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Abstract

This paper considers various formulations of the sum-product problem. It is shown
that, for a �nite set A � R,

jA(A + A)j � j Aj
3
2 + 1

178 ;

giving a partial answer to a conjecture of Balog. In a similar spirit, it is established that

jA(A + A + A + A)j �
jAj2

log jAj
;

a bound which is optimal up to constant and logarithmic factors. We also prove several
new results concerning sum-product estimates and expanders, for example, showing that

jA(A + a)j � j Aj3=2

holds for a typical element of A.

1 Introduction

Given a �nite set A � N, one can de�ne thesum set, and respectively theproduct set, by

A + A := f a + b : a; b2 Ag

and
AA := f ab : a; b2 Ag:

The Erd}os-Szemer�edi [7] conjecture states, for all� > 0,

max fj A + Aj; jAA jg � j Aj2� � ;

� The �rst author was supported by a WUN Researcher Mobility Grant, and would like to thank Bristol
University for their hospitality while this research was conducted. He would also like to thank the students
of MTH 440 for their generous support during the Fall 2013 semester. The second author was partially
supported by the Grant ERC-AdG 321104 and EPSRC Doctoral Prize Scheme (Grant Ref: EP/K503125/1).
The third author was supported by grant mol a ved 12{01{33080, Russian Government project 11.G34.31.0053,
Federal Program \Scienti�c and scienti�c{pedagogical sta� of innovative Russia" 2009{2013 and grant Leading
Scienti�c Schools N 2519.2012.1.
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and it is natural to extend this conjecture to other �elds, particularly the real numbers. In
this direction, the current state-of-the-art bound, due to Solymosi [23], states that for any
A � R

max fj A + Aj; jAA jg �
jAj4=3

(log jAj)1=3
: (1)

When looking to construct a set A which generates a very small sum setA + A, one needs
to impose an additive structure on A, and an additive progression is an example of a highly
additively structured set. Similarly, if A has a very small product set, it must be to some
extent multiplicatively structured. Loosely speaking, the Erd}os-Szemer�edi conjecture re
ects
the intuitive observation that a set of integers, or indeed real numbers, cannot be highly
structured in both a multiplicative and additive sense.

In this paper, we consider other ways to quantify this observation. In particular, one would
expect that a set will grow considerably under a combination of additive and multiplicative
operations. Consider the set

A(A + A) := f a(b+ c) : a; b; c2 Ag:

The same heuristic argument as the above leads us to expect that this set will always be



titatively improved results. Using a straightforward application of the Szemer�edi-Trotter
theorem3, one can show that

jA(A + A)j � j Aj3=2: (3)

The original aim here was to improve on this lower bound, which we do by proving4 that

jA(A + A)j ' jAj
3
2 + 1

178 : (4)

Although the method leads only to a small improvement for this problem, it turns out to be
much more e�ective when more variables are involved. To this end we prove the following
result:

jA(A + A + A + A)j �
jAj2

log jAj
: (5)

Observe that this bound is tight, up to logarithmic factors, in the case whenA is an arithmetic
progression. Indeed, the aforementioned work of Ford tells us that some logarithmic factor
is necessary here. The setA(A + A + A + A) has similar characteristics to A(A + A), and
inequality (5) proves a weak version of Balog’s conjecture.





In a slight generalisation of the earlier de�nition, the multiplicative energy of A and B ,
denoted E� (A; B ) = E�

2(A; B ), is de�ned to be the number of solutions to the equation

a1b1 = a2b2;

such that ai 2 A and bi 2 B . This quantity is also the number of solutions to

a1

a2
=

b2

b1

and a1

b2
=

a2

b1
:

Observe that E� (A; B ) can also be de�ned in terms of the representation functionr as follows:

E� (A; B ) =
X

x

r 2
A:B (x)

=
X

x

rA:A (x)rB :B (x)

=
X

x

r 2
AB (x):

We useE� (A) as a shorthand for E� (A; A ).

One of the fundamental basic properties of the multiplicative energy is the following well-
known lower bound:

E� (A; B ) �
jAj2jB j2

jAB j
: (8)

The proof is short and straightforward, arising from a single application of the Cauchy-
Schwarz inequality. The full details can be seen in Chapter 2 of [27].

The above de�nitions can all be extended in the obvious way to de�ne theadditive energy of
A and B , denoted E+ (A; B ). So,

E+ (A; B ) :=
X

x

r 2
A� B (x):

The third moment multiplicative energy is the quantity

E�
3(A) :=

X

x

r 3
A:A (x);A) :=

X

x

r 2
A� (x):



We will use the Katz{Koester trick [14], which is the observation that

j(A + A) \ (A + A � s)j � j A + Asj ;

and
j(A � A) \ (A � A � s)j � j A � (A \ (A + s)) j ;

where As = A \ (A � s). We also need the following identity (see [22], Corollary 2.5)
X

s

jA � Asj = jA2 � �( A)j ; (9)

where
�( A) = f (a; a) : a 2 Ag:

2 Statement of results

2.1 Preliminary Results - Applications of the Szemer�edi-Trotter Theorem

The most important ingredient for the sum-product type results in this paper is the Sze-
mer�edi-Trotter Theorem [26]:

Theorem 2.1. Let P � R2 be a �nite set of points and let L be a collection of lines in the
real plane. Then

I (P; L) := jf (p; l) 2 P � L : p 2 lgj � j P j2=3jL j2=3 + jL j + jP j:

Here by I (P; L) we denote the number of incidences between a set of pointsP and a set of
lines L . Given a set of linesL , we call a point that is incident to at least t lines of L a t-rich
point, and we let Pt denote the set of all t-rich points of L . The Szemer�edi-Trotter theorem
implies a bound on the number oft-rich points:

Corollary 2.2. Let L be a collection of lines inR2, let t � 2 be a parameter and letPt be
the set of all t-rich points of L . Then

jPt j �
jL j2

t3 +
jL j
t

:

Further, if no point of Pt is incident to more than jL j1=2 lines, then

jPt j �
jL j2

t3 :

This result is used to prove the main preliminary results in this paper, which give us infor-
mation about various kinds of energies.

Lemma 2.3. Let A; B and X be �nite subsets ofR such that jX j � j AjjB j. Then
X

x2 X

E+ (A; xB ) � j Aj3=2jB j3=2jX j1=2:

6



Note that E+ (A; xB ) � j AjjB j for all x, so the condition jX j � j AjjB j is necessary. Bourgain
formulated a similar theorem (\Theorem C" of [2]) for subsets of �elds with prime cardinality.
Bourgain’s theorem is closely related to the Szemer�edi-Trotter theorem for �nite �elds [5, 11].



Theorem 2.9. Let A � R be a �nite set. Then there exists a subsetA0 � A, such that
jA0j � jA j

2 , and for all a 2 A0,
jA(A + a)j � j Aj3=2:

Adding more variables to our set leads to better lower bounds:

Theorem 2.10. Let A � R be a �nite set. Then there exists a subsetA0 � A with cardinality
jA0j � jA j

2 , such that for all a 2 A0,

j(A + A)(A + a)j �
jAj5=3

(log jAj)1=3
:

Theorem 2.10 is similar to the result of Theorem 2.6, especially if we think of the setA(A + A)
in the terms (A + 0)( A + A). This result tells us that we can usually do better than Theorem
2.6 if 0 is replaced by an element ofA.

The next theorem is quantitatively worse than Theorem 2.10, but is more general, since it
applies not only for most a 2 A, but to all real numbers except for a single problematic value.

Theorem 2.11. Let A � R be a �nite set. Then, for all but at most one valuex 2 R,

j(A + A)(A + x)j �
jAj11=7

(log jAj)3=7
: (12)

Unfortunately, this does not lead to an improvement to Theorem 2.6, since the single badx
that violates (12) may be equal to zero.

2.4 Further results

Finally, we formulate a theorem of a slightly di�erent nature.

Theorem 2.12. Let A; B � R be �nite sets.

Then

jA + B j3 �
jB jE� (A)

log jAj
�

jAj4jB j
jAA � 1j log jAj

; (13)

and

jB + AA j3 �
jB jjAj12

(E�
3(A))2jAA � 1j log jAj

: (14)

Let us say a little about the meaning of these two bounds. If we �x A = B , then (13) tells
us that jAA j is very large if jA + Aj is very small. Similar results are already known; for
example, a quantitatively improved version of this statement is a consequence of Solymosi’s
sum-product estimate in [23]. The bene�t of (13) is that it also works for a mixed sum set
A + B .

One of the main objectives of this paper is to study the setA(A + A), and inequality (14)
considers the dual problem of the setA + AA . As stated earlier, it is easy to show that
jA + AA j � j Aj3=2. If we �x A = B in (14), then this bound gives an improvement in the
case whenE�

3(A



3 Proofs of Preliminary Results

Proof of Lemma 2.3

Recall that Lemma 2.3 states that for jX j � j AjjB j,
X

x2 X

E+ (A; xB ) � j Aj3=2jB j3=2jX j1=2:

Note that X

x2 X

E+ (A; xB ) =
X

x2 X

X

y

r 2
A+ xB (y): (15)

We will interpret rA+ xB (y) geometrically and use corollary 2.2 to show that there are not too
many pairs (x; y) for which the quantity rA+ xB (y) is large.

Claim. Let Rt = f (x; y) : rA+ xB (y) � tg. Then for any integer t � 2,

jRt j �
jAj2



To bound the �rst term in (18), observe that
X

x2 X

X

y : r A + xB (y)�4

r 2
A+ xB (y) � 4

X

x2 X

X

y

rA+ xB (y) (19)

= 4j AjjB j
X

x2 X

1 (20)

= jAjjB j4j X j: (21)

To bound the second term in (18), we decompose dyadically and then apply (16) to bound
the size of the dyadic sets we are summing over:

X

(x;y ) : r A + xB (y)> 4

r 2
A+ xB (y) =

X

j � 1

X

(x;y ) : 4 2j � 1<r A + xB (y)�4 2j

r 2
A+ xB (y) (22)

�
X

j � 1

jAj2jB j2

(4 2j )3 (4 2j )2 (23)

=
jAj2jB j2

4

X

j � 1

1
2j (24)

=
jAj2jB j2

4
: (25)

For an optimal choice, set the parameter4 =
l

jA j1=2 jB j1=2

jX j1=2

m
� jA j1=2 jB j1=2

jX j1=2 > 1. The approxi-

mate equality here is a consequence of the assumptionjA j1=2 jB j1=2

jX j1=2 > 1.

Combining the bounds from (21) and (25) with (18), it follows that
X

x2 X

E+ (A; xB ) � j Aj3=2jB j3=2jX j1=2;

as required.

This completes the proof of Lemma 2.3.

The proof of Lemma 2.4 is essentially the same, with the roles of addition and multiplication
reversed. For completeness, a full proof is provided.

Proof of Lemma 2.4

Recall that Lemma 2.4 states that for jX j � j AjjB j,
X

x2 X

E� (A; B + x) � j Aj3=2jB j3=2jX j1=2:

De�ne a set of lines L := f la;b : (a; b) 2 A � B g, where la;b now represents the line with
equation y = a(b+ x). These lines are all distinct and sojL j = jAjjB j. Since rA(B + x) (y) is

10



the number of such lines incident to a point (x; y), we can apply Corollary 2.2 and argue as
before to show that

jf (x; y) : rA(B + x) (y) � tgj �
jAj2jB j2

t3 ; (26)

for any integer t � 1.

Next, we use the bound (26) in the following calculation, which holds for any integer4 > 1:
X

x2 x

E� (A; B + x) =
X

x2 X

X

y

r 2
A(B + x) (y)

�
X

x2 X

X

y : r A (



respectively, provided that jX j � j AjjB j. Putting B = A and X = ( A � A)=(A � A) into (30)
proves (27). Similarly, putting B = A and

X =
�

a2b2 � a1b1

a1 � a2
: a1; a2 2 A; b1; b2 2 B

�

into (31), we obtain (28).

Let D = A � A Taking A = B = D , X = D=D , summing just over x; y 2 D in (30), and
using Katz{Koester trick as well as identity (9), we get

jA � Aj3 �

�
�
�
�
A � A
A � A

�
�
�
�

1=2

�

 
X

x2 D

rD � D (x)

! 2

�

 
X

x2 D

jA � Ax j

! 2

= jA2 � �( A)j2

which coincides with (29).

Inequality (27) can also be deduced from Beck’s Theorem, which states that a set ofN points
in the plane which does not have a single very rich line, will determine 
(N 2) distinct lines.
See Exercise 8.3.2 in [27]. A geometric result of Ungar [29], concerning the number of di�erent
directions determined by a set of points in the plane, also yields (27) as a corollary. Although
the result here is not new, it has been stated in order to illustrate the sharpness of Lemma
2.3. Similar results to (28) were established in [12]; it seems likely that (28) is suboptimal.

Proof of Lemma 2.5

Recall that Lemma 2.5 states that

E� (A)jA(B + C)j2 �
jAj4jB jjCj

log jAj
:

Let S



Now we apply the Cauchy-Schwarz inequality:

1
4

(jAjjB jjCj)2 �

0

@
X

x2 A(B + C)nf 0g

rA(B + C) (x)

1

A

2

(33)

� j A(B + C)j
X

x6=0

r 2
A(B + C) (x) (34)

= jA(B + C)jS?: (35)

The rest of the proof is concerned with �nding a satisfactory upper bound for the quantity
S?. We will eventually conclude that

S? � E� (A)1=2jB j3=2jCj3=2(log jAj)1=2: (36)

If this is proven to be true, one can combine the upper and lower bounds onS? from (36)
and (35) respectively, and then a simple rearrangement completes the proof of the lemma.

It remains to prove (36). To do this, �rst observe that (32) can be rewritten in the form

a1

a2
= z =

b2 + c2

b1 + c1
:

Note that we can divide by b1+ c1



Now we will prove the claimed estimate for the distribution of rQ(z).

Proof of Claim. First we will get an easy estimate for jZ t j from Markov’s inequality. Since7

t jZ t j �
X

z2 Z t

rQ(z) �
X

z2 Q

rQ(z) = jB j2jCj2;

we have
jZ t j �

jB j2jCj2

t
: (38)

Note that if jZ t j � j B jjCj, then it follows from (38) that t � j B jjCj. But then

jB j2jCj2

t
�

jB j3jCj3

t2 ;

so we have proved the claim in the casejZ t j � j B jjCj.

Now we will prove the claim when jZ t j � j B jjCj using Lemma 2.3. To do this we make a
key observation, which is inspired by the Elekes-Sharir set-up from [17]: every solution of the
equation

z =
b2 + c2

b1 + c1

is a solution to the equation
b2 � zc1 = zb1 � c2 = y

for somey. Thus
rQ(z) �

X

y

r zB � C (y)rB � zC (y):

By the arithmetic-geometric mean inequality

r zB � C (y)rB � zC (y) �
r 2

zB � C (y) + r 2
B � zC (y)

2
;

so
rQ(z) �

E+ (zB; � C) + E+ (B; � zC)
2

:

Now if jZ t j � j B jjCj, we can sum overZ t and apply Lemma 2.3:

t jZ t j �
X

z2 Z t

rQ(z) �
1
2

X

z2 Z t

E+ (zB; � C) +
1
2

X

z2 Z t

E+ (B; � zC) � j B j3=2jCj3=2jZ t j1=2:

Rearranging yields the estimate

jZ t j �
jB j3jCj3

t2 ;

as claimed.
7r Q (z) is supported on Q, so if t � 1 we haveZ t � Q.
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We remark here that this is not the only proof we have found of Lemma 2.5 during the
process of writing this paper. In particular, it is possible to write a \shorter" proof which is a
relatively straightforward application of an upper bound from [17] on the number of solutions
to the equation

(a1 � b1)(c1 � d1) = ( a2 � b2)(c2 � d2);

such that ai 2 A; � � � ; di 2 D .

Although this proof may appear to be shorter, it relies on the bounds from [17], which in turn
rely on the deeper concepts used by Guth and Katz [10] in their work on the Erd}os distinct
distance problem. For this reason, we believe that this proof is the more straightforward
option. In addition, this approach leads to better logarithmic factors and works over the
complex number (see the discussion at the end of the paper).

The following corollary gives an analogous result for third moment multiplicative energy,
however, unlike Lemma 2.5, this result does not appear to be optimal.

Corollary 3.2. For any �nite sets A; B; C � R, we have

E�
3(A)jA(B + C)j4 �

jAj6jB j2jCj2

(log jAj)2 :

Proof. By the Cauchy-Schwarz inequality,
X

x

r 2
A:A (x) =

X

x

r 3=2
A:A (x)r 1=2

A:A (x)

�

 
X

x

r 3
A:A (x)

! 1=2  
X

x

r j)



and

jA0� A0j / K 4 jA0j3

jAj2
:

We remark that the �rst preprint of this paper used a di�erent version of the Balog-Szemer�edi-
Gowers Theorem, due to Schoen [18]. Shortly after uploading this, we were informed by M.
Z. Garaev of a quantitatively improved version of the Balog-Szemer�edi-Gowers Theorem, in
the form of Theorem 4.1. This leads to a small improvement in the statement of Theorem
2.6, since our earlier result had an exponent of32 + 1

234. The proof of Theorem 4.1 result is
short, arising from an application of Lemmas 2.2 and 2.4 in [3]. It is possible that further
small improvements can be made to Theorem 2.6 by combining more suitable versions of the
Balog-Szemer�edi-Gowers Theorem with our approach.

We will also need a sum-product estimate which is e�ective in the case when the product set
or ratio set is relatively small. The best bound for our purposes is the following9 (see [16],
Theorem 1.2):

Theorem 4.2. Let A � R. Then

jA : Aj10jA + Aj9 ' jAj24:

Proof of Theorem 2.6

Recall that Theorem 2.6 states that

jA(A + A)j ' jAj
3
2 + 1

178 :

Write E� (A) = jA j3

K . Applying Lemma 2.5 with A = B = C, it follows that

jAj3

K
jA(A + A)j2 ' jAj6;

and so
jA(A + A)j ' jAj3=2K 1=2: (39)

On the other hand, by Lemma 4.1, there exists a subsetA0 � A such that

jA0j �



so that after rearranging, and applying the crude boundjA0j � j Aj, we obtain

K 40jA0+ A0j9 '
jAj20

jA0j6
� j Aj14

Using another crude bound,

jA(A + A)j � j A + Aj � j A0+ A0j; (42)

yields

jA(A + A)j '
jAj14=9

K 40=9
: (43)

Finally, we note that the worst case occurs whenK � j Aj
1

89 . If K � j Aj
1

89 , then (39) implies
that

jA(A + A)j ' jAj3=2K 1=2 � j Aj
3



Proof of inequality (44). To get "0 we need to improve (42), that is to showjA(A +



Proof of Theorem 2.8

Recall that Theorem 2.8 states that

jA(A + A + A)j ' jAj
7
4 + 1

284 :

For the ease of the reader, we begin by writing down a short proof of the fact that

jA(A + A + A)j '
jAj7=4

(log jAj)3=4
: (51)

First note that, since rA:A (x) � j Aj for any x,

E�
3(A) =

X

x2 A:A

r 3
A:A (x) � j Aj

X

x2 A:A

r 2
A:A (x) = jAjE� (A) ; (52)

so that (50) yields
E�

3(A) � j AjjA + Aj2 log jAj: (53)

Now, apply Corollary 3.2, with B = A and C = A + A. We obtain

E�
3(A)jA(A + A + A)j4 �

jAj8jA + Aj2

(log jAj)2 :

Combining this with the upper bound on E�
3(A) from (53), it follows that

jA(A + A + A)j �
jAj7=4

(log jAj)3=4
;

which proves (51).

Now, we will show how a slightly more subtle argument can lead to a small improvement in
this exponent. Apply (50) and Lemma 2.5, with B = A and C = A + A, so that

jAj5jA + Aj / E� (A)jA(A + A + A)j2 / jA + Aj2jA(A + A + A)j2 ; (54)

and thus
jA + AjjA(A + A + A)j2 ' jAj5: (55)

Write E� (A) = jA j3

K , for some valueK � 1. By the �rst inequality from (54), it follows that

jA(A + A + A)j ' jAjK 1=2jA + Aj1=2 : (56)

Applying Solymosi’s bound for the multiplicative energy then yields

jA(A + A + A)j ' jAj7=4K 1=4: (57)

Now, by Theorem 4.1 there exists a subsetA0 � A such that

jA0j '
jAj
K

(58)

and
jA0 : A0j / K 4 jA0j3

jAj2
: (59)

19



By Theorem 4.2 and (59),

jA0j24 / jA0+ A0j9jA0 : A0j10

� j A + Aj9K 40 jA0j30

jAj20
;

and then
jA + Aj9 '

jAj20

jA0j6K 40 �
jAj14

K 40 :

From the latter inequality we now have jA + Aj ' jA j14=9

K 40=9 . Comparing this with (56) leads to
the following bound:

jA(A + A + A)j '
jAj16=9

K 31=18
: (60)

The worst case occurs whenK � j Aj1=71. It can be veri�ed that if K < jAj1=71, then

jA(A + A + A)j ' jAj
7
4 + 1

284 ;

by inequality (60). On the other hand, if K � j Aj1=71, then it follows from inequality (57)
that

jA(A + A + A)j ' jAj
7
4 + 1

284 :

Therefore, we have proved that (10) holds for allK (i.e. for all possible values ofE� (A)),
which concludes the proof.

5 Proofs of Results on Products of Translates

We record a short lemma which will be used in the proofs of Theorem 2.10 and 2.11

Lemma 5.1. Let A � R



Proof of Theorem 2.9

Recall that Theorem 2.9 states that

jA(A + a)j � j Aj3=2

holds for at least half of the elementsa belonging to A. Lemma 2.4 tells us that, for some
�xed constant C X

a2 A

E� (A; a + A) � CjAj7=2:

Let A0 � A be the set

A0 := f a 2 A : E� (A; a + A) � 2CjAj5=2g;

and observe that

2CjAj5=2jA n A0j �
X

a2 AnA 0

E� (A; a + A) � CjAj7=2;

which implies that

jA n A0j �
jAj
2

:

This implies that jA0j � jA j
2 . To complete the proof, we will show that for every a 2 A0 we

have jA(A + a)j � j Aj3=2. To see this, simply observe that, for anya 2 A0,

jAj4

jA(A + a)j
� E� (A; A + a) � j Aj5=2:

The lower bound here comes from (8), whilst the upper bound comes from the de�nition of
A0. Rearranging this inequality gives

jA(A + a)j � j Aj3=2;

as required.

We remark that it is straightforward to adapt this argument slightly|switching the roles of
addition and multiplication and using Lemma 2.3 in place of Lemma 2.4|in order to show
that there exists a subsetA0 � A, such that jA0j � jA j

2 , with the property that

jA + aAj � j Aj3=2;

for any a 2 A0.

It is also easy to adapt the proof of Theorem 2.9 in order to show that, for any 0< � < 1
and any A � R, there exists a subsetA0 � A such that jA0j � (1 � � )jAj, and for all a 2 A0,

jA(A + a)j � � jAj3=2:

In other words, the set A(A + a) is large for all but a small positive proportion of elements
a 2 A. The analogous statement forA + aA is also true.
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Proof of Theorem 2.10

Recall that Theorem 2.10 states that

j(A + a)(A + A)j �
jAj5=3

(log jAj)1=3

holds for at least half of the elementsa belonging to A. This proof is similar to the proof of
Theorem 2.9. Again, Lemma 2.4 tells us that for a �xed constantC, we have

X

a2 A

E� (A + A; a + A) � CjAj2jA + Aj3=2:

De�ne A0 � A to be the set

A0 := f a 2 A : E� (A + A; a + A) � 2CjAjjA + Aj3=2g;

and observe that

2CjAjjA + Aj3=2jA n A0j �
X

a2 AnA 0

E� (A + A; a + A) � CjAj2jA + Aj3=2:

This implies that jA n A0j � jA j
2 , and so

jA0j �
jAj
2

:

Next, observe that, for any a 2 A0,

jAj2jA + Aj2

j(A + a)(A + A)j
� E� (A + A; A + a) � j AjjA + Aj3=2:

The lower bound here comes from (8), whilst the upper bound comes from the de�nition of
A0. After rearranging, we have

j(A + a)(A + A)j � j AjjA + Aj1=2; (64)

for any a 2 A0. To complete the proof we need a useful lower bound onjA + Aj. This comes
from Lemma 5.1, which tells us that for any a 2 R, and so certainly any a 2 A,

jA + Aj1=2 �
jAj3=2

(log jAj)1=2j(A + a)(A + A)j1=2
:

Finally, this bound can be combined with (64), to conclude that

j(A + a)(A + A)j �
jAj5=3

(log jAj)1=3
;

as required.
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Another upper bound on the multiplicative energy

Before proceeding to the proof of Theorem 2.11, it is necessary to establish another upper
bound on the multiplicative energy. This is essentially a calculation, based on earlier work
from [9] and [13]. We will need the following lemma:

Lemma 5.2. Suppose thatA; B and C are �nite subsets of R such that 0 62A; B , and
� 2 R n f 0g. Then, for any integer t � 1,

jf s : rAB (s) � tgj �
j(A + � ) � Cj2jB j2

jCjt3 :

This statement is a slight generalisation of Lemma 3.2 in [13]. We give the proof here for
completeness.

Proof. For some valuesp and b, de�ne the line lp;b to be the set f (x; y) : y = ( px � � )bg. Let
L be the family of lines

L := f lp;b : p 2 (A + � )C; b 2 B g:

Observe that, since� is non-zero, jL j = j(A + � )CjjB j:10 Let Pt denote the set of all t-rich
points in the plane. By Corollary 2.2, for t � 2,

jPt j �
jB j2j(A + � )Cj2

t3 +
jB jj (A + � )Cj

t
; (65)

and it can once again be simply assumed that

jPt j �
jB j2j(A + � )Cj2

t3 : (66)

This is because, if the second term from (65) is dominant, it must be the case

t > j(A + � )Cj1=2jB j1=2 � min fj Aj; jB jg:

However, in such a large range,jf s : rAB (s) � tgj = 0, and so the statement of the lemma is
trivially true.

Next, it will be shown that for every s 2 f s : rAB (s) � tg, and for every elementc 2 C,
�

1
c

; s
�

2 Pt : (67)

Once, (67) has been established, it follows thatjPt j � j Cjjf s : rAB (s) � tgj. Combining this
with (66), it follows that

jf s : rAB (s) � tgj �
jB j2j(A + � ) � Cj2

jCjt3 ; (68)

10 Note that it is not true in general that jL j = j(A + � )CjjB j. Indeed, if 0 2 B , then lp; 0 = lp0;0 for
p 6= p0, and so the lines may not all be distinct. However, we may assume again that zero does not cause
us any problems. To be more precise, we assume that 0=2 B , as otherwise 0 can be deleted, and this will
only slightly change the implied constants in the statement of the lemma. If 0 =2 B , then the statement that
jL j = j(A + � )CjjB j is true.
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for all t � 2. We can then check that (68) is also true in the case whent = 1, since

jB j2j(A + � )Cj2

13jCj
� j B j2j(A + � )Cj � j AB j = jf s : rAB (s) � 1gj:

It remains to establish (67). To do so, �x s with rAB (s) � t and c 2 C. The element s can
be written in the form s = a1



Proof of Theorem 2.11

Let a and b be distinct real numbers. We will show that

j(A + a)(A + A)j5j(A + b)(A + A)j2 �
jAj11

(log jAj)3 : (69)

Once we have established (69), the theorem follows, since this implies that for anya; b 2 R
with a 6= b, we have

max fj (A + a)(A + A)j; j(A + b)(A + A)jg �
j �j(A





as required. Here we have used the fact

jA � A + �( A)j =
X

s2 D

jA + Asj =
X

x2 S

jA + ( A \ (x � A)) j ;

which follows from the consideration of the projections of the setA � A + �( A). More
precisely, one hasA � A + �( A) = f (a1 + a; a2 + a) : a; a1; a2 2 Ag. Whence, writing
s = ( a1 + a) � (a2 + a) = a1 � a2 2 D , we get a2 2 As, a + a2 2 A + As and viceversa.
Similarly, put x = a1 + a2 2 S, one get a2 2 A \ (x � A), a + a2 2 A + ( A \ (x � A)) and
viceversa.

Further, by Lemma 5.5
jAj6 � E3(A)

X

x

D (x)rS� S(x) :

Applying the Cauchy{Schwarz inequality, we get

jAj12 � E2
3(A)E(S)jD j

and formula (78) follows. The result for the set D is similar.

Finally, we can prove Theorem 2.12:

Proof of Theorem 2.12. We begin with the �rst formula of the result.

Take C = A � B in Corollary 5.4. Note that r (A � B )+ B (a) � j B j for all a 2 A, which implies
that rA(B + C) (x) � rAA (x)jB j. Thus by Corollary 5.4 we have11

jB j2E�
2(A) �

X

x6=0

r 2
A(B + C) (x) � E�

2(A)1=2jB j3=2jA � B j3=2(log jAj)1=2:

Rearranging and applying the Cauchy-Schwarz lower bound forE�
2(A) yields

jAj4jB j
jAA � 1j

� j B jE�
2(A) � j A � B j3 log jAj;

as required.

Combining (13) with Corollary 5.6, we obtain (14). This completes the proof.

Concluding remarks - the complex case

We conclude by pointing out that almost all of the results in this paper also hold in the more
general case wherebyA is a �nite set of complex numbers, since the tools we have made
use of can all be extended in this direction. Indeed, the Szemer�edi-Trotter was extended
to points and lines in C2
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