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Abstract

In this paper we study Dirichlet convolution with a given arithmetical function f as a linear
mapping ' f that sends a sequence (an ) to ( bn ) wheref k = ³ (®).

For the unbounded case, we show that ' f : M 2 ! M 2 where M 2 is the subset of l2 of
multiplicative sequences, for many f 2 M 2 . Consequently, we study the `quasi'-norm

sup
k a k = T
a 2 M 2

k' f ak
kak

for large T , which measures the `size' of' f on M 2 . For the f (n) = n¡ ® case, we show this
quasi-norm has a striking resemblance to the conjectured maximal order of j³ (® + iT )j for
® > 1

2 .
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Introduction
Given an arithmetical function f (n), the mapping ' f sends (an )n 2 N to (bn )n 2 N, where

bn =
X

djn

f (d)an=d : (0.1)

Writing a = ( an ), ' f maps a to f ¤a where ¤ is Dirichlet convolution. This is a `matrix' mapping,
where the matrix, say M (f ), is of `multiplicative Toeplitz' type; that is,

M (f ) = ( aij ) i;j ¸ 1

where aij = f (i=j ) and f is supported on the natural numbers (see, for example, [6], [7]).
Toeplitz matrices (whose ij th -entry is a function of i ¡ j ) are most usefully studied in terms

of a `symbol' (the function whose Fourier coe±cients make up the matrix). Analogously, the
Multiplicative Toeplitz matrix M (f ) has as symbol the Dirichlet series

1X

n =1

f (n)nit :

Our particular interest is naturally the case f (n) = n¡ ® when the symbol is ³ (® ¡ it ). We are
especially interested how and to what extent properties of the mapping relate to properties of the
symbol for ® · 1.

These type of mappings were considered by various authors (for example Wintner [15]) and most
notably Toeplitz [13], [14] (although somewhat indirectly, through his investigations of so-called

1To appear in Functiones et Approximatio Commentarii Mathematici
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\ D -forms"). In essence, Toeplitz proved that ' f : l2 ! l2 is bounded if and only if
P 1

n =1 f (n)n¡ s

is de¯ned and bounded for all <s > 0. In particular, if f (n) ¸ 0 then ' f is bounded onl2 if and
only if f 2 l1; furthermore, the operator norm is k' f k = kf k1. We prove this in Theorem 1.1
following Toeplitz's original idea. For example, for f (n) = n¡ ®, ' f is bounded on l2 for ® > 1
with operator norm ³ (®). In this special case, the mapping was studied in [7] for® · 1 when it is
unbounded onl2 by estimating the behaviour of the quantity

©f (N ) = sup
kak2 =1

µ NX

n =1

jbn j2
¶ 1=2

for large N . Approximate formulas for ©f (N ) were obtained and it was shown that, for 1
2 < ® · 1,

©f (N ) is a lower bound for max1· t · T j³ (®+ it )j with N = T ¸ (some¸ > 0 depending on® only).
In this way, it was proven that the measure of the set

n
t 2 [1; T] : j³ (1 + it )j ¸ e° log logT ¡ A

o

is at least T exp
©

¡ a log T
log log T

ª
(somea > 0) for A su±ciently large, while for 1

2 < ® < 1 one has

max
t · T

j³ (®+ it )j ¸ exp
½

c(log T)1¡ ®



Similarly one can study the quantity

mf (T) = inf
k a k = T
a 2 M 2

k' f ak
kak

:

With f (n) = n¡ ® this is shown to behave like the known and conjectured minimal order of
j³ (®+ iT )j for ® > 1

2 . It should be stressed here that, unlike the case of ©f (N ) which was shown
to be a lower bound for Z®(T) in [7], we have not proved any connection between³ (® + iT ) and
M f (T). Even to show M f (T) is a lower bound would be very interesting.

Our results, though motivated by the special casef (n) = n¡ ®, extend naturally to completely
multiplicative f for which f jP is regularly varying (see section 2 for the de¯nition).

Addendum. I would like to thank the anonymous referee for some useful comments and for pointing
out a recent paper by Aistleitner and Seip [1]. They deal with an optimization problem which is
di®erent yet curiously similar. The function expf c®(log T)1¡ ®(log logT)¡ ®g appears in the same
way, although their c® is expected to remain bounded as® ! 1

2 . It would be interesting to inves-
tigate any links further.

1. Bounded operators

Notation: Let l1 and l2



' f : l2 ! l2 is bounded if and only if f 2 l1, in which casek' f k = kf k1.

Proof. After (1.1), and since ©f (N ) increases with N , we need only provide a lower bound for
an in¯nite sequence ofN s. Let an = d(N )¡ 1

2 for njN and zero otherwise (N to be chosen later),
where d(¢) is the divisor function. Thus a2

1 + : : : + a2
N = 1 and

©f (N ) ¸
X

n · N

an bn =
1

d(N )

X

n jN

X

djn

f (d) =
1

d(N )

X

djN

f (d)d
³ N

d

´
; (1.2)

say. We chooseN



(see [2] for a detailed treatise on the subject). For example,x½(log x)¿ is regularly-varying of
index ½for any ¿. The Uniform Convergence Theorem says that the above asymptotic formula
is automatically uniform for ¸ in compact subsets of (0; 1 ). Note that every regularly varying
function of non-zero index is asymptotic to one which is strictly monotonic and continuous. We
shall make use ofKaramata's Theorem: for ` regularly varying of index ½,

Z x

` »
x` (x)
½+ 1

if ½ > ¡ 1,
Z 1

x
` » ¡

x` (x)
½+ 1

if ½ < ¡ 1,

while if ½= ¡ 1,
Rx ` is slowly varying (regularly varying with index 0) and

Rx ` Â x` (x).

Notation. Let M 2



On the other hand, the RHS of (2.2) is greater than

1X

k=1

kX

s=1

sX

r =1

f (pr )f (ps)g(pk ¡ r +1 )g(pk ¡ s+1 ):

Henceh 2 M 2 if and only if

X

p

X

m;n ¸ 1

1X

k=0

f (pm )g(pn )f (p



Thus, in particular, M 2
c ½ M 2

0. For f 2 M 2
c if and only if jf (p)j < 1 for all primes p andP

p jf (p)j2 < 1 . Thus
1X

k=1

jf (pk )j =
jf (p)j

1 ¡ j f (p)j
· A;

independent ofp (since f (p) ! 0).

The \quasi-norm" M f (T)
Let f 2 M 2

0. From above we see that' f (M 2) ½ M 2 but, typically, ' f is not `bounded' on M 2

(if f 62l1) in the sense that k' f ak=kak is not bounded by a constant for all a 2 M 2. It therefore
makes sense to de¯ne, forT ¸ 1,

M f (T) = sup
a 2 M 2

k a k = T

k' f ak
kak

:

We aim to ¯nd the behaviour of M f (T) for large T.
We shall considerf completely multiplicative and such that f jP is regularly varying of index

¡ ® with ® > 1=2 in the sense that there exists a regularly varying function ~f (of index ¡ ®) with
~f (p) = f (p) for every prime p.

Our main result here is the following:

Theorem 2.3
Let f 2 M 2

c , such that f ¸ 0 and f jP is regularly varying of index ¡ ® where ® 2 ( 1
2 ; 1). Then

logM f (T) » c(®) ~



Collecting those terms for which (c; d) = k, writing c = km, d = kn



By Cauchy-Schwarz,

1X

k=1

apk bpk ¡ 1 ·
µ 1X

k=1

a2
pk

1X

k=1

b2
pk ¡ 1

¶ 1=2

=
q

®p(1 + ¯ p);

so, on rearranging

(1 + ¯ p) ¡
2f (p)

p
®p(1 + ¯ p)

1 ¡ f (p)2 ·
1 + ®p

1 ¡ f (p)2 :

Completing the square we ¯nd
µ p

1 + ¯ p ¡
f (p)p ®p

1 ¡ f (p)2

¶ 2

·
1 + ®p

(1 ¡ f (p)2)2 :

The term on the left inside the square is non-negative forp su±ciently large since f (p) ! 0; in fact

from (2.4), 1 + ¯ p ¸ 1+ ®p

1¡ f (p)2 which is greater than f (p)2 ®p

(1 ¡ f (p)2 )2 if f (p) · 1=
p

2. Rearranging gives

s
1 + ¯ p

1 + ®p
·

1
1 ¡ f (p)2

µ
1 + f (p)

r
®p

1 + ®p

¶
:

Let ° p =
q

®p

1+ ®p
. Taking the product over all primes p gives

k' f ak
kak

· Akf k2
Y

p

(1 + f (p)° p) · A0exp
nX

p

f (p)° p

o
(2.5)

fo955059ome(95505const)]T(est]TJ/F16 9.96 Tf 16858 -1TD[(A)];)66.60



subject to 0 · ° p < 1 and
Q

p
1

1¡ ° 2
p

= T2. The maximum clearly occurs for ° p decreasing (if

° p0 > ° p for primes p < p0, then the sum increases in value if we swap° p and ° p0). Thus we may
assume that° p is decreasing.

By interpolation we may write ° p = g( p
P ) whereg : (0; 1 ) ! (0; 1) is continuously di®erentiable

and decreasing. Of courseg will depend on P. Let h = log 1
1¡ g2 , which is also decreasing. Note

that
2 logT =

X

p

h
³ p

P

´
¸

X

p· aP

h
³ p

P

´
¸ h(a)¼(aP) ¸ cah(a) log T;

for P su±ciently large, for some constant c > 0. Thus h(a) · Ca (independent of T).
Now, for F : (0; 1 ) ! [0; 1 ) decreasing,

X

ax<p · bx

F
³ p

x

´
=

x
logx

Z b

a
F + O

³ xF (a)
(log x)2

´
; (2.9)

where the implied constant is independent ofF (and x). For, on writing ¼(x) = li( x) + e(x), the
LHS is

Z bx

ax
F

³ t
x

´
d¼(t) = x

Z b

a

F (t)
logxt

dt +
Z b

a
F (t) de(xt )

=



approximate arbitrarily closely with such functions. On writing g = s ±h where s(x) =
p

1 ¡ e¡ x ,
we have

Z 1

0

g(u)
u® du =

hg(u)u1¡ ®

1 ¡ ®

i 1

0
¡

1
1 ¡ ®

Z 1

0
g0(u)u1¡ ® du

= ¡
1

1 ¡ ®

Z 1

0
s0(h(u))h0(u)u1¡ ® du =

1
1 ¡ ®

Z h(0 + )

0
s0(x)l (x)1¡ ® dx;

where l = h¡ 1, since
p

ug(u) ! 0 asu ! 1 . The ¯nal integral is, by HÄolder's inequality at most

µ Z h(0 + )

0
s01=®

¶ ®µ Z h(0 + )

0
l
¶ 1¡ ®

: (2.10)

But
Rh(0 + )

0 l = ¡
R1

0 uh0(u)du =
R1

0 h · 2, so

Z 1

0

g(u)
u® du ·

21¡ ®

1 ¡ ®

µ Z 1

0
s01=®

¶ ®

:

A direct calculation shows that3
R1

0 (s0)1=® = 2 ¡ 1=®B ( 1
® ; 1 ¡ 1

2® ). This gives the upper bound.

The proof of the upper bound leads to the optimum choice forg and the lower bound. We
note that we have equality in (2.10) if l=(s0)1=® is constant; i.e. l (x) = cs0(x)1=® for some constant
c > 0 | chosen so that

R1
0 l = 2. This means we take

h(x) = ( s0)¡ 1
³³ x

c

´ ®´
= log

µ
1
2

+
1
2

r

1 +
³ c

x

´ 2®
¶

:

from which we can calculateg. In fact, we show that we get the required lower bound by just
consideringan completely multiplicative. To this end we use (2.3), and de¯ne ap by:

ap = g0

³ p
P

´
;

where P = log T log logT and g0 is the function

g0(x) =

s

1 ¡
2

1 +
p

1 + ( c
x )2®

;

with c = 2 1+1 =®=B( 1
® ; 1 ¡ 1

2® ). As such, by the same methods as before, we havekak = T1+ o(1)

and

log
k' ®ak

kak
=

X

p

f (p)g0

³ p
P

´
+ O(1) »

P ~f (P)
logP

Z 1

0

g0(u)
u® du:

By the choice of g0, the integral on the right is B ( 1
® ;1¡ 1

2® )®

(1 ¡ ®)2 ® , as required.
¤

Remark. From the above proof, we see that the supremum (ofk' f ak=kak) over M 2
c is roughly

the same size as the supremum overM 2; i.e. they are log-asymptotic to each other. Is it true that
these respective suprema are closer still; eg. are they asymptotic to each other for1

2 < ® < 1?

3. The special case f (n) = n¡ ®.
In this case we can take~f (x) = x ¡ ® which is regularly varying of index ¡ ®. Here we shall write
' ® for ' f and M ® for M f .

3The integral is 2 ¡ 1=®
R1

0 e¡ x=® (1 ¡ e¡ x ) ¡ 1=2®dx = 2 ¡ 1=®
R1

0 t1=®¡ 1 (1 ¡ t ) ¡ 1=2®dt.
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Theorem 3.1
We have

M 1(T) = e° (log logT + log log log T + 2 log 2 ¡ 1 + o(1)) ; (3.1)

while for 1
2 < ® < 1,

logM ®(T) =
µ

B ( 1
® ; 1 ¡ 1

2® )®

(1 ¡ ®)2® + o(1)
¶

(log T)1¡ ®

(log logT)® : (3.2)

Remark. As noted in the introduction, these asymptotic formulae bear a strong resemblance to
the (conjectured) maximal order of j³ (® + iT )j. It is interesting to note that the bounds found
here are just larger than what is known about the lower bounds forZ®(T) = max 1· t · T j³ (®+ it )j.
In a recent paper (see [8]), Lamzouri suggests logZ®(T) » C(®)(log T)1¡ ®(log logT)¡ ® with some
speci¯c function4 C(®) (for 1

2 < ® < 1). We note that the constant appearing in (3.2) is not C(®)
since, for® near 1

2 , the former is roughly 1p
®¡ 1

2

, while C(®) » 1p
2®¡ 1

. For ® = 1, see the comment

in the introduction.
It would be very interesting to be able to extend these ideas (and results) to the® = 1

2 case. As
we show in the appendix, we cannot do this by restricting' 1

2
to smaller domains in l2. Somehow

the analogy | if such exists | between M ® and Z® breaks down just here.

Proof of Theorem 3.1. For 1



by (2.9). Thus

k' 1ak
kak

· e°
³

log2 T + log 3 T +
Z A

a

g(u)
u

du ¡
Z 1

a

1
u

du +
2

p
A

+ o(1)

!

for all A > 1 > a > 0. We need to minimise the constant term. Sinceg(u) < 1, the minimum
occurs for a arbitrarily small. On the other hand

R1
A

g(u)
u du · ( 1

A

R1
A g2)1=2 = o(1=du· (A



after some calculation.

The proof of the upper bound leads to the optimum choice forg and the lower bound. We
note that we have equality in (3.3) if l=s0 is constant; i.e. l (x) = cs0(x) for some constantc > 0 |
chosen so that

R1
0 l = 2 (i.e. we take c = 2). Thus, actually · = 2 log 2 ¡ 1 and the supremum is

achieved for the function g0, where

g0(x) =

vu
u
t 1 ¡

2

1 +
q

1 + ( 2
x )2

:

In fact, we show that we get the required lower bound by just consideringan completely multi-
plicative. To this end we use Corollary 2.5, and de¯neap by:

ap = g0

³ p
P

´
;

where P = log T log logT. As such, by the same methods as before, we havekak = T1+ o(1) . Let
a > 0 and P = log T log logT. By Corollary 2.5

k' 1ak
kak

¸
Y

p

1
1 ¡ ap

p

=
Y

p· aP

1
1 ¡ 1

p

Y

p· aP

1

1 + 1¡ ap

p¡ 1

Y

p>aP

1
1 ¡ ap

p

: (3.4)

Using Merten's Theorem, the ¯rst product on the right is e° (log aP + o(1)), while the second
product is greater than

exp
½

¡
X

p· aP

1 ¡ ap

p ¡ 1

¾
¸ 1 ¡ 2

X

p· aP

1 ¡ g0(p=P)
p

:

The sum is asymptotic to a
log P

Ra
0

1¡ g0 (u )
u du < "

log P , for any given " > 0, for su±ciently small a.
The third product in (3.4) is greater than

exp
½ X

p>aP

ap

p

¾
= exp

½
(1 + o(1))

logP

Z 1

a

g0(u)
u

du
¾

by (2.9). Thus

k' 1ak
kak

¸ e°
µ

logP +
Z 1

a

g0(u)
u

du + log a ¡ "
¶

¸ e°
µ

logP + L(g0) ¡ "
¶

for a su±ciently small. As L(g0) = 2 log 2 ¡ 1 and "



We see thatm®(T) corresponds closely to the conjectured minimal order ofj³ (®+ iT )j (see [3] and
[9]). We omit the proofs, but just point out that for an upper bound (for 1 =m®(T)) we use

kak
k' ®ak

·
Y

p

µ
1 +

° p

p®

¶
;

which can be obtained in much the same way as (2.5). For the lower bound, we chooseap as ¡ 1
times the choice in Theorem 3.1 and use Corollary 2.5.

The above formulae suggest that the supremum (respectively in¯mum) ofk' ®ak=kak with
a 2 M 2 and kak = T are close to the supremum (resp. in¯mum) of j³®j on [1; T]. One could
therefore speculate further that there is a close connection betweenk' ®ak=kak (for such a) and
j³ (® + iT )j, and hence betweenZ®(T) and M ®(T). Recent papers by Gonek [4] and Gonek and
Keating [5] suggest this may be possible, or at least thatM ® is a lower bound for Z®. On the
Riemann Hypothesis, it was shown in [4] (Theorem 3.5) that³ (s) may be approximated for ¾ > 1

2
up to height T by the truncated Euler product

Y

p· P

1
1 ¡ p¡ s for P ¿ T.

Thus one might expect that, with a 2 M 2
c+ maximizing k' ® ak

kak subject to kak = T, and A(s) =
Q

p· P
1

1¡ ap p¡ s (with P ¿ T),

Z T

¡ T
j³ (® ¡ it )j2jA(it )j2 dt »

Z T

¡ T

Y

p· P

¯
¯
¯(1 ¡

pit

p® )(1 ¡ appit )
¯
¯
¯
¡ 2

dt =
Z T

¡ T

Y

p· P

jBp(it )j2 dtp( ) =TJ/J/F20 9.96 Tf 10.52 TD[5 0 TD[¿2
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