and Smith focus on the Whittle-Mat�ern correlation function with zero nugget

� (h; c; � ) =
21� v

�( � )

�
h
c

� �

K �

�
h
c

�
;

where � is the gamma function andK � is the modi�ed Bessel function of the third kind with

order � . This has two parameters: rangec > 0 and smoothness� > 0.

A density function for the Schlather process is not available forD > 2, making inference

di�cult. Schlather (2002) provides a near-exact algorithm to simulate from the process based

on only a �nite number of copies ofYi , motivating the use of ABC by Erhardt and Smith.

They applied ABC rejection and importance sampling with a uniform prior on [0; 10]2 and

investigated several choices of summary statistics. The analysis here focuses on the choice

they �nd most successful, based ontripletwise extremal coe�cient estimators. Given a triple

of 3 locations,i; j; k , this estimator is

�̂ ijk =
T

P T
t=1 1=max(yt;i ; yt;j ; yt;k )

:

There are O(D 3) such summaries, so Erhardt and Smith calculate a vectorm of mean

values within 100 clusters of triples, and use these as summary statistics. Their clustering

process �nds triples of similar shapes, ignoring di�erences of location and rotation. The

ABC distance function between two vectorsm1 and m2 of cluster means is

d(m1; m2) =
100X

i =1

jm1i � m2i j: (7)

Although applying dimension reduction techniques to such high dimensional summaries has

been shown to often improve ABC results (Fearnhead and Prangle, 2012), this is not inves-

tigated here as the aim is to investigate the e�ciency improvements of lazy ABC.



of the approach of Erhardt and Smith.

5.2 Methods

Exploratory investigation of ABC code with D = 20 and T = 100 showed that the majority

of time was spent simulating the data (7.1ms/iteration) and calculating extremal coe�cient

estimates (17.9ms/iteration), with the remaining steps being brief (3.1ms/iteration). The

time costs of the �rst two of these scaled withD as roughly proportional to D and D 3

respectively, so the latter is expected to dominate for largeD. Furthermore, interrupting

and then resuming operations during the calculation of extremal coe�cients is much simpler

to implement than during simulation of data. Therefore the initial simulation stage of the

lazy ABC analysis was chosen to be simulating the data at all locations, and extremal

coe�cient estimates at a subset of locationsL. The continuation simulation stage was to

calculate the remaining extremal coe�cient estimates.

The decision statistic d̂ was constructed as follows. Letm1i be the i th cluster mean

for the observed data. Letm̂2i be the i th cluster mean for the simulated data using only

extremal coe�cient estimates available at the initial simulation stage, andB be the set of

clusters for which any such estimates are available. Then de�nêd =
P

i 2 B jm1i � m̂2i j. This

is an estimate of the ABC distanced m2i
i B



simulations with nearby values ofd̂. This was done for several̂d values and interpolated

estimates elsewhere formed ^
 1(d̂). For the importance sampling case, logu was also included

in each regression so that a number of functions mappingu to estimates of Pr(d � � jd̂; u)

for various d̂ values were produced which were used for interpolation. Calculation of ^
 2

was as described in Section 4.2.2, taking� 1 to give 100 acceptances in the pilot run. Given

estimates of �T2 and 
 , tuning was performed as described in Section 4.2, with optimisation

over possible choices ofL by backwards selection.

Three simulation studies were performed. The �rst replicated the rejection sampling

analysis of Erhardt and Smith on several simulated datasets. These usedD = 20; T = 100

and true parameter values shown in Table 1. Each dataset used a di�erent set of observation

locations with integer coordinates sampled from [0; 10]2. The �rst analysis was a replication

of the standard ABC analysis, using� values corresponding to 200 acceptances. Then lazy

ABC was performed on the same datasets under each method of estimating
 . To compare

the methods fairly, lazy ABC used the same� value as standard ABC and reused its random

seeds so that the sequence of (�; X; Y ) realisations is also the same.

The second simulation study investigated rejection sampling for a single larger simulated

dataset with D = 35, c = 0:5 and � = 1. Locations were chosen as before. As in a real appli-

cation � was not assumed to be known in advance and the approach of Section 4.2.5 was used

to select this post-hoc. A complication for this dataset was that the simulation of Gaussian

processes was di�cult when both parameters were large: the default \direct method", based

on Choleski decomposition, sometimes produced numerical errors. Simulation was possible

via the turning bands method (TBM) but much slower (roughly 150 times the CPU time). A

two stage simulation method was implemented. First the direct method was attempted and

if this failed TBM was used. To save time lazy ABC was implemented with multiple stop-

ping decisions, the �rst taking place after attempting the direct method. This has a binary

decision statistic indicating success or failure. The second stopping decision is as described

earlier. Tuning was performed as described in Appendix A.1.2, using ^
 1 �tted as described
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above by either the standard or conservative tuning method. The standard method used� 1

to give 30 acceptances in the pilot run. As before all analyses reused the same random seeds.

Finally an importance sampling analysis was performed on the larger dataset. A sample of

104 log parameter values was taken from simulations of the preceding standard ABC analysis

with distances below the 0.3 quantile. A Gaussian mixture distribution was constructed

with locations given by this sample and variances equal to twice the empirical variance of

the sample. After truncation to the prior support, this was used to giveg(� ), where � now

represents the log parameters. This choice follows the suggestions of Beaumont et al. (2009),

noting that using the log scale produced a better �t to the sample and that the subsample was

used to avoid slow density calculations. The precedingD = 35 analysis was then repeated.



Figure 1: Details of a simulation study applying lazy ABC to spatial extremes corresponding
to the �rst row of Table 1. Panels A-C concentrate on the standard tuning approach.Panel
A Pilot run values of d̂ and d. The dashed line shows the value of� . Panel B Estimated
e�ciency for di�erent values of � . The dashed line shows the realised e�ciency.Panel
C Estimated e�ciency for the best choices ofL of various lengths output by backwards
selection. The dashed line shows the realised e�ciency.Panel D Values of d̂ and � from
non-pilot simulations under standard (solid line) and conservative (dashed line) tuning. The
marks on the horizontal axis indicate the simulations which resulted in positive weights. (For
this panel conservative tuning was performed usingL as selected by standard tuning.)
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Standard Lazy Relative e�ciency
Range Smooth Time (103s) Time (103s) Sample size ESS Estimated Actual

0.5 1 32.0 8.0 (11.6) 196 (199) 196.0 (198.7) 4.08 (3.28) 4.00 (2.79)
1 1 31.3 7.3 (9.8) 200 (200) 199.9 (200.0) 4.34 (4.31) 4.35 (3.25)
1 3 31.3 8.2 (11.2) 194 (198) 182.5 (196.5) 3.77 (3.43) 3.51 (2.79)
3 1 31.2 7.7 (11.1) 194 (200) 189.9 (200.0) 4.18 (3.56) 3.89 (2.86)
3 3 31.2 7.4 (11.0) 192 (199) 175.8 (199.0) 4.43 (3.65) 3.79 (2.87)
5 3 31.3 8.3 (11.1) 200 (200) 200.0 (200.0) 3.73 (3.49) 3.85 (2.87)



Standard Lazy Relative
� Time (103s) Sample size ESS Time (103s) Sample size ESS e�ciency

RS standard 2.61 241.4 210 210 22.8 200 139.6 7.0
RS conservative 2.61 241.4 207 207 25.5 200 197.7 9.0
IS standard 2.33 136.4 209 168 61.9 200 165 2.2
IS conservative 2.33 136.4 209 168 51.0 200 162 2.6

Table 2: Simulation study on a spatial extremes dataset withD = 35. Results are shown
for rejection and importance sampling with standard and conservative tuning. The rejection
sampling output was used to create the importance density. The �nal choice of� is shown.
For IS the two � values are equal but there is a small di�erence for RS. The lazy ABC output
includes the pilot run and the tuning time.

and weighting the accepted simulations accordingly, the algorithm targets exactly the same

distribution as standard ABC, in the sense that Monte Carlo estimates of functionsh(� ) and

of the model evidence converge to unchanged values.

Results have been provided on the optimal tuning of the lazy ABC stopping rule and used

to motivate a practical tuning method. This has been demonstrated for a computationally

challenging application where it has produced improvements in e�ciency (ESS/CPU time)

over standard ABC of up to 8 times. One case of this application involved multiple stop-

ping decisions. This illustrated two potential uses of lazy ABC: �rstly to consider stopping

every simulation based on whether it appears promising, secondly to consider stopping after

particular events which are suspected a priori to indicate unpromising results.

The tuning method is based on estimating the optimal choice of� (� ), (6). The most

di�cult part was estimating 
 (� ) = Pr ( d(S(Y); S(yobs)) � � j� ) from pilot run data. Two

approaches to this were described, a standard approach of direct estimation and a conser-

vative approach of estimation using a larger� value than is of interest for ABC. The latter

approach improves robustness and make estimation simpler at the cost of some ine�ciency.

Both approaches performed well in the simulation studies but some improvements are desir-

able. Firstly, estimation of 
 (� ) involves extrapolation which may produce inaccurate results.

Secondly, several choices by the user are required, especially for the standard approach. A

more automated approach would be useful for lazy versions of ABC SMC algorithms, where

a new choice of� would be needed for each� value, or alternatively for lazy ABC algo-
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rithms which adapt � as more simulations become available. It would be of interest to �nd

suboptimal but robust choices of� addressing these issues.

Lazy ABC with multiple stopping decisions is an extension to the framework of the

main paper and is described in Appendix A. A tuning method is given when the decision

statistics for all stopping decisions are discrete, and also some cases where one decision

statistic is continuous. For more complex cases tuning results are not available. For now it

is recommended to discretise most decision statistics to avoid this di�culty.

Also, Section 3.1 showed that a generalisation to the non-ABC setting, lazy importance

sampling, is possible, and the theoretical results of the paper carry over to this. However

exploratory analysis suggests tuning this in practice is more challenging than lazy ABC. This

is because it is necessary to estimate
 (� ) = E( L̂2j� ) (see Remark 2), and this expectation

can be strongly in
uenced by the upper tail ofL̂ j� which is hard to estimate from pilot run

output. For lazy ABC, L̂ABC j� is Bernoulli avoiding this di�culty. A related point is that

lazy ABC can be generalised to allow a non-uniform ABC kernel. This giveŝLABC with a

known upper bound so that estimation of
 (� ) seems feasible.

This paper has concentrated on importance sampling, which is widely used by ABC

practitioners, but the lazy ABC approach can be extended to ABC versions of MCMC

and SMC, which are more e�cient algorithms. The tuning results are applicable to SMC

algorithms, but further practical methods are needed, as mentioned above. Further theory

on optimal tuning is necessary for MCMC, although good performance may be possible

with ad-hoc tuning. Examining the connections between lazy ABC and rejection control

(Liu et al., 1998) may also be fruitful, especially to design algorithms in which partial



A Multiple stopping decisions

The lazy ABC framework of Section 3 allows multiple stopping decisions, as follows. As in

that section assumeY is a deterministic transformation of a latent vectorX 1:p.

Example A1: Multiple stopping decisionsLet X = X 1:p and � (�; x ) =
Q s

i =1 � (i )(�; x 1:t i ).

Thus, for each 1� i � s, once simulation ofX 1:t i has been performed then̂L lazy is set

to zero with a certain probability, in which case no further simulation is necessary. It is

often be useful to let� (i )(�; x 1:t i ) = � (i )(� i (�; x 1:t i )). That is, each stopping decision has

associated decision statistics� i .

Example A2: Multiple random stopping timesAs for Example A1 but with eacht i replaced

with a random stopping time variableTi . This permits stopping to be considered when

various random events occur, without imposing a �xed order of occurrence.

The following alternative characterisation of these examples is useful below.

Lemma 1. For any 1 � i � s, Examples A1 and A2 can be represented as a lazy importance

sampling algorithm with continuation probability� (i )(� i ) and

L̂ =

8
>><

>>:

L̂ABC =� i (�; X ) with probability � i (�; X )

0 otherwise;

where� i (�; x ) =
Q

j 6= i � (j )(� j ).

Proof. The likelihood estimator stated can easily be veri�ed to have the same distribution

as L̂ lazy .

It is also helpful to de�ne �T2i (�; � 1:s) as the expected time remaining from the calculation

of � i until the likelihood estimate is computed conditional on� and � 1:s, and �T2i (� i ) 2i , and � i replaced



A.1 Tuning

The e�ciency estimate of Section 4.2.3 can be used in a multiple stopping decision setting

given a choice of� . It is necessary to update the estimator̂T given there which is usually a

straightforward task. Sections A.1.1 and A.1.2 describe situations of practical interest where

the optimal form of � can be derived. However in general the problem is challenging, as

illustrated by Section A.1.3.

A.1.1 Discrete decision statistics

Suppose� (�; x.e[(�h.676.9552 Tf 7..63505(=21 0 Td)-167(x.e[(�.742 (6.e[9t2 Tf 7Q 0 Td)-TJ 27(hallenging70152 Tf.1.912 -31548 Td [(e)]TJ 0 91.929 Td [i.)]TJ/F9ging70152 T2.8843505(=21=1f)]TJ/F51 11.9552 Tf 3.3119 34870 Td [(�)]TJ/F9ging70152 T 7.52214.380 Td [(()]TJ/Fnging70152 T31.953 0 Td [i.)]TJ/F9ging70152 T2.8833505(=21 0 Td.e[(�h.676.9552 T3.7912 14.380 Td [(()]TJ/F51 11.9552 Tf 4.553 0 Td [(ð)]TJ/Fnging70152 T6.928J -.7930 Td [i.)]TJ/02h.676.9552 T3..381-.7930 Td [ 0 Td)4606(where)]TJ/F51 11.9552 Tf 5.473 0 Td [(ð)]TJ/Fnging70152 T6.928J -.7930 Td [i.)]TJ/02h.676.9552 T3..381-.7930 Td [ 0 50)]TJ/F51 11.9552 Tf 4.523 0 Td [(�)-27(;)-167(x.e[(�h.676.9552 Tf 7..73505(=21 0 Td)4606takv)27(sd)4606v)354(luei)1(s)4616(in.e[(�h.676.9552 T934.343505(=21fx.e[(�h.676.9552 T5ng773505(=211f)]TJ/F51 11.9552 Tf5.8553 0 Td [;x.e[(�h.676.9552 T5n2443505(=212f)]TJ/F51 11.9552 Tf5.8553 0 Td [;x)-167:x)-167:x)-177:x)-177;x)-167d0



A.1.3 Multiple continuous decision statistics

Consider the setting of A.1.2 with the modi�cation that every � i (�; x ) is continuous and

there exists a corresponding functionui (� i ) = � (� )=g(� ). The same approach as above gives

equations of the form

� (i )(� i ) = min

(

1; � i ui (� i )
�


 i (� i )
�T2i (� i )

� 1=2
)

;

for i = 1; : : : ; s. The de�nition of 
 i involves � (j ) for all j 6= i , and �T2i will also involve many

of these terms. Thus deriving the optimal� (i ) functions involves solving a complicated

system of non-linear implicit equations.

B Tuning proofs

All results are proved for the general case of LIS as described in Section 3.1. For lazy ABC

replaceL̂ with L̂ABC .

B.1 Proof of Theorem 2

In LIS the importance sampling weightW equals L̂� (� )
� (� )g(� ) with probability � (� ) and zero

otherwise. Hence:

E(W 2) =
Z

E[L̂2j�; �; y ]� (� )2

� (� )g(� )2
� (�; y j� )g(� )d�d�dy =

Z
� (� )
� (� )

g(� )d�; (9)

where � (� ) = E
�
L̂2

�
� (� )
g(� )

� 2
�
�
�
� �

�
(which equals E

�
L̂ABC

�
� (� )
g(� )

� 2
�
�
�
� �

�
in the ABC case) and

g(� ) =
R

� (� j� )g(� )d� .

The expected time of a single iteration of the LIS algorithm is

E(T)=N = �T1 +
Z

� (� ) �T2(�; � )� (� j� )g(� )d�d� = �T1 +
Z

� (� ) �T2(� )g(� )d�: (10)
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Note that E(W) is a constant, so choosing� (� ) to maximise the expression for asymptotic

e�ciency in Section 4.1 is equivalent to minimising E(W 2) E(T)=N. Call this problem P.

Consider also the problemsP(� ), minimising E(W 2) under the constraint E(T)=N = � and

P(�; � ), minimising E(W 2) + � [E(T)=N � � ], or equivalently

Z �
� (� )
� (� )



solution:

� (� )g(� ) = �� (� )
�


 (� )
�T(� )

� 1=2

: (13)

(Recall the LIS de�nition of 
 (� ) from Remark 3 and note that the lazy ABC de�nition in

Corollary 1 can be derived from this.) Various choices of� , such as� � 1, give a solution

which also meets the constraint on� . These all give algorithms which are equivalent to

RW-IS with g(� ) / � (� )
�


 (� )
�T(� )

� 1=2

as claimed.
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