

Department of Mathematics and Statistics

Preprint MPS-2013-15

29 October 2013

'Quasi'-norm of an arithmetical convolution operator and the order of the Riemann zeta function

by

Titus Hilberdink

`Quasi'-norm of an arithmetical convolution operator and the order of the Riemann zeta function 1

Titus Hilberdink

Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK; t.w.hilberdink@reading.ac.uk

Abstract

In this paper we study Dirichlet convolution with a given arithmetical function f as a linear mapping 'f that sends a sequence (a_n) to (b_n) where (a_n) to (a_n) where (a_n) to (a_n) where (a_n) to (a_n) where (a_n) is a linear mapping (a_n) to (a_n) where (a_n) is a linear mapping (a_n) to (a_n) where (a_n) is a linear mapping (a_n) to (a_n) where (a_n) is a linear mapping (a_n) to (a_n) where (a_n) is a linear mapping (a_n) to (a_n) where (a_n) is a linear mapping (a_n) to (a_n) where (a_n) is a linear mapping (a_n) to (a_n) where (a_n) is a linear mapping (a_n) to (a_n) where (a_n) is a linear mapping (a_n) to (a_n) where (a_n) is a linear mapping (a_n) where (a_n) is a linear mapping (a_n) is a linear mapping (a_n) to (a_n) where (a_n) is a linear mapping (a_n) is a linear mapping (a_n) to (a_n) where (a_n) is a linear mapping (a_n) to (a_n)

For the unbounded case, we show that $^{\prime}_{f}: M^{2}! M^{2}$ where M^{2} is the subset of I^{2} of multiplicative sequences, for many $f^{2}M^{2}$. Consequently, we study the `quasi'-norm

$$\sup_{\substack{kak = T \\ a \ge M}} \frac{k'_{f} ak}{kak}$$

for large T, which measures the `size' of' $_f$ on M 2 . For the f (n) = n^i $^{\circledcirc}$ case, we show this quasi-norm has a striking resemblance to the conjectured maximal order of $j^3(\Re + iT)j$ for $\Re > \frac{1}{2}$.

2010 AMS Mathematics Subject Classi cation: 11N37, 11M06.

Keywords: Dirichlet convolution, maximal order of the Riemann zeta function.

Introduction

Given an arithmetical function f (n), the mapping f sends $(a_n)_{n\geq N}$ to $(b_n)_{n\geq N}$, where

$$b_n = X f(d)a_{n=d}$$
: (0.1)

Writing $a = (a_n)$, 'f maps a to f ma where mis Dirichlet convolution. This is a `matrix' mapping, where the matrix, say M (f), is of `multiplicative Toeplitz' type; that is,

$$M(f) = (a_{ij})_{i;j=1}$$

where $a_{ij} = f(i=j)$ and f is supported on the natural numbers (see, for example, [6], [7]).

Toeplitz matrices (whose ij th entry is a function of i ; j) are most usefully studied in terms of a 'symbol' (the function whose Fourier coe±cients make up the matrix). Analogously, the Multiplicative Toeplitz matrix M (f) has as symbol the Dirichlet series

$$X$$
f (n)n^{it}:

Our particular interest is naturally the case $f(n) = n^{i}$ when the symbol is $^{3}(\mathbb{B}_{i})$ it). We are especially interested how and to what extent properties of the mapping relate to properties of the symbol for $\mathbb{B} \cdot 1$.

These type of mappings were considered by various authors (for example Wintner [15]) and most notably Toeplitz [13], [14] (although somewhat indirectly, through his investigations of so-called

¹To appear in Functiones et Approximatio Commentarii Mathematici

\D-forms"). In essence, Toeplitz proved that ' $_f: I^2$! I^2 is bounded if and only if $P_{n=1}^1 f(n) n^{i-s}$ is de ned and bounded for all < s > 0. In particular, if $f(n)_s = 0$ 0 then ' $_f$ 1 is bounded on I^2 2 if and only if $f(2)_s = 0$ 1. The operator norm is k' $_f = 0$ 2 kf k1. We prove this in Theorem 1.1 following Toeplitz's original idea. For example, for $f(n) = n^{i-s}$ 9, ' $_f$ 1 is bounded on I^2 2 for I^s 9 > 1 with operator norm I^s 9. In this special case, the mapping was studied in I^s 9 for I^s 9 + 1 when it is unbounded on I^s 9 by estimating the behaviour of the quantity

for large N . Approximate formulas for \mathbb{O}_f (N) were obtained and it was shown that, for $\frac{1}{2} < \mathbb{R} \cdot 1$, \mathbb{O}_f (N) is a lower bound for max_{1. t. T} $j^3(\mathbb{R}+it)j$ with N = T. (some, > 0 depending on \mathbb{R} only). In this way, it was proven that the measure of the set

is at least T exp $_i^{\odot}$ a $_{\frac{\log T}{\log \log T}}^{a}$ (some a > 0) for A su±ciently large, while for $\frac{1}{2} < \mathbb{R} < 1$ one has

$$\max_{t \in T} j^3(\mathbb{R} + it) j, \quad \exp^{\frac{1}{2}} \frac{c(\log T)^{1_i} \, \mathbb{R}^{\frac{3}{4}}}{\log \log T}$$

for some c > 0 depending on \mathbb{R} only, as well providing an estimate for how often $j^3(\mathbb{R}+iT)j$ is as large as the right-hand side above. The method is akin to Soundararajan's `resonance' method and incidentally shows the limitation of this approach for $\mathbb{R}>\frac{1}{2}$ since $j^3(\mathbb{R}+iT)$

Similarly one can study the quantity

$$m_f(T) = \inf_{\substack{k \text{ a}k = T \\ a \text{ 2 M}}} \frac{k'_f \text{ a}k}{k \text{a}k}$$
:

With $f(n) = n^{i \cdot \otimes}$ this is shown to behave like the known and conjectured minimal order of $j^3(\mathbb{R}+iT)j$ for $\mathbb{R}>\frac{1}{2}$. It should be stressed here that, unlike the case of $\mathbb{Q}(N)$ which was shown to be a lower bound for $Z_{\mathbb{R}}(T)$ in [7], we have not proved any connection between $\mathbb{R}(\mathbb{R}+iT)$ and $M_f(T)$. Even to show $M_f(T)$ is a lower bound would be very interesting.

Our results, though motivated by the special case $f(n) = n^{-1}$, extend naturally to completely multiplicative $f(n) = n^{-1}$ for which $f(n) = n^{-1}$ is regularly varying (see section 2 for the de-nition).

Addendum. I would like to thank the anonymous referee for some useful comments and for pointing out a recent paper by Aistleitner and Seip [1]. They deal with an optimization problem which is di®erent yet curiously similar. The function $\exp c_{\mathbb{B}}(\log T)^{1_{\hat{i}}}(\log \log T)^{1_{\hat{i}}}$ appears in the same way, although their $c_{\mathbb{B}}$ is expected to remain bounded as \mathbb{B} ! $\frac{1}{2}$. It would be interesting to investigate any links further.

1. Bounded operators

Notation: Let I¹ and I²

 $_{f}^{1}: I^{2}!$ I^{2} is bounded if and only iff 2 I^{1} , in which case k'_{f} $k = kf k_{1}$.

Proof. After (1.1), and since \mathbb{Q}_i (N) increases with N, we need only provide a lower bound for an in nite sequence of Ns. Let $a_n = d(N)^{i-\frac{1}{2}}$ for njN and zero otherwise (N to be chosen later), where $d(\phi)$ is the divisor function. Thus $a_1^2 + \dots + a_N^2 = 1$ and

say. We chooseN

(see [2] for a detailed treatise on the subject). For example $x^{1/2}(\log x)^{\frac{1}{6}}$ is regularly-varying of index ½ for any ¿. The Uniform Convergence Theorem says that the above asymptotic formula is automatically uniform for , in compact subsets of (01). Note that every regularly varying function of non-zero index is asymptotic to one which is strictly monotonic and continuous. We shall make use of Karamata's Theorem: for `regularly varying of index $\frac{1}{2}$ `\(\text{x} \) \(\frac{x}{\frac{1}{2}+1} \) if $\frac{1}{2} > i$ 1, \(\frac{x}{x} \) \(\frac{x}{\frac{1}{2}+1} \) if $\frac{1}{2} < i$ 1, \(\frac{R_x}{x} \) \(\text{is slowly varying (regularly varying with index 0) and } \(\frac{R_x}{x} \) \(\text{Â} \(x \) (x).

$$Z_{x}$$
 $\times \frac{x^{x}(x)}{\frac{1}{2}+1}$ if $\frac{1}{2} > 1$, $X_{x} = \frac{x^{x}(x)}{\frac{1}{2}+1}$ if $\frac{1}{2} < 1$,

Notation. Let M²

On the other hand, the RHS of (2.2) is greater than

$$X^{k}$$
 X^{k} X^{s} $f(p^{r})f(p^{s})g(p^{k_{1} r+1})g(p^{k_{1} s+1})$:

Henceh 2 M ² if and only if

$$X$$
 X X $f(p^m)g(p^n)f(p^m)$

P Thus, in particular, M $_c^2$ ½ M $_0^2$. For f 2 M $_c^2$ if and only if jf (p)j < 1 for all primes p and p jf (p)j² < 1 . Thus

$$\frac{X}{\sum_{k=1}^{K} |f(p^{k})|} = \frac{|f(p)|}{1 |f(p)|} \cdot A;$$

independent of p (since f (p)! 0).

The \quasi-norm" $M_f(T)$

Let f 2 M $_0^2$. From above we see that $_f$ (M 2) ½ M 2 but, typically, $_f$ is not `bounded' on M 2 (if f 621) in the sense that $_f$ ak=kak is not bounded by a constant for all a 2 M 2 . It therefore makes sense to de ne, for $_f$ 1,

$$M_{f}(T) = \sup_{\substack{a \geq M \\ kak = T}} \frac{k'_{f}ak}{kak}$$
:

We aim to $\bar{}$ nd the behaviour of $M_f(T)$ for large T.

We shall consider f completely multiplicative and such that $f j_P$ is regularly varying of index j ® with ® > 1=2 in the sense that there exists a regularly varying function of (of index j ®) with f(p) = f(p) for every prime p.

Our main result here is the following:

Theorem 2.3

$$log M_f (T) \gg c(@)f (log T log log T) log T$$

where f~ is any regularly varying extension off jP and

$$c(\mathbb{R}) = B(\frac{1}{\mathbb{R}})$$

Collecting those terms for which (c; d) = k, writing c = km, d = kn

By Cauchy-Schwarz,

so, on rearranging

$$(1 + {}^{-}_{p})_{i} = \frac{2f(p)^{p}}{1_{i}} \frac{\mathbb{R}_{p}(1 + {}^{-}_{p})}{1_{i} f(p)^{2}} \cdot \frac{1 + \mathbb{R}_{p}}{1_{i} f(p)^{2}}$$

Completing the square we -nd

The term on the left inside the square is non-negative for su±ciently large since f (p) ! 0; in fact from (2.4), 1 + ^-p , $\frac{1+@_p}{1_i f(p)^2}$ which is greater than $\frac{f(p)^2@_p}{(1_i f(p)^2)^2}$ if f (p) · 1= $\overline{2}$. Rearranging gives

Let $\circ_p = \frac{q}{\frac{@_p}{1+@_p}}$. Taking the product over all primes p gives

subject to $0 \cdot \ \ ^{\circ}_{p} < 1$ and $\frac{Q}{p \cdot \frac{1}{1 \cdot \ ^{\circ}_{p}^{2}}} = T^{2}$. The maximum clearly occurs for $\ ^{\circ}_{p}$ decreasing (if $\ ^{\circ}_{p^{0}} > \ ^{\circ}_{p}$ for primes $p < p^{0}$, then the sum increases in value if we swa β_{p} and $\ ^{\circ}_{p^{0}}$). Thus we may assume that op is decreasing.

By interpolation we may write ${}^{\circ}_{p}=g(\frac{p}{P})$ where g:(0;1)! (0;1) is continuously di®erentiable and decreasing. Of courseg will depend on P. Let $h=\log\frac{1}{1_{1}g^{2}}$, which is also decreasing. Note that $2\log T = \frac{X}{p} \frac{3}{P} \frac{y}{p} \frac{X}{p} \frac{3}{P} \frac{p}{p} \frac{y}{p} \frac{A}{P} \frac{b}{P} \frac{1}{P} \frac{a_{1}}{P} \frac{b}{P} \frac{a_{2}}{P} \frac{b}{P} \frac{b}$

for P su±ciently large, for some constant c > 0. Thus $h(a) \cdot C_a$ (independent of T). Now, for F: (0; 1)! [0; 1) decreasing,

$$\frac{X}{\sum_{ax
(2.9)$$

where the implied constant is independent of F (and x). For, on writing $\frac{1}{2}(x) = li(x) + e(x)$, the LHS is

$$Z_{bx} = \frac{z_{b}}{x} \int_{ax}^{3} \frac{t}{x} dx(t) = x \int_{a}^{2} \frac{F(t)}{\log xt} dt + \int_{a}^{2} F(t) de(xt)$$

$$= \frac{x}{\log \mu x} \int_{a}^{2} F(t) \int_{a}^{2} F(t) de(xt) \int_{a}^{2} F(t) dF(t) dF(t)$$

$$= \frac{x}{\log x} \int_{a}^{2} \int_{a}^{2} F(t) dt + \int_{a}^{2} F(t) de(xt) dF(t) de(xt)$$

$$= \frac{x}{\log x} \int_{a}^{2} \int_{a}^{2} f(t) dt + \int_{a}^{2} F(t) de(xt) dF(t) de(xt)$$

$$= \frac{x}{\log x} \int_{a}^{2} \int_{a}^{2} f(t) dt + \int_{a}^{2} F(t) de(xt) dF(t) de(xt)$$

me µ 2 [a; b])

approximate arbitrarily closely with such functions. On writing $g = s \pm h$ where $s(x) = \frac{p}{1 + e^{-x}}$, we have

$$\begin{split} Z_{1} & = \frac{g(u)}{u^{\circledR}} \, du = \frac{h}{1} \underbrace{\frac{g(u)u^{1_{i} \, @\, i}}{1_{i} \, @\, u}}_{0} \, i \, \frac{1}{1_{i} \, @\, u} \underbrace{\frac{Z_{1}}{0}}_{0} \, g^{0}(u)u^{1_{i} \, @} \, du \\ & = i \, \frac{1}{1_{i} \, @\, u} \, s^{0}(h(u))h^{0}(u)u^{1_{i} \, @} \, du = \frac{1}{1_{i} \, @\, u} \underbrace{\frac{Z_{h(0^{+})}}{0}}_{0} s^{0}(x)I(x)^{1_{i} \, @} \, dx; \end{split}$$

where $I = h^{i-1}$, since $^p \overline{ug}(u) ! 0$ as u ! 1 . The $^-$ nal integral is, by Hädlder's inequality at most

A direct calculation shows that ${R_1 \choose 0}$ (s⁰)^{1=®} = 2ⁱ ^{1=®}B(${1 \over 8}$; 1; ${1 \over 28}$). This gives the upper bound.

The proof of the upper bound leads to the optimum choice forg and the lower bound. We note that we have equality in (2.10) if $I=(s^0)^{1=0}$ is constant; i.e. $I(x)=cs^0(x)^{1=0}$ for some constant c>0 | chosen so that 0 | I=2. This means we take

$$h(x) = (s^0)^{i_1} \frac{x}{c} = \log \frac{\mu}{2} + \frac{1}{2} \frac{r}{1 + \frac{c}{x}} = 1$$

from which we can calculateg. In fact, we show that we get the required lower bound by just considering a_n completely multiplicative. To this end we use (2.3), and $de^-ne a_p$ by:

$$a_p = g_0^3 \frac{p}{P},$$

where P = log T log log T and g_0 is the function

$$g_0(x) = \begin{cases} s & \frac{2}{1 + p \cdot \frac{2}{1 + (\frac{c}{x})^{2^{\oplus}}}}; \end{cases}$$

with $c = 2^{1+1} = B = B(\frac{1}{B}; 1; \frac{1}{2B})$. As such, by the same methods as before, we have $T^{1+o(1)}$ and

$$\log \frac{k'_{\otimes}ak}{kak} = \sum_{p=1}^{X} f(p)g_0^{3} \frac{p'_{\otimes} + O(1) * \frac{Pf'(P)}{\log P} \frac{Z_{1}}{0} \frac{g_0(u)}{u^{\otimes}} du:$$

By the choice of g_0 , the integral on the right is $\frac{B\left(\frac{1}{8};1;\frac{1}{20}\right)^{\otimes}}{(1;\otimes)2^{\otimes}}$, as required.

Remark. From the above proof, we see that the supremum (of f' ak=kak) over M $_{\rm c}^2$ is roughly the same size as the supremum over 2 ; i.e. they are log-asymptotic to each other. Is it true that these respective suprema are closer still; eg. are they asymptotic to each other 2 ?

¤

3. The special case $f(n) = n^{i}$ $^{\otimes}$. In this case we can takef $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$ which is regularly varying of index $f(x) = x^{i}$.

The integral is
$$2^{i} \stackrel{1=8}{\overset{}{0}} \stackrel{R_1}{\overset{}{0}} e^{i} \stackrel{x=8}{\overset{}{0}} (1_i^* e^{i}^*)^{i} \stackrel{1=28}{\overset{}{0}} dx = 2^{i} \stackrel{1=8}{\overset{}{0}} \stackrel{R_1}{\overset{}{0}} t^{1=8i} \stackrel{1}{\overset{}{0}} (1_i^* t)^{i} \stackrel{1=28}{\overset{}{0}} dt.$$

Theorem 3.1 We have

$$M_1(T) = e^{\circ} (\log \log T + \log \log \log T + 2 \log 2; 1 + o(1));$$
 (3.1)

while for $\frac{1}{2} < \mathbb{R} < 1$,

$$\log M_{\mathfrak{B}}(T) = \frac{\mu}{(1; \mathbb{B})^{\frac{1}{8}}; 1; \frac{1}{2\mathbb{B}})^{\mathbb{B}}} + o(1) \frac{\left(\log T\right)^{1; \mathbb{B}}}{\left(\log \log T\right)^{\mathbb{B}}}.$$
 (3.2)

Remark. As noted in the introduction, these asymptotic formulae bear a strong resemblance to the (conjectured) maximal order of $j^3(\mathbb{R}+iT)j$. It is interesting to note that the bounds found here are just larger than what is known about the lower bounds for $Z_{\mathbb{R}}(T) = \max_{1 \le t \le T} j^3(\mathbb{R}+it)j$. In a recent paper (see [8]), Lamzouri suggests $\log_{\mathbb{R}}(T) \gg C(\mathbb{R})(\log T)^{1/2}(\log \log T)^{1/2}(\log T)^{1/2}(\log$

It would be very interesting to be able to extend these ideas (and results) to the $= \frac{1}{2}$ case. As we show in the appendix, we cannot do this by restricting $= \frac{1}{2}$ to smaller domains in I². Somehow the analogy | if such exists | between $= M_{\odot}$ and $= Z_{\odot}$ breaks down just here.

Proof of Theorem 3.1. For $\frac{1}{2} < \Re < 1$ the result follows from Theorem 2.3, so we only concern ourselves with $\Re = 1$.

For an upper bound we use (2.5) with f(p) = 1 = p (and A = 1). Thus

$$\frac{k'_{1}ak}{kak} \cdot {}^{3}(2) \prod_{p}^{Y} \frac{\mu}{1 + \frac{p}{p}} :$$

by (2.9). Thus

$$\frac{k'_{1}ak}{kak} \cdot e^{3} \log_{2} T + \log_{3} T + \sum_{a}^{Z_{A}} \frac{g(u)}{u} du_{1} = \sum_{a}^{Z_{1}} \frac{1}{u} du + p \frac{2}{\overline{A}} + o(1)$$

for all A > 1 > a > 0. We need to minimise the constant term. Since g(u) < 1, the minimum occurs for a arbitrarily small. On the other hand $\begin{pmatrix} R_1 & g(u) \\ A & u \end{pmatrix} du \cdot (\frac{1}{A} \begin{pmatrix} A & g^2 \end{pmatrix})^{1=2} = o(1e^{t}u \cdot A)$

after some calculation.

The proof of the upper bound leads to the optimum choice forg and the lower bound. We note that we have equality in (3.3) if $l=s^0$ is constant; i.e. $l(x)=cs^0(x)$ for some constant c>0 chosen so that t=0 t=0 i.e. we take t=0. Thus, actually t=0 1 and the supremum is achieved for the function t=0, where

$$g_0(x) = {\stackrel{\vee}{t}} \frac{1}{1} \frac{2}{1 + (\frac{2}{x})^2}$$

In fact, we show that we get the required lower bound by just consideringa_n completely multiplicative. To this end we use Corollary 2.5, and de nea_p by:

$$a_p = g_0^3 \frac{p}{P} ;$$

where P = log T log log T. As such, by the same methods as before, we have $A = T^{1+o(1)}$. Let A > 0 and A = log T log log T. By Corollary 2.5

$$\frac{k'_{1}ak}{kak}, \frac{Y}{p}, \frac{1}{1_{i}}, \frac{a_{p}}{p} = \frac{Y}{p_{1}aP}, \frac{1}{1_{i}}, \frac{Y}{p_{2}aP}, \frac{1}{1_{1}}, \frac{Y}{p_{j}}, \frac{1}{p_{2}aP}, \frac{1}{1_{i}}, \frac{a_{p}}{p}$$
(3.4)

Using Merten's Theorem, the $\bar{}$ rst product on the right is e° (log aP + o(1)), while the second product is greater than

The sum is asymptotic to $\frac{a}{\log P}$ $\frac{R_a}{0}$ $\frac{1_i}{u}$ $\frac{g_0(u)}{u}$ du < $\frac{"}{\log P}$, for any given " > 0, for su±ciently small a. The third product in (3.4) is greater than

$$\exp \sum_{p>aP}^{\frac{1}{2}} \frac{a_p}{p}^{\frac{3}{4}} = \exp \frac{\frac{1}{2}(1+o(1))}{\log P} \frac{Z_1}{a} \frac{g_0(u)}{u} du^{\frac{3}{4}}$$

by (2.9). Thus

$$\frac{k'_{1}ak}{kak}$$
, $e^{u} \log P + \frac{Z_{1}}{a} \frac{g_{0}(u)}{u} du + \log a_{1}$, $e^{u} \log P + L(g_{0})_{1}$

for a su±ciently small. As $L(g_0) = 2 \log 2$; 1 and " arbitrary, this gives the required lower bound.

¤

Lower bounds for '®

We see that $m_{\odot}(T)$ corresponds closely to the conjectured minimal order of $(\mathbb{R}+iT)$ (see [3] and [9]). We omit the proofs, but just point out that for an upper bound (for $1 = m_{\odot}(T)$) we use

$$\frac{kak}{k'_{ @}ak} \cdot \begin{array}{c} Y & \mu \\ & 1 + \frac{p}{p^{@}} \end{array};$$

which can be obtained in much the same way as (2.5). For the lower bound, we choose as 1 times the choice in Theorem 3.1 and use Corollary 2.5.

The above formulae suggest that the supremum (respectively in mum) of k' $_{\otimes}$ ak=kak with a 2 M 2 and kak = T are close to the supremum (resp. in mum) of j 3 $_{\otimes}$ j on [1; T]. One could therefore speculate further that there is a close connection betweek' $_{\otimes}$ ak=kak (for such a) and j 3 ($^{\otimes}$ + iT)j, and hence betweenZ $_{\otimes}$ (T) and M $_{\otimes}$ (T). Recent papers by Gonek [4] and Gonek and Keating [5] suggest this may be possible, or at least thatM $_{\otimes}$ is a lower bound for Z $_{\otimes}$. On the Riemann Hypothesis, it was shown in [4] (Theorem 3.5) that 3 (s) may be approximated for 3 4 > 1 2 up to height T by the truncated Euler product

$$\frac{Y}{\sum_{p \in P} \frac{1}{1_i p^{i s}}} \quad \text{for } P \ \ i \ \ T.$$

Thus one might expect that, with a 2 M $_c^2+$ maximizing $\frac{k' \ _{\odot}ak}{kak}$ subject to kak = T, and A(s) = $_{p\cdot \ P} \ \frac{1}{1_i \ a_P p^i \ ^s}$ (with P $_{\mbox{$\dot{c}$}}$ T),