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Abstract

Optimal state estimation is a method that requires minimising a weighted, nonlinear, least
squares objective function in order to obtain the best estimate of the current state of a
dynamical system. Often the minimisation is non-trivial due to the large scale of the prob-
lem, the relative sparsity of the observations and the nonlinearity of the objective function.
To simplify the problem the solution is often found via a sequence of linearised objective
functions. The condition number of the Hessian of the linearised problem is an important in-
dicator of the convergence rate of the minimisation and the expected accuracy of the solution.
In the standard formulation the convergence is slow, indicating an ill-conditioned objective
function. A transformation to di�erent variables is often used to ameliorate the conditioning
of the Hessian by changing, or preconditioning, the Hessian. There is only sparse information
in the literature for describing the causes of ill-conditioning of the optimal state estimation
problem and explaining the e�ect of preconditioning on the condition number. This paper
derives descriptive theoretical bounds on the condition number of both the unpreconditioned
and preconditioned system in order to better understand the conditioning of the problem.
We use these bounds to explain why the standard objective function is often ill-conditioned
and why a standard preconditioning reduces the condition number. We also use the bounds
on the preconditioned Hessian to understand the main factors that a�ect the conditioning
of the system. We illustrate the results with simple numerical experiments.

Keywords Optimal state estimation, variational data assimilation, nonlinear least squares,
condition number, preconditioning, correlation matrices, circulant matrices

1 Introduction

In dynamical systems, the aim of state estimation is to �nd the most likely current or future
state of the system, given noisy, possibly indirect, observations. In many applications, such
as numerical weather prediction (NWP), the number of observations is sparse relative to the
dimension of the state space and so additional information, such as a prior estimate of the initial
state of the system, is often required to guarantee a unique solution. The optimal state, called
the `analysis', minimises a weighted nonlinear least-squares objective function, measuring the
distance between the state trajectory and the observations and between the initial state and
the prior estimate, weighted by the covariance of the errors in the observations and the prior
respectively. In the meteorology community this optimization problem is referred to as four-
dimensional variational data assimilation or 4DVar [25]. The analysis is optimal in the sense

1



that, under certain assumptions, it provides the maximum a posteriori Bayesian estimate of the
state of the system [22], [18]. Once the analysis is obtained the dynamical model is applied to
predict future states.

The model and the observation operator, which maps model states to observations, are often



2 Optimal State Estimation

The aim of state estimation is to find the best estimate of the initial state of the system,
x0 ∈ RN (called the analysis), at time t0, given a prior estimate xb

0 (called the background) and
measurements yi ∈ Rpi at time ti (i = 0, . . . , n), taken within a time window [t0, tn], and subject
to the state space equations

xi = M(ti, t0,x0), (1)

yi = Hi(xi) + δi, (2)

for i = 0, . . . , n . The notation is as follows:

• the N model states at time ti are denoted by the vector xi ∈ IRN ;

• the non-linear operator M(ti, t0, .) : IRN → IRN , describes the evolution of the states from
time t0 to time ti ;

• the non-linear operatori





2.2 Preconditioning

A common method for reducing the condition number of the objective function (4) is to use a
linear transformation to change the variables [9]. The process of changing the condition number
of the system is known as preconditioning. The condition number is minimised when the square
root of the inverse of the Hessian is used as the change of variables transformation. However this
is generally not practical due to the dimension of the problem and the complexity of the B, R̂
and Ĥ matrices. Instead, the symmetric square root of the covariance matrix of the errors in the
prior estimates, B1=2, is often used [2], [19], [16]. The errors in the new variables z0 = B−1=2x0 ,
are now uncorrelated, with unit variances, giving a prior error covariance matrix equal to the
identity matrix.

In terms of the new variables, we aim to minimize the transformed objective function

Ĵ(z0) =
1

2
(z0 − zb

0)T (z0 − zb
0) +

1

2
(ĤB1=2z0 − ŷ)T R̂−1(ĤB1=2z0 − ŷ), (9)

with respect to z0 , where zb
0 = B−1=2xb

0.

The effect of the variable transform is symmetrically to precondition the Hessian (7) with the
square root of the error covariance matrix of the prior. The Hessian of the preconditioned
objective function (9) is now given by

Ŝ = IN + B1=2ĤT R̂−1ĤB1=2, (10)

where Im denotes the m × m identity matrix throughout the paper.

In general there are fewer observations than states of the system and therefore the matrix
B1=2ĤT R̂−1ĤB1=2 is not of full rank, but is positive semi-definite. It follows that the smallest
eigenvalue of (10) is unity and the condition number of the preconditioned Hessian is equal to
its largest eigenvalue.



For a periodic single-variable system discretized on a one-dimensional domain with equal spacing
between grid points, many covariance and linear forecast models have a circulant structure.
The eigenvalues for circulant matrices have a convenient form which makes them, and hence
the condition number, simple to calculate. We exploit this useful property for producing our
theoretical bounds. In more general cases, where the domain is not periodic, the autocovariance
matrices will be Toeplitz instead. However when the dimension of the state space N is large
these Toeplitz matrices and their properties can be approximated by circulant matrices [11],
[15].

A circulant matrix has the form of a Toeplitz matrix where each row is a cyclic permutation of
the previous row. Let c = [c0, c1, c2, . . . , cN−1] denote the top row of a N × N circulant matrix
C. Then the eigenvalues of C are equal to the discrete Fourier transforms of the coefficients of
the first row of the matrix [11] and can be written

νm =

N−1∑
k=0

cke−2�imk=N . (11)

The corresponding eigenvectors are given by the discrete exponential function,

vm =
1√
N

(1, e−2�im=N , . . . , e−2�im(N−1)=N )T . (12)

Since circulant matrices are normal matrices we can explicitly calculate the condition number
of C





which completes the proof. �

An alternative lower bound, which is easier to calculate explicitly, can be obtained using more
restrictive assumptions

A3. The observation operator is the same at each time step, that is, Hi = H ∈ Rq×N , where
pi = q , for i = 0, . . . , n , and all observations are direct observations of individual states.

A4. The forecast model is assumed to be time invariant with Mi := Mi for i = 1, . . . , n, for
some circulant matrix M ∈ RN×N .

A5. The symmetric positive-definite error covariance matrix B ∈ RN×N , and hence also its
inverse, are circulant.

A consequence of assumption A3 is that HT
i Hi = HTH ∈ RN×N for i = 0, . . . , n is a diagonal

matrix with the kth diagonal entry equal to one if the kth position is observed or zero otherwise.
Assumptions A4 and A5 mean that we can explicitly calculate the updated lower bound in the



where A has eigenvalues λN (A) ≤ λN−1(A) ≤ . . . ≤ λ2(A) ≤ λ1(A). Consider the Rayleigh
quotient of



and combine the bounds (29) and (30) to give

κ(S) ≥

 1 + q
N

�2
b

�2
o
λmin(C)γmin

1 + q
N

�



4. In the special case where the prior errors are all uncorrelated and C = IN , with IN being
the N × N identity matrix, then all eigenvalues of C are unity and the exact condition

number κ(S) = 1 +
�2
b

�2
o
λmax(ĤT Ĥ), which is equal to the upper bounds in (14) and (20).

In this case the upper bound on the conditioning of the Hessian is strict.

In conclusion, the conditioning of the state estimation problem (4) is strongly dependent on the
conditioning of the prior error covariance matrix. With commonly arising prior error covariance
matrices, it was shown in [14] that for large correlation length-scales, these matrices are very
ill-conditioned and lead to a poorly conditioned Hessian of (4). This is consistent with previous
results on variational data assimilation that suggest that the error covariances of the prior
estimates are the cause of slow convergence in the minimization of the objective function [19].
In Section 4 we further illustrate the effect of an ill-conditioned prior error covariance matrix on
the conditioning of the optimal state estimation problem using simplified numerical experiments.

3.3 Conditioning of the Preconditioned System

In this section we consider the effect of preconditioning the Hessian with the square root of the
error covariance matrix of the prior estimate. The following theorem derives new theoretical
bounds on the condition number of the preconditioned Hessian (10).

Theorem 4 Let B = σ2
bC ∈ RN×N and R̂ = diag(R0,R1, . . . ,Rn) ∈ Rr×r be the prior and

observation error covariance matrices, respectively, satisfying assumptions A1 and A2. Addi-
tionally let Ĥ ∈ Rr×N be the observation operator de�ned by (6). Then the following bounds
hold on the condition number of the preconditioned Hessian Ŝ = IN + B1=2ĤT R̂−1ĤB1=2 :

1 +
1

r

σ2
b

σ2
o

r∑
k; l=1

{ĤCĤT }k; l ≤ κ(Ŝ) ≤ 1 +
σ2

b

σ2
o

||ĤCĤT ||∞, (35)

where {A}k; l represents the (k, l)th entry of the matrix A.

Proof. Since there are fewer observations than variables in the state space (r < N), the Hessian Ŝ
is just a low rank update of the identity matrix and its smallest eigenvalue is unity. The condition
number of the Hessian is then equal to the largest eigenvalue of Ŝ. Let E = R̂−1=2ĤB1=2. The
matrices ETE = B1=2ĤT R̂−1ĤB1=2and 1E T TR̂−1=2ĤBˆHT R̂−1=2aha27(v)28(er-395(the)-3956(sam)-3956(non-zero]TJ -373958 -13.55 Td[(iigen)27(v)556alues)-3403and)-423(the)refoe the tessian Ŝ



The lower bound is established by applying the Rayleigh quotient of G with the unit vector
y = 1√

r
(1, 1, . . . , 1)T ∈ Rr,

RG(y) = yTGy = 1 +
1

r

σ2
b

σ2
o

r∑
k;l=1

{ĤCĤT }k;l. (38)

Since λmax(G) ≥ RG(y) for any y ∈ Rr×r, this completes the proof. �

The bounds on the condition number of the preconditioned Hessian for the special case of
observations at only one time step, derived in [13], can be found in the following corollary to
Theorem 4.

Corollary 5 Let n = 0, and let B, R̂ ≡ R = σ2
oIq and Ĥ ≡ H satisfy assumptions A1-A5.

Then the following bounds on the condition number of Ŝ = IN + B1=2HTR−1HB1=2 hold

1 +
1

q

σ2
b

σ2
o

∑
i;j∈K

{C}i;j ≤ κ(Ŝ) ≤ 1 +
σ2

b

σ2
o

||HCHT ||∞, (39)

where K are indices of the state variables that are observed.

Proof. From Theorem 4 with n = 0 we obtain the bounds

1 +
1

q

σ2
b

σ2
o

q∑
k; l=1

{HCHT }k; l ≤ κ(Ŝ) ≤ 1 +
σ2

b

σ2
o

||HCHT ||∞. (40)

Since HCHT is simply the matrix C with rows and columns removed at the unobserved positions
it follows that

q∑
k; l=1

{HCHT }k; l =
∑

i;j∈K

{C}i;j , (41)

where K are indices of the state variables that are observed. �

Before discussing the implications of the bounds we first note that the matrix ĤCĤT which ap-
pears in the upper and lower bounds (35) can also be written in the form H̃C̃H̃T = σ−2

b H̃B̃H̃T ,

where H̃ is the block diagonal matrix consisting of n + 1 blocks equal to Hi, i = 0, . . . , n , and
B̃ = σ2

b C̃ is the four-dimensional error covariance matrix associated with the background state

vector (xb
0

T
,xb

1
T

, . . . ,xb
n

T
)T . Here xb

i denotes the state vector at time ti, i = 1, . . . , n evolved
from the prior state estimate, xb

0, using the dynamical model (5) [14]. Since H̃C̃H̃T is simply C̃
with rows and columns deleted at positions that are unobserved, we refer to this as the reduced
error covariance matrix.

The reduced error covariance matrix H̃C̃H̃T plays a key role in the condition number of the
Hessian (10). In particular, the lower bound in (35) is linearly related to the average row
sum 1

r

∑r
k; l=1{H̃C̃H̃T }k;l whereas the upper bound is related to the absolute maximum row

sum ||H̃C̃H̃T ||∞. In fact the lower and upper bounds are identical if all entries of H̃C̃H̃T are
positive and its row sums are identical. The dependence on the reduced error covariance matrix
implies further details about the condition number of the preconditioned Hessian.
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1. The number and positions of the observations are important to the conditioning of the
preconditioned problem. In particular, if we assume that the correlations in the prior error
covariance matrix decrease with increased distance between grid points and also that the
linear model M acts to ensure that the coefficients of the correlation matrix C remain
positive and decrease monotonically with distance, then increasing the distance between
observations will imply smaller entries in the reduced error covariance matrix and thus
smaller sums in the upper and lower bounds in (35) and, potentially, a smaller condition
number. The assumptions apply, for instance, in the case where the model is an advection
equation and the prior error covariance has a Gaussian or SOAR structure [14].

2. Additionally, under the same assumptions, if we have fewer observations at fewer time
steps, then there will be fewer entries in the reduced error covariance matrix, implying
smaller sums in the bounds and hence a smaller condition number of the Hessian (10).

3. Finally, it follows from the dependence of the bounds (35) on the ratio σ2
b /σ2

o that the
accuracy of the observations is also important to the conditioning of the problem. In
particular, increasing the accuracy of the observations, where σ2

o −→ 0 while the other
variables remain fixed, implies an increase in the bounds and a potential increase in the
conditioning of the Hessian. In the limit, the model trajectories must fit exactly to the
data, as in the unpreconditioned case, and the problem becomes much harder to solve and
hence more ill-posed.

The bounds (35) and (39) are quite general and do not require the more restrictive assumptions
A3-A5 used in the unpreconditioned case. Additionally the bounds do not depend on the
condition number of the background error covariance matrix but simply on a summation of the
coeffcients of a four-dimensional background error covariance matrix. In [12] it was shown that,
in the case where observations are only made at a single time step, preconditioning brought a
dramatic reduction in the condition number of the Hessian compared to the unpreconditioned
case. Contrary to intuition, however, the bounds also show that in the preconditioned case,
as well as in the unpreconditioned case, increasing the accuracy and density of observations is
likely to make the conditioning of the problem increase and the estimation problem harder to
solve accurately.

4 Numerical Experiments

In this section we illustrate the effect of varying different parameters and properties of the state
estimation problem on the condition number of the unpreconditioned (7) and preconditioned
(10) Hessians. We apply the theoretical bounds derived in Section 3.2 and 3.3, respectively,
to explain these effects. Throughout this Section we consider a dynamical system where the
state vector consists of a single periodic variable discretized at equally spaced grid points on a
one-dimensional domain. As shown in Section 3.2 the prior error covariance plays a influential
role in the conditioning of the preconditioned and unpreconditioned Hessian and so we first
introduce and describe some of the properties of a common prior error covariance matrix.
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4.1 Condition Number of Error Covariance Matrices

In this section we assume that the prior error covariance matrix is of the form B = σ2
bC ∈ RN×N

where C denotes the error correlation matrix and σ2
b is the error variance. By definition (8), the

condition number κ(B) = κ(C) . We use the second-order auto-regressive correlation (SOAR)
function [4], defined by

ρS(r) =

(
1 +

|d|
L

)
exp

(
−|d|

L

)
, (42)

to model the correlation structure, where L > 0 is the correlation length-scale and 0 ≤ d ∈ R
is the distance between two points on the real line. The SOAR function is commonly used to
define correlations in meteorological applications [4]. For a periodic variable we identify the
values of the variable at two points −D and D. However, the function (42), which defines a
valid correlation function on the real line, may no longer define valid correlation models on the
finite interval, since the corresponding Fourier transforms are not necessarily positive [29], [8],
[28]. We transform to a valid correlation model on the circle by replacing the distance along the
great circle by the chordal distance

d = 2a sin(θ/2) , (43)

where θ is the angle between two points on the circle and a is the radius. This guarantees that
the corresponding correlation matrix is positive definite [30, Sec. 22.5]. Applying the transform
(43) to the SOAR correlation function and sampling at evenly spaced points on the circle si,
i = 1, . . . , N , produces the SOAR correlation matrix CS on the circle with elements given by

(CS)i;j =

(
1 +

|2a sin(θi;j/2)|
L

)
exp

(
−|2a sin(θi;j/2)|

L

)
(44)

where i, j = 1, . . . , N and θi;j is the angle between the points si and sj on the circle. We note
that the resultant correlation matrix is circulant and therefore has eigenvalues given by (11).

Length-scale 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Condition Number 5.96 58.1 265 807 1963 3978 7328

Table 1: The condition number of the SOAR correlation matrix as a function of different corre-
lation length-scales.

Table 1 shows the condition number of C = CS , for different length-scales, L, where the cor-
relation function is sampled at N = 500 equally spaced grid points on the interval [−25, 25].
The table shows that the condition number of the correlation matrix increases as a function
of the correlation length-scale. As shown there is a large increase in the condition number as
the length-scale increases. An increase in the length-scale from 0.1 to 0.



matrix are positive, we find from (11) that the largest eigenvalue satisfies

λmax(C) = ||C||∞ =
N−1∑
k=0

ck, (45)

and therefore increases slowly as a function of L and is bounded by N = 500 since |ck| ≤ 1. It
is the decrease in the smallest eigenvalue that causes the increase in condition number of the
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For the preconditioned Hessian, the condition number is much smaller than the absolute upper
bound predicted by (47) and is much better conditioned than the unpreconditioned Hessian.
For instance, at length-scale L = 0.25 the condition number of the unpreconditioned Hessian is
approximately 1900, whereas for the preconditioned Hessian it is around 6 . The conditioning
of the preconditioned system increases as the length-scale increases, which can be explained by
the increase in the bounds (35). The larger length-scale increases the coefficients of the matrix
C̃ and therefore the size of the row sums of the coeffcients of H̃C̃H̃T = ĤCĤT in the upper
and lower bounds (35).

4.3 The Effect of Observations on the Conditioning of the Preconditioned
Hessian

We now consider the conditioning of the preconditioned Hessian for the numerical advection fore-
cast model in more detail. The bounds for the preconditioned Hessian (35) and (39) identify the
accuracy and positioning of observations as important to the conditioning of the preconditioned
objective function.

Assuming the same data as for the experiment shown in Figure 2, we consider the effect of
changing the observation accuracy on the condition number of the Hessian. We use the SOAR
correlation matrix and fix the correlation length-scale to L = 0.2, but vary the observation
variance. Table 2 shows the effect of changing the observation accuracy on the condition number
of the preconditioned Hessian. As demonstrated in section 3.3, the bounds (35) are linearly
related to the inverse of the observation variance and hence we expect the condition number of
the Hessian to increase as the observation variance decreases and the accuracy of the observations
increases. This is confirmed by the results of the numerical experiment, as seen in Table 2. For
instance, a doubling in the accuracy of the observations from a variance of 0.1 to 0.05 roughly
doubles the condition number of the Hessian from 51.55 to 102.11. Similar results also hold
where other common prior error covariance matrices and observation locations are used (see
[14]).

Obs Variance 0.01 0.05 0.10 0.50 1.00 2.00 5.00 10.00

Condition Number 506.53 102.11 51.55 11.11 6.06 3.53 2.01 1.51

Table 2: The condition number of the preconditioned Hessian as a function of the observation
error variance using SOAR correlation matrices.

We now consider the condition number of the preconditioned Hessian as a function of the
separation of the observations. From the definition of the correlation matrix (44) the coefficients
in each block of {C̃}i;j monotonically decrease as the distance |i − j| increases, as shown in
Figure 1. The upper and lower bounds on the Hessian (10) depend on sums of the elements of
the matrix H̃C̃H̃T , which is viewed as a ‘reduced’ covariance matrix. The reduced matrix is
simply the 4D covariance matrix C̃ with all non-observed rows and columns deleted. As the
separation of the observations increases, the elements of the reduced matrix become smaller in
magnitude due to the decrease in the coefficients (or covariance) with distance. We therefore
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expect the conditioning of the problem to decrease as the separation of the observations increases
or the density decreases. We illustrate this with our numerical model.

We fix the observation error variances to σ2
o = 1 and assume that q = 20 observations are made

at grid points at each of the time steps t0 = 0, t1 = 3∆t and t2 = 6∆t with uniform spacing
between adjacent observations. We consider the condition number as the uniform spacing is in-
creased. Table 3 shows the results of the experiment. As expected from the theoretical bounds
(14), increasing the spacing between the observations reduces the size of the condition number
of the Hessian. Since the coefficients of the covariance matrix C̃, given by (44), decrease with an
increase in the distance between sampling points, the condition number of the preconditioned
Hessian becomes smaller with larger distances and decreased density of observations. Addition-
ally, as predicted, the condition number is larger for larger length-scales corresponding to the
increase in the size of the coefficients of C̃. Similar results hold for the preconditioned Hessians
using other common prior error covariance matrices (See [14, Chap. 7]).

Spacing 1 2 3 4 5 6 7 8 9 10

Condition Number (L = 0.2) 22.0 12.5 8.9 6.9 5.8 5.1 4.6 4.3 4.0 3.9
Condition Number (L = 0.3) 29.6 17.6 12.5 9.8 8.1 7.0 6.2 5.6 5.1 4.8
Condition Number (L = 0.5) 39.8 26.3 19.3 15.2 12.6 10.8 9.4 8.4 7.6



condition number of the Hessian of the objective function in both the unpreconditioned and
preconditioned forms. The bounds derived identify the main sources of ill-conditioning in both
systems and explain how preconditioning can improve the conditioning of the problem. In par-
ticular, we found that the condition number of the unpreconditioned Hessian is proportional to
the condition number of the prior error covariance matrix. Hence an ill-conditioned prior error
covariance matrix can produce an ill-conditioned Hessian. The bounds on the preconditioned
system showed that preconditioning using the prior error covariance matrix can produce a signif-
icant reduction in the condition number of the Hessian. Additionally, the distribution, quantity
and accuracy of the observations play key roles in the conditioning of the preconditioned Hessian,
with more accurate and dense observations creating a more ill-conditioned problem.

We presented results from numerical experiments in order to demonstrate the effect of the various
factors on the condition number of the Hessians, as indicated by the bounds. We presented the
SOAR covariance matrix, which is commonly used in variational data assimilation, and showed
that the conditioning of this matrix becomes very ill-conditioned for only relatively small in-
creases in correlation length-scale. We then demonstrated that this prior error covariance matrix
resulted in the ill-conditioning of the unpreconditioned Hessian and that preconditioning dra-
matically reduced the conditioning, as predicted by the theoretical bounds. We also illustrated
the reduction in the conditioning of the preconditioned system as we increased the separation
between observations and reduced the accuracy of the observations, as expected from our theo-
retical results. We remark that the conclusions derived from the theory presented here have also
been found to hold for experimental data from the high-dimensional, multi-variable Met Office
Numerical Weather Prediction data assimilation system [13].

A simple, natural extension to this problem would be to consider more general observation oper-
ators which incorporate interpolation and to introduce correlations into the observation errors.
Very recently, extra preconditioning, in addition to the variable transform via the matrix B, has
been considered [27], [6] for use in optimal state estimation. Further exploration and analysis of
these, and other, preconditioning techniques, following the theoretical approach presented here,
may be valuable in order to produce further improvements in the conditioning of the problem.
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