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Abstract.  The present work is devoted to approximation of the statisti cal moments of the unknown solution
of a class of elliptic transmission problems in RS2 with uncertainly located transmission interfaces. Within this
model, the diusion coe cient has a jump discontinuity acro ss the random transmission interface which models
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2 SHAPE CALCULUS FOR A TRANSMISSION PROBLEM WITH RANDOM INTER FACE

In this article we develop a deterministic method for numerical solutian for a class of transmis-
sion problems with randomly perturbed interfaces. The equation tobe solved is of the form

r (ru=f inD ;

whereD is a random bounded domain inR® and D. = R®nD is its complement. The domains
share a common random surface , and the coe cient function takes (in general) distinct constant
valuesinD and D. , respectively. The solutionu is subject to jump conditions across . A precise
description of the model problem is deferred until Section 2.3, whex a probabilistic perturbation
model for the surface (and thus D ) will be rigorously introduced. Within this model, the
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4 SHAPE CALCULUS FOR A TRANSMISSION PROBLEM WITH RANDOM INTER FACE

with the natural inner product satisfying hv; Vi ; W1 Wiy ) = vy waix @i hvi Wi x .
Definition 2.1. For a random eld v 2 LX( ;X), its k-order moment M X[v] is an element
of X (¥ de ned by
z

(2.4) M K[v] := Y(!) z v(!? dP(! ):

k-times

In the casek = 1, the statistical moment M 1[v] coincides with the mean value of v and is
denoted by E[v]. If k 2, the statistical moment M K[v
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D,(!) := R®nD . The shape calculusin Section 3 requires a somewhat stronger smoothness
assumption on , namely that the realizations of belong to C*( °). From (2.7) we observe that
the mean random interface is represented by

E[ 1= x+ E[ (x;)n°%x); x2 °:

Without loss of generality, we may assume that the random perturtation amplitude (x;!) is
centered, i.e.,

(2.9) E[ (x;)]=0 8x 2 ©:
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g 122 .
kvkys (o) = W’VIH%X @) <1 '
(2.18) _ X X Y . 2'
W;W'H;ix (G = 1+)° ..
‘=0 m= " =1
with the Fourier coe cients
z z * !
(2.19) . = N v( (X1);::0; (Xk) Yoom (X)) d oy, iiid
X12S Xk2S i=1

Recalling de nition (2.3) we observe that H S, (G¥) is isometrically isomorphic to the tensor product
spaceH $(G)(W). These spaces will be identi ed in what follows. We also use the notatio H 3, (K ¥)
for the tensor product HS(K )(K) whereK is a compact subset ofR3.

Sobolev spaces on bounded domains iR® are de ned, as usual, as spaces of all distributions
whose partial derivatives are square integrable. Proper treatmet of the transmission problem
(2.11a){(2.11d) in unbounded domains in R® requires a special care. Following [17], for an un-
bounded domainU  R® we introduce the space

v(x)j?

— dx < +1
1+ jx]

(2.20) Ha(U):= v2DYU): kvky, ) = jr vj® +
U

Speci cally, for a given partition Rm

X ) ‘:’i&g] /R1.97385 Tf 3.71992 0 Td [(S)4.3725]TJ 8U
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3.1. Perturbation of deterministic interfaces. In this subsection we collect several prop-
erties of perturbed interfaces which are important for the subsquent analysis. Assume that the
perturbation function  is a xed deterministic functionin W11 ( 9), in particular is independent
of I . Then s de ned by

(3.1) =fx+ xX)n°x):x2 % >0
As already noticed in Section 2.2, is a closed Lipschitz manifold inR?3 provided 0 oand g
is su ciently small. In this case introduces a decomposition ofR® into the interior and exterior

subdomainsD and D, , respectively.
Following [20], we de ne a mapping T : R®! R3 which transforms %into  and D° into
D , respectively, by

(3.2) T x):=x+ ~(x)rR°x); x 2R

where ~and r? are any smoothness-preserving extensions of and n® into R3. We require in
particular that ~ 2 W% (R3). Without loss of generality we assume that the extension ~vanishes
outside a su ciently large ball Bg := fx 2 R® : jxj < Rg containing  for any 0 0. This
implies that the perturbation mapping T (x) is an identity in the complement B&
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10 SHAPE CALCULUS FOR A TRANSMISSION PROBLEM WITH RANDOM INTER FACE

where 1, 2, 3 aredened by (3.9) and 4 := 0 for notational convenience later. In particular, for
su ciently small > 0, there holds

(3.12) (:;x)=1+ 1)+ 2,x)+ % 3(x) c>0 8x2R%:

Consider from now on su ciently small > 0. It follows from (3.10) and (3.12) that the ij -entry
of the matrix A(;x) 1 is

(3.13) Ai(G) = G)Y " thp g oac

Hence, (3.11) yields
kAij (; ) i kLl (R3) I 0 as 10
proving (3.6).
From (3.13), we have

Ai (: " X
(3.14) Al) oo Gyt " thp o
n=1
Taking the limit when goes to O, noting that (; )! 1, we obtain

(3.15) A (©; )= hj1
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Using the change of variablesy =ZT (x) and noting (3.11), we have

kv Ty = VO GT) ) Tdy Chvkagy |

Therefore,
q
; Ca2 -
(3.18) I!lrr?) 1+jj° (;x) 1(v T) orey 0
Furthermore, (3.3) also gives
q q p
1+jj’°v T v = 1+jj’°v T v 1+R2kv T VK 2p,)!
L2(R%) L2(Br)

Note that lim | gkv T vkLz(BR) =0 if vis continuous. By using a density argument we deduce
thatlim y okv T vk o(g,) =0for v2 L2(BRr). Hence,
q
im 1+jj°v T v =0:
H O L2(R?)

The above identity and (3.18) together with the triangle inequality giv e the required result. O
Lemma 3.4. For any function v 2 H1(R?), there holds

im 1ej7 GO0 T) v
10

div vV =0:
L2(R?)

Proof. Noting (3.3), Lemma 3.1, (3.17) and the triangle inequality, we obtain
q

q L2(R3)
= aegp LV T) Vg
L2(Br)
GHv 1) v div vV

L2(Br)
(3.19) G Ly 1y vdivy f YTV Yy :
L2(BRr) L2(BRr)

Recall from (3.9) that 1 =div V. It follows from (3.12) that

G Ty Ty vdvvs s(v T W+ (24 3V T

Employing the density argument as in proof of Lemma 3.3, we obtain
Ii!mok (v T v)kLz(BR) =0 and Ii!mok( 2+t 3)(v T )kLZ(BR) =0;
so that

. + V
lim T)3R) L2(
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3.2. Material and shape derivatives. In this subsection, for notational convenience we use
the notation D forD orD,,and HY(D ) for HY(D )or H}(D,).

Definition 3.5.  For any su ciently small , let v be an element inH*(D ) or H?2( ).
The material derivative of v , denoted byv, is de ned by

v T VO

(3.20) v = lim

if the limit exists in the corresponding spaceH(D°®) or H*2( 9). The shape derivative ofv is
de ned by
(

(3.21) Vo= rvo v  ifv 2HYD);
' - r

o0V oifv 2 HF2( ),

< 1<

wherer o denotes the surface gradient.
Lemma 3.6. If
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() The material and shape derivatives of the productv w are vw® + vOw and va® + vOw®,
respectively.

(i) The material and shape derivatives of the quotientv =w are (vw® vow)=(w®)? and (vi®
vOw9=(w®)?, respectively, provided that all the fractions are well-deed.

(i) If v = v for all

0, thenv=rv% V=rv Vandv’=0.
(iv) If
z z .
Ji(D ) := v dx; J»(D ):= v d; anddJ;(D )j =0 :=IiImOM;i=l;2;
b !
then
Z A
dJ1(D )j =0 = Vodx + VP v;n® d
DO 0
and
Z Z
4,00 )= d+ @
0

+di Hv0  v;n® d:
. @n iv o(N7)V n
Proof. Statements (i){(iii) can be obtained by using elementary calculations. Statement (iv) is
proved in [20, pages 113, 1161
Lemma 3.9. The material and shape derivatives of the normal eldn are given by
n=n%=r

o .

Proof. We start by recalling that the materi4(a)—5.8887(t)—419(t)2.596084(h)2
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noting from (3.8) that

Sincel = J; (T (x)) It (x) for all x 2 R®, we have0 = & J; "1 j =, which together with the
product rule and (3.8) yields

d d d
B24) T I(T) = (Gr) FOF) Q)= g0r) = X
We also have, using the fact that JT>0 n® =1,

d > 0
d—JT n -

(3.25) =

Simple calculation reveals that
(3.26) Jo=r (n% and @) +Jy)n°=r + r ;n® n"

Inserting (3.24){(3.26) into (3.23), we obtain

1
n= Jy n°+§ @y +3v)n%n® n°=r  + r;n°n°=1r o,
nishing the proof of the lemma. O
3.3. Shape derivative of solutions of transmission problem . In this subsection, we shall

discuss the existence of material and shape derivatives of the sadlons of transmission problems on
perturbed interfaces. Consider a deterministic problem with respet to the reference interface °:

(3.27a) 4u°=f inD°[ DY;
(3.27b) u® =0 on ©
@8 0
3.27¢ — =0 on 7
( ) @
(3.27d) uw(x)= O(jxj *) when jxj!1

The perturbed problem corresponding to the perturbed interfae  is given by

(3.28a) 4u =f inD [ D,;
(3.28h) [u]l]=0 on ;
(3.28¢) % =0 on ;

(3.28d) u(x)= o@xj 1) whenijxj!1 ;
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where (cf. (2.10))

(
; x2D
X) =
) + x2D,:
Lemma 3.10. Supposef 2 L?(R3®)\ W, and 2 C!( 9), then
H 0 —-N-
(3.29) I!lrr?) u T u Wo =0:

Here, W, denotes the dual space dfVy with respect to theL 2-inner product.
Proof. By multiplying both sides of (3.28a) with an arbitrary function v 2 C} (R®) and

integrating over D [ D., we obtain
z z z

(3.30) fvdx = 4 u (x)v(x)dx + 4 u (x)v(x)dx:
R3 D D,

Applying Green's i%entity and noting (3.28c¢), we obtain

(3.31) ()1 u(x) rv(x)= Hvigs, 8v2Cq (RY):
D,[D

+

Since the spaceC} (ZR3) is dense inW (see [17, Remark 2.9.3]), there holds

(3.32) (X)ru((x) rv(x)=Hv iLZ(R3) 8v 2 W :
D,[D

Choosingv = u gives
Uiy Thfu i gy kfky kuky :
It follows from Lemma 2.2 that
(3.33) ku ky, . kfk, 'k fkWO :
On the other hand, using the change of variablesx = T (y) in (3.32), we have (noting that
TNz &)
Z z
(3.34) W) (rwy)” AGy)r (u T )(y)dy = f(T (y)wly) (;y)dy;
DY[D° DO[ DO
for any w 2 Wy. We also obtain from problem (3.27a){(3.27d)
z z

(3.35) () (r w(y)” r u’(y)dy = bo (o0 f(y)w(y)dy;

DO[ DO

for any w 2£N0. Subtracting (3.35) from (3.34) we deduce

(rwy) r (u T)y) u°
DO[ DO
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Subtraé:ting (3.37) from (3.38) yields

(y)r (z(y) z(y)) r w(y)dy
Z

+

= 0 re DAL Aty we
o COTTO) FO) G v wiy)dy
(3.39) = Ig(w) + 1o(w):
The rst integral in thg right hand side of (3.39) can be written as

ACry)

l1(w) = . (y)r (u T)y) A%O;y)  rw(y)dy
Z

y
+ (y)r

DO[ DO

17
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and
Z Z
. v v
dJo(D )j =0 = uo@g uwr ovr o V;n® d + 0@]@ uo@g V;n® d
+ di 0 0@ Vv:n® d:
. iv o(n-)u @ n

sinceu® = u? ontheinterface ° by (3.27b). Therefore, di erentiating by  both sides of (3.46), us-
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Di erentiating by  both sides, applying Lemma 3.8 we have

z z z
o=d [ulvd =d u vd u,vd
z 0 ’
_ 0,104 @Qu® v)
(V) o
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and (3.55) follows. An analogous estimate holds for

MXu Eu]l *MKug= X MXu+(h ELh
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These equalities together with (4.7) imply

((VS W )(u%)(x)=: E (u°)(x); x2D°

0, —
(4.10) VDS W ws ) = E. (W)(x); x 2 DY

The randomness of the interface (! ) which is given via the randomness of the vector eldV (; x;!)
implies the randomness in the solutionu. From (4.10), we have

(
Go.rr_ E (UO()jo)x); x2D?;
W)= B W0 o)(x): x 2 DO

Tensorizing and integrating both sides of the above equation, we diice

(E x. E x,)Corfu®j o](x1;X2); X1;X22D?;

4.11 Cov[u'](x1;x2) = ;
(4.11) [I(x1; X 2) (E+ix,  Esix,)Cor[ulj o](x1;X2); X1;x22 D?;

and in general

(E «, E x )MKU®j ol(x1;::0:xk); Xa;::i5;xk 2 D9,
(E+ix, Ev i )M K[UQj o](x1;::75%k); X1;:::5xk 2 DO
Equation (4.11) suggests that the covariance of the solutioru®in D° can be computed from the

correlation function of the Dirichlet data u®j o on the transmission interface.
The jump conditions in (4.1) gives

(413) W)= )+ g() on O

and

(4.14) F S {z +S+2u2 (M)=ov() ( S)g(!) on 0.
=[ S]

We note thatfora xed ! 2 ,therighthandside gv(!) ( S )go ()2 H 2( 9). The solution
u? (1) of (4.14) belongs toH ¥72( ©



24 SHAPE CALCULUS FOR A TRANSMISSION PROBLEM WITH RANDOM INTER FACE

and H12() -elliptic, i.e.
(4.18) B(v;V)  Cokvkfizz o) 8v 2 H2( 9);

where the positive constantsC; and C, are independent ofv.

Proof. The boundedness of the bilinear formB is derived directly from the boundedness o/ !
and K. To prove ellipticity we rst note that the hypersingular operator D is H*7?( ?)-semi-elliptic
for all closed interface ©, i.e.,

(4.19) hDV;Vi , oy CjVigizo( oy 8v2H'?( %;

see e.g. [21, Corollary 6.25]. The Cauchy datau ;@) on 0 satisfy

0 1 0 @ 10 1

5l gomd <V ognl g
.20 = @2 :
(4.20) @u 5 1, @au

@ 2 @
Substituting (4.8) into the second equation of (4.20) gives

_%:J = Du +(%| + KoYV l(%I +K)u on ©
This equation and (4.8) yield
S = D+(}I + K9V 1(:—LI + K):
2 2
Noting that KCis the adjoint operator of K, we have
(4.21) hS v;vi = hDv;vi + V l(%I + K)v;(:—zll + K)v  8v2 H¥™?( 9:
Similarly, the exterior Dirichlet-to-Neumann operator S, satis es
— 1 1 1
S =D (EI K 9v (zl K )
and

(4.22) hSv;vi= hDv;vi V 1(:—2LI K )v;(%l K)v 8v2H¥?(9:
From (4.21), (4.22), (4.19) and noting the H *?-ellipticity of the inverse operator of V, we derive

H Slv;vi=( + +)hDv;vi+ \Y; l(%I + K)v;(1
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implies
Lemma 4.2. The bilinear form B(; ) : H2( 0 0 HIEZ(O %1 Ris
bounded andH 2( °© %)-elliptic, i.e.,
(4.28) B(v;w) C; kka;i:Xz( 0 0) kwk,, 122 0);
and
(4.29) C, kvkﬁrln;z( . 0y B (ViV)
for all v;w 2 H2( © 9). By Lemma 4.2 there exists a unique solution of (4.27).

5. Examples. In this section, we consider the transmission problem (2.11a){(2.1d) where
the random interface (!) is given by

(M)y="~fx+ (x;!')n(x):x 2 Sg:

Here, the reference interface © is the unit sphere S. The perturbation parameter (x;!) = a(!),
where a(! ) is uniformly distributed in [ 1;1]. The mean valueE[ ] = 0 and the covariance
Cov[ ](x;y) =Cor[ ](x;y)=1=3. The interface (!) is a sphere of radiusR(! ) =1+ a(!).

5.1. Analytic example. Firstly, we choose the right hand sidef to be

(@r2 12 if0 ry 1=2

f =
=" if1=2

wherery = jxj. Then solution of the transmission problem with respect to the rancbm interface
(1) can be analytically computed as follows:
8

1 (8.6 2.4, 1% 3 23 . : 1.
E _ ﬁrx ng + ?) 105 Ix 840 + 105 TR if 0 Iy 5

(5.1) u(x;!)= 5 et TR 1 e R();
' ﬁ if R(')  ry:

In particular, the exact solution u® of the transmission problem on the reference interface ° (V)[ﬁij = 3
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We then compute the covariance of the solutionu by elementary calculations, noting (5.1), to
obtain
(

1_ [P
(5.4) Covy(x;y)= 3

(105
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