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Abstract

In this paper we study Dirichlet convolution with a given arithmetical function f as alinear
mapping ' ¢+ that sends a sequence &,) to (b,) fkeré (®).

For the unbounded case, we show that' ¢ : M2 ! M 2 where M ? is the subset of 12 of
multiplicative sequences, for many f 2 M 2. Consequently, we study the “quasi'-norm
su k' f ak
kak =pT kak
a2m 2

for large T, which measures the “size' of' 1 on M 2. For the f(n) = ni ® case, we show this
quasi-norm has a striking resemblance to the conjectured maximal order of j3(®+ iT)j for

1
®> 1.
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Introduction
Given an arithmetical function f (n), the mapping ' 1 sends @n)n2n t0 (bh)n2 N, Where
X
b, = f(d)an=q: (0.1)
djn

Writing a=(a,), ' + mapsato f @ma wherex is Dirichlet convolution. This is a "matrix' mapping,
where the matrix, say M (f ), is of “multiplicative Toeplitz' type; that is,

M(f)="(a)ij, 1

wherea; = f (i=j) and f is supported on the natural numbers (see, for example, [6], [7]).

Toeplitz matrices (whoseij " -entry is a function of i j j) are most usefully studied in terms
of a “symbol' (the function whose Fourier coezcients make up the matrix). Analogously, the
Multiplicative Toeplitz matrix M (f ) has as symbol the Dirichlet series

f(n)n":
n=1

Our particular interest is naturally the case f (n) = ni ® when the symbol is3(®; it). We are
especially interested how and to what extent properties of the mapping relate to properties of the
symbol for® - 1.

These type of mappings were considered by various authors (for example Wintner [15]) and most
notably Toeplitz [13], [14] (although somewhat indirectly, through his investigations of so-called

1To appear in Functiones et Approximatio Commentarii Mathematici



\ D-forms"). In essence, Toeplitz proved that' ; : 12! 12 is bounded if and only if P ,11:1 f(n)ni s
is de'ned and bounded for all<s > 0. In particular, if f(n) , 0then' { is bounded onl? if and
only if f 2 I1; furthermore, the operator norm is k' 1 k = kf ky. We prove this in Theorem 1.1
following Toeplitz's original idea. For example, for f (n) = ni ®, ' { is bounded onl? for ® > 1
with operator norm 3(®). In this special case, the mapping was studied in [7] fo® - 1 when it is
unbounded onl? by estimating the behaviour of the quantity

Hy M1=2
© (N)= sup jbnj?

kakz =1 n=1

for large N . Approximate formulas for ©; (N ) were obtained and it was shown that, for% <® - 1,
©f (N) is a lower bound for max. . 7 j3(®+ it)j with N = T- (some, > 0 depending on® only).
In this way, it was proven that the measure of the set
n 0
t2[LT]:j3@+it)j, € loglogTj A

a

©
is at least T exp j alov?l% (somea > 0) for A suzxciently large, while for % <®< 1 one has

%
1i ®
rparxj3(®+ |t)]’ exp M



Similarly one can study the quantity

_ . k' fak'

az2M™m

With f(n) = ni ® this is shown to behave like the known and conjectured minimal order of
B(®+ iT)j for ® > % It should be stressed here that, unlike the case of &N ) which was shown
to be a lower bound forZg(T) in [7], we have not proved any connection betweerd (®+ iT ) and
M;: (T). Even to show M¢ (T) is a lower bound would be very interesting.

Our results, though motivated by the special casef (n) = ni ®, extend naturally to completely
multiplicative f for which f jp is regularly varying (see section 2 for the de nition).

Addendum. | would like to thank the anonymous referee for some useful comments and for pointing
out a recent paper by Aistleitner and Seip [1]. They deal with an optimization problem which is
di®erent yet curiously similar. The function expf cp(log T)% ®(loglogT)i ®g appears in the same
way, although their cg is expected to remain bounded a®'! % It would be interesting to inves-
tigate any links further.

1. Bounded operators

Notation: Let I* and |2



"+ 2121 12 is bounded if and only iff 2 11, in which casek' { k = kf k;.

Proof. After (1.1), and since € (N) increases with N, we need only provide a lower bound for
an innite sequence ofN's. Leta, = d(N)i z for njN and zero otherwise N to be chosen later),
where d(9 is the divisor function. Thus af + :::+ a =1 and

3

N , .
fdd 5 ; (1.2)

X 1 1
© (N), anbnzm f(d) = amy

n- N njN djn djN

say. We chooseN



(see [2] for a detailed treatise on the subject). For examplex”{log x)¢ is regularly-varying of
index Yzfor any ¢. The Uniform Convergence Theorem says that the above asymptotic formula
is automatically uniform for , in compact subsets of (§1 ). Note that every regularly varying
function of non-zero index is asymptotic to one which is strictly monotonic and continuous. We
shall make use ofKaramata's Theorem: for ~ regularly varying of index ¥;
z X ~ z 1 ~
<X (x) X (x)

if Y2>j 1, » i

—
v ) 1 TSl

R R, . -
while if %= j 1, ™" is slowly varying (regularly varying with index0) and *" A x (x).

Notation. Let M 2



On the other hand, the RHS of (2.2) is greater than

%
f(p")f (P*)g(p* " )g(p*i =*t):

k=1 s=1r=1
Henceh 2 M 2 if and only if
X X " N
f(P™)a(P")f (p

p mn, 1k=0



Thus, in particular, M2 % M 3. For f 2 M 2 if and only if jf (p)j < 1 for all primes p and
Jif (Mi2< 1. Thus
if (P]

jf (pk)j = m A

k=1

independent ofp (sincef (p) ! 0).

The \quasi-norm" Mg (T)

Let f 2 M 3. From above we see that (M 2) % M 2 but, typically, ' ¢ is not "bounded' onM 2
(if f 621) in the sense thatk' ; ak=kak is not bounded by a constant for alla2 M 2. It therefore
makes sense to de ne, foll , 1,

_ k' fak_
M (T) = aszuMp2 ok

kak = T

We aim to "nd the behaviour of M; (T) for large T.
We shall considerf completely multiplicative and such that f jp is regularly varying of index
i ®with ® > 1=2 in the sense that there exists a regularly varying functionf™ (of index | ®) with

f{p) = f (p) for every prime p.
Our main result here is the following:

Theorem 2.3
Let f 2M 2, such thatf | 0 and fjp is regularly varying of index j ® where ® 2 (%; 1). Then

logM¢ (T) » ¢(®) ~



Collecting those terms for which (c;d) = k, writing ¢ = km, d = kn



By Cauchy-Schwarz,

S0, on rearranging

2 GAT ) 1+ 6

1+ )i :
L T [ LA TR I .
Completing the square we nd
1
o f0Pm T 1+

PLT T2 @ fo)?

The term on the left inside the square is non-negative fop sutciently Iargpe sincef (p) ! O; in fact

from (2.4), 1+, % which is greater than % if f(p) - 1= 2. Rearranging gives
S
1+, 1 u1+f()r7: ﬂ'
1+® 1 f(p)? P 1re

q___
Let °p = f—g}p. Taking the product over all primes p gives

Y nx 0
. Akf k2 1+ f(p°p) - A°exp f(P)°p (2.5)
p p

k' f ak
kak

f09550590me(95505const)| T(est]TI/F16 9.96 Tf 16858 -1TD[(A)];)66.60



subject to 0 - °, < 1 and Qp ﬁ = T2. The maximum clearly occurs for °, decreasing (if
°p0 > ° | for primes p < p? then the sum increases in value if we swap, and °y). Thus we may
assume that®, is decreasing.

By interpolation we may write °, = g(%) whereg: (0;1)! (0;1)is continuously di®erentiable
and decreasing. Of coursey will depend on P. Let h = log ﬁ which is also decreasing. Note
that X 3.7 X 3 7

2logT = h g h 2 h@waP) . caha)logT:

B B

P p- aP

for P suzciently large, for some constantc > 0. Thus h(a) - C, (independent of T).
Now, for F : (0;1 ) ! [O;1 ) decreasing,

X 3 Zy 3 ’
FP o X T g XF@ . 2.9)
X logx 4 (log x)2

ax<p - bx

where the implied constant is independent ofF (and x). For, on writing ¥{x) = li( x) + e(x), the
LHS is

be 3 Z

z b = b
t (t)
F 1
X d/(t) X . loaxt dt + . F(t)de(xt)




approximate arbitrarily closely with such functions. On writing g = s+h where s(x) = P 1 e X,
we have

z 1 h 1 ®I 1 z 1
g((L;) du = g(u).u i 1 gO(u)ulj ®du
o U 1i ® o 1i ® 4
1 21 1 Znony

= sqh(u)) hqu)uti ®du =

T, sA)I(x)M ®dx;

1i ® ¢

pUg(u) I Oasu!l . The nalintegral is, by HAlder's inequality at most

HZ ho*) TeHZ hoy T e
ol=®

wherel = hi 1, since

S I : (2.10)
0 0
R0+ R R
But Oh(o M= 01 uh%u)du = 01 h- 2, s0
Z ) Z
Do, 20MEr e
o u® 1i ®

R
A direct calculation shows that® 01 (s91=® =21 *®B(1;1; 55). This gives the upper bound.

The proof of the upper bound leads to the optimum choice forg and the lower bound. We
note that we have equal,'@l/ in (2.10) if I=(s9)*=® is constant; i.e. I(x) = c¢sY(x)*=® for some constant
c> 0] chosensothat  |=2. This means we take

;. r -
T xe | 11 1. G 1
=log =+ = + = :
9272 X

h(x)=(s)'*

olXx

from which we can calculateg. In fact, we show that we get the required lower bound by just
consideringa, completely multiplicative. To this end we use (2.3), and de ne a, by:
s -

& = Qo g ;
whereP =log T loglogT and gy is the function

S

2
= i ;
%o(X) Vi oo P o T+ (5%

with ¢ =2¥1=0=B(1:;1; L). As such, by the same methods as before, we havek = T*°®

and Z,
PITP) “ % go(w)
logP o, u® '

K pak _ X *p
g = 2= =" f(p)g & +O0()»

B(&;1i 4)°

By the choice of gy, the integral on the right is RO

, as required.
a

Remark. From the above proof, we see that the supremum (ok' ; ak=kak) over M 2 is roughly
the same size as the supremum ovevl 2; i.e. they are log-asymptotic to each other. Is it true that
these respective suprema are closer still; eg. are they asymptotic to each other fér< ®< 17?

3. The special case f(n)= ni ®,
In this case we can takef{x) = xi ® which is regularly varying of index j ®. Here we shall write
"o for' ¢ and Mg for M¢.

R R
3The integral is 2 1 1=® 01 el ¥® (1 el X)i 172@gyx =21 1=® 01t1=®i T t)i 172@qt,
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Theorem 3.1
We have
M(T) = e (loglogT +logloglogT +2log2i 1+ o(1)); (3.1)

while for $ <®< 1,

T logmyti @

HB(L1i 4)° .
(loglogT)®"

logMe(T) = ="~33

o(1) (3.2)

Remark. As noted in the introduction, these asymptotic formulae bear a strong resemblance to

the (conjectured) maximal order of j3(®+ iT)j. It is interesting to note that the bounds found

here are just larger than what is known about the lower bounds forZg(T) = max 1. ;. 1 j3(®+ it)j.

In a recent paper (see [8]), Lamzouri suggests lags(T) » C(®)(log T)* ®(loglogT)i ® with some

speci ¢ function* C(®) (for % <® < 1). We note that the constant appearing in (3.2) is not C(®)

since, for® near 3, the former is roughly pﬁ, while C(®) » pﬁﬁ. For ® = 1, see the comment
2

in the introduction.

It would be very interesting to be able to extend these ideas (and results) to the® = 7 case. As
we show in the appendix, we cannot do this by restricting’ L to smaller domains in12. Somehow
the analogy | if such exists | between Mg and Ze breaks down just here.

Proof of Theorem 3.1. For !



by (2.9). Thus
]
3 Z :
K jak . Ao

kak - e |092T+|Og3T+ a TdU| a

Z,

1 2
adu+ pf+ o(1)

forall A> 1>a> 0. We need to minimise theFE;onstant term. ﬁinceg(u) < 1, the minimum

occurs for a arbitrarily small. On the other hand Al g(u—”)du (£ Al g?)¥? = o(l=du (A



after some calculation.

The proof of the upper bound leads to the optimum choice forg and the lower bound. We
note that we hqyle equality in (3.3) if I=s%is constant; i.e. [(x) = csYx) for some constantc > 0 |
chosen so that ;' | =2 (i.e. we take c=2). Thus, actually - =2log2i 1 and the supremum is
achieved for the function gy, where

2
.
1+ 1+(2)2

o<

Qo(X)=1 1j

In fact, we show that we get the required lower bound by just consideringa, completely multi-
plicative. To this end we use Corollary 2.5, and de nea, by:
s -

= Qo g ;
where P = log T loglogT. As such, by the same methods as before, we havak = T °M) | Let

a>0andP =log TloglogT. By Corollary 2.5

k,ak Y 1 Y 1 Y 1Y 1 (3.4)
5 N a - . 1 1; A ap " .
kak D 1j Fp b aP 1j Pp ap 1+ pli af p>aP 1i Fp

Using Merten's Theorem, the “rst product on the right is € (logaP + o(1)), while the second
product is greater than

Y Y
X : X : =p
exp i 11.613 12 1i Go(p=P).
o ap Pl P apP P
R, ;. .
The sum is asymptotic to 25 o & %M gy < g w» for any given " > 0, for suzciently small a.
The third product in (3.4) is greater than
% Y4 Y Z Y
Xoay o) Tt o)
exp — =exp Ioa P J du
p>aP 9 a
by (2.9). Thus
H Z, )l M f
k' jak o Go(u) .
logP + = du+l i" logP + L i "
ok > € log Y dutlogaj " , e log (%) i

for a suzciently small. As L(g)=2log2ij 1and"



We see thatmg(T) corresponds closely to the conjectured minimal order of3 (®+ iT )j (see [3] and
[9]). We omit the proofs, but just point out that for an upper bound (for 1 =mg(T)) we use

kak YH o T
k' @ak ) p®

which can be obtained in much the same way as (2.5). For the lower bound, we choosg asj 1
times the choice in Theorem 3.1 and use Corollary 2.5.

The above formulae suggest that the supremum (respectively in mum) ofk' gak=kak with
a2 M 2 and kak = T are close to the supremum (resp. in mum) ofj3gj on [1; T]. One could
therefore speculate further that there is a close connection betweek' gak=kak (for such a) and
3 (®+ iT)j, and hence betweerZg(T) and Mg(T). Recent papers by Gonek [4] and Gonek and
Keating [5] suggest this may be possible, or at least thatM g is a lower bound for Zg. On the
Riemann Hypothesis, it was shown in [4] (Theorem 3.5) that® (s) may be approximated for ¥, > %
up to height T by the truncated Euler product

Y 1
1 o forP¢ T.
o p Tl p
Thus one might expect that, with a 2 M 2+ maximizing k'kifk subject to kak = T, and A(s) =
b P W (with P ¢ T),
Zy Zry = g . Zry
B(®j it)j%jA(it)j2 dt » i p7®)(1 i ap')” dt= jBp(it)j? dty() 2TJ/I/F20 9.96 Tf 10.52°
i T iTp P iTp P
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