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Although it should be clear that these are the same question posed in di�erent contexts,
very little is explicitly known beyond the classical cases when the spatial operator has a
known basis of eigenfunctions. This basis can be used after separation of variables to express
the solution of the boundary value problem.

In this paper we give an explicit connection between the two problems in general; we give
a link between the solutions of (1) and (2), and we show precisely how the answer to (Q1)
and (Q2) are related. In particular, the rigorous answer to one question can be given through
answering the other. Our results are true for general n, however they are new and interesting
in particular for n odd.

Since in general S will not be self-adjoint, we expect that any spectral decomposition
involves not only S but also the adjoint S�. In terms of the PDE problem, we will see that
this is re
ected in the need to consider both the initial time and the �nal time problems (the
evolution with reversed time direction).

The operator problem



The PDE problem

In a separate development, a novel transform method for analysing IBVPs was developed by
Fokas (see Fokas, 2008, for an overview). The method was applied to IBVPs posed for evolution
equations on the half-line by Fokas and Sung (1999) and on the �nite interval by Fokas and
Pelloni (2001) with simple, uncoupled boundary conditions. In Smith (2012), Fokas’ method
was applied to IBVPs whose spatial part is given by the operator S, namely those of the form

@tq(x; t) + a(�i@x)nq(x; t) = 0; x 2 (0; 1); t > 0; a = �i; (1.6)

with prescribed boundary conditions and an initial condition q0(x) = q(x; 0), assumed smooth
to avoid technical complications. Usually the initial condition is assumed to be in C1. How-
ever, the same results hold assuming that q0 2 ACn. Indeed, in this case, the uniform
convergence of the integral representation (see (1.7) below), the poynomial decay rate of the
integrand and the explicit exponential x dependence imply that the solution q belongs to the
same class. In what follows we assume q0 2 ACn.

This method yields an integral representation of the solution of the initial-boundary value
problem in the form

q(x; t) =
1
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d�; (1.7)

where the quantities q̂0, ��, �PDE , �k and �� are de�ned below in De�nitions 2.1 and 2.4. In
many cases, including all problems with n even, the integrals in equation (1.7) both evaluate
to zero (Smith, 2012). We study these cases here.

In Pelloni (2004, 2005) and then in greater generality in Smith (2011), this method is used
to characterise boundary conditions that determine well-posed problems, and problems whose
solutions admit representation by series. To achieve this characterisation, the central objects
of interest are the PDE characteristic matrix A (see De�nition 2.1 below) and its determinant
�PDE .

Note that in this work, by ‘well-posed’, we mean existence and uniqueness of a solution



� If the initial- and �nal-boundary value problems are well posed, then the eigenfunctions
of S and S� form a complete biorthogonal system in D(S).

This is the content of Theorem 2.6. The conclusion does not imply that the eigenfunc-
tions necessarily form a basis. However the integral representation (1.7) can always be
deformed to derive a series representation for the solution of the IBVP in terms of the
eigenfunctions.

� The departure of the family of eigenfunctions of S and S� from being a biorthogonal basis
can be estimated in terms of the integrand in the representation of the solution of the
associated IBVP.

This is the content of Theorem 2.12. This departure is quanti�ed in the notion of
‘wildness’ (see Davies, 2007). Indeed, if the eigenfunction of S and S� form a wild
system in L2[0; 1], then we provide an estimate of the wildness of the system in terms of
the quantities used to determine whether the initial- and �nal-boundary value problems
are well posed.

Outline of paper

In section 2, we review the necessary de�nitions and notation. Following this, we precisely
state and prove the results described above.

Each of sections 3 and 4 is devoted to the analysis of an example which illustrates the above
general results. We compare and contrast the results obtained through the new theorems with
those yielded by Davies’ wildness method.

2 Complete and basic systems of eigenfunctions

2.1 Notation, de�nitions and preliminary results

In this paper, we make extensive use of the notation developed in Smith (2012). We refer to
that paper for details, but we list here some of the notation used throughout the rest of this
work.
The initial-boundary value problem �(n;A; a; q0): Find q 2 ACn([0; 1] � [0; T ]) which
satis�es the linear, evolution, constant-coe�cient partial di�erential equation

@tq(x; t) + a(�i@x)nq(x; t) = 0 (2.1)

subject to the initial condition
q(x; 0) = q0(x) (2.2)

and the boundary conditions

A
�
@n�1
x q(0; t); @n�1

x q(1; t); @n�2
x q(0; t); @n�2

x q(1; t); : : : ; q(0; t); q(1; t)
�T

= h(t); (2.3)

wh9h [(wh9h6.755 o)4.44 Tf we/F43 8.9664 Tf 7.i(()]TJ/F45 8.9664 Tf 3.584 0 Tdv4=�[(T)]TJ/F43 833Tf -1Tf 4.751 0.996 Td [(()]TJ/F45 8.9664 Tf73.584 0 Td [(;)]Tx�
xx� (2.3)



De�nition 2.1. Let �?k j, �
?
k j be the boundary coe�cients of the operator S?, adjoint to S.

We de�ne

A+
k j(�) =

n�1X
r=0

(�i!k�1�)r�?k j ; (2.5)

A�k j(�) =

n�1X
r=0

(�i!k�1�)r�?k j ; (2.6)

then Ak j(�) = A+
k j(�) +A�k j(�)e�i!

k�1� (2.7)

is called the PDE characteristic matrix. The determinant �PDE of A is called the PDE
characteristic determinant.

Remark 2.2. The PDE characteristic matrix is a realisation of Birkho�’s characteristic ma-
trix for S? and also represents the Dirichlet-to-Neumann map for the problem �. Indeed, it
is through this matrix that the unknown (Neumann) boundary values are obtained from the
(Dirichlet) boundary data of the problem. Smith (2012) uses a di�erent but equivalent de�-
nition of A which generalises the construction via determinants and Cramer’s rule originally
found in Fokas and Sung (1999). The validity of the new de�nition is established in Fokas and



enclosed by the contours �� thus, by Jordan’s Lemma, well-conditioning of the problem with
the opposite direction coe�cient is equivalent to the two integrals in (1.7) vanishing (Smith,
2012).

The reader will recall that a system (�n)n2N in a Banach space is said to be complete if its
linear span is dense in the space and such a system is a basis if for each f in the space there
exists a unique sequence of scalars (�n)n2N such that

f = lim
r!1

 
rX

n=1

�n�n

!
:

2.2 Well-posed PDE systems and bases of eigenfunctions

It is well known (see Coddington and Levinson, 1955, Section 12.5) that if the zeros of the
characteristic determinant � of S are all simple then the eigenfunctions of S form a complete
system in D(S). This theorem is proven using an analysis of the Green’s functions of both the
operator S and its adjoint S?. We prove the following result without directly analysing the
adjoint operator.

Theorem 2.6. Let S be such that the zeros of �PDE are all simple. Let � = �(n; a;A; q0; 0)
be an IBVP associated with A and �0 be the corresponding problem with the opposite direction
coe�cient, �(n;�a;A; q0; 0). If � is well-posed and �0 is well-conditioned in the sense of
De�nition 2.5 then the eigenfunctions of S form a complete system in D(S).

Rather than analysing both the original operator S and the adjoint operator S?, one
needs information on both the initial- and �nal-boundary value problems associated with the
operator S.

A stronger, but essentially straightforward, result in the reverse direction is:

Proposition 2.7. If the eigenfunctions of S form a basis in D(S) and, for some a, the
associated IBVP � is well-posed, then �0 is well-conditioned.

Further, if (�k)k2N are the eigenfunctions of S, with corresponding eigenvalues (�nk )k2N
then there exists a sequence ( k)k2N biorthogonal to (�k)k2N



Proposition 2.8. For each k 2 N and for each j 2 f1; 2; : : : ; ng, the function

�jk(x) =

nX
r=1

e�i!
r�1�k(1�x) detXr j(�k) (2.15)

is an eigenfunction of S with eigenvalue �nk . Further,

�j(�k; q0) =
1

Cj
hq0;  jki; j = 1; :::; n; k 2 N (2.16)

�j(��k; q0) =



� �k !1 as k !1.

� j�kj < j�k+1j
� (�k) is bounded away from the set of zeros of �PDE , uniformly in k:

9� > 0 : 8 k; j 2 N; jj�kj � j�j jj > �

Then

kQkk = O

 
sup
(�k)

"
�j(�k;  

j
k)

�PDE (�k)
� �PDE (�k)

�j(�k; �
j
k)

#!
; as k !1:

2.3 Sketch of proofs

Proof of Theorem 2.6. As � is well-posed and �0 is well-conditioned, by Smith (2012, 2013a)
the solution q of the problem � can be expressed using a series as

q(x; t) = i
X
k2K+

Res
�=�k

ei�x�a�
nt

�PDE (�)
�+(�) + i

X
k2K�

Res
�=�k

ei�(x�1)�a�nt

�PDE (�)
��(�):

As each �k is a simple zero of �PDE , the series is separable into x-dependent and t-dependent
parts

�k(x) =

(
i
2
ei�kx Res�=�k

�+(�)
�PDE (�)

if k 2 K+;
i
2
ei�k(x�1) Res�=�k

��(�)
�PDE (�)

if k 2 K�;
(2.24)

�k(t) = e�a�
n
k t; (2.25)

so that
q(x; t) =

X
k2N

�k(x)�k(t): (2.26)

Further, Smith (2012, Lemma 6.1) guarantees the existence of a nonzero complex constant C
such that �k = Ck + O(1) as k ! 1, which, by Sedletskii (2005, Theorems 3.3.3 & 4.1.1),
guarantees that (�k)k2N is a minimal system in L2[0; T ].

As q is the solution of �, q satis�es

A

0BBBBB@
@n�1
x q(0; t)
@n�1
x q(1; t)

...
q(0; t)
q(1; t)

1CCCCCA = 0; 8 t 2 [0; T ]:

The minimality of the t-dependent system means that this implies each �k satis�es the bound-
ary conditions of S, so �k 2 D(S).

As q satis�es the PDE,

0 = a
X
k2N

[��nk I + S](�k)(x)�k(t)

so, by minimality of (�k)k2N, each �k is an eigenfunction of S with eigenvalue �nk .
Evaluating equation (2.26) at t = 0 yields an expansion of q0 in the system (�k)k2N.

Remark 2.13. We have to require the zeros of �PDE are all simple. It would be desirable to
be able to say that the zeros of � and �PDE are all the same and of the same order. It has been
shown that this holds under certain symmetry restrictions on the boundary conditions (Smith,



Proof of Proposition 2.7. As (�k)k2N is a basis, the Fourier expansion

q0(x) =
X
k2N

�k(x)hq0;  ki

conv680 Td64F. 8a051
X
k2 2



2. For all m, multiply the mth column by �m.

3. Apply the permutation r 7! r̂ to the row index.

4. Take the complex conjugate of each entry.



we �nd that the characteristic determinant (1.5) is given by

��(�



� De�ne 	k(x) =



Re �3 = 0

log(��)

Re �

Im �

Figure 1: The asymptotic position of �k for � 2 (�1; 0).

The case � 6= 0
It is already well known (Fokas and Pelloni, 2005; Smith, 2011) that in this case we have

the following result.

Theorem 3.2. The initial-boundary value problem associated with (S� ; i) is well-posed and
its solution admits a series representation.

The case � = 0

Theorem 3.3. The initial-boundary value problem associated with (S0; i) is well-posed but
the problem (S0;�i) is ill-conditioned.

Proof. The proof of the well-posedness claim in this statement can be found in Smith (2011).
However, for this example we now show that the statement ‘��(�)=�PDE (�) ! 0 as � ! 1
from within the sets enclosed by ��’ does not hold, implying that (S0;�i) is ill-conditioned.

The reduced global relation matrix in this case is given by

A(�) =

0@c2(�) c2(�)e�i� c1(�)e�i�

c2(�) c2(�)e�i!� c1(�)!e�i!�

c2(�) c2(�)e�i!
2� c1(�)!2e�i!

2�

1A ;

hence its determinant �PDE (�) = �0(�) given by (3.4), and the functions

�1(�) = i�(!2 � !)

2X
r=0

!r q̂0(!r�)ei!
r�;

�2(�) = i�
2X
r=0

q̂0(!r�)
�
!r+1e�i!

r+1� � !r+2e�i!
r+2�

�
;

�3(�) = i�

2X
r=0

q̂0(!r�)
�
e�i!

r+2� � e�i!
r+1�

�
;

�4(�) = �5(�) = �6(�) = 0:

As +2



We consider the particular ratio

�3(�)

�PDE (�)
; � 2 eE2: (3.13)

For � 2 eE2, Re(i!r�) < 0 if and only if r = 2 so we approximate ratio (3.13) by its dominant

terms as �!1 from within eE2,

(q̂0(�)� q̂0(!�))e�i!
2� + q̂0(!2�)(e�i!� � e�i�) + o(1)

(!2 � !)ei� + (1� !2)ei!� + o(1)
:

We expand the integrals from q̂0 in the numerator and multiply the numerator and denominator
by e�i!� to obtain

i
R 1

0

�
ei�(1�x) � ei�(1�!x) � ei�!

2(1�x) + e�i�(2!�!
2x)
�
q̂0(x) dx+ o

�
eIm(!�)

�
p

3(ei�(1�!) + !) + o (eIm(!�))
: (3.14)

Let (Rj)j2N be a strictly increasing sequence of positive real numbers such that �j =

Rje
i 7�

6 2 eE2, Rj is bounded (uniformly in j and k) away from f 2�p
3
(k + 1

6
) : k 2 Ng and

Rj !1 as j !1. Then �j !1 from within eE2. We evaluate ratio (3.14) at � = �j ,
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2

(1�x)�
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3Rj
2

i sin
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3Rjx

2

�
� e�Rj(1�x)
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1� e�

p
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q̂0(x) dx+ o
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2

�
p

3(e�
p

3Rji + !) + o

�
e�

Rj
2

� :

(3.15)
The denominator of ratio (3.15) is bounded away from 0 by the de�nition of Rj and the
numerator tends to 1 for any nonzero initial datum.

Remark 3.4. In the proof of Theorem 3.3 we use the example of the ratio �3(�)
�PDE (�)

being

unbounded as �!1 from within eE2. It may be shown using the same argument that �2(�)
�PDE (�)

is unbounded in the same region and that both these ratios are unbounded for � 2 eE3 using

�j = Rje
i 11�

6 for appropriate choice of (Rj)j2N. However the ratio

�1(�)

�PDE (�)
=

�+(�)

�PDE (�)

is bounded in eE1 = eE+ hence it is possible to deform the contours of integration in the upper
half-plane. This permits a partial series representation of the solution to the initial-boundary
value problem.

Remark 3.5. For all � 2 (�1; 1) the �nal time boundary value problem is ill-posed. The
asymptotic location of the zeros of �PDE , along rays wholly contained within f� 2 C :
Re(�i�3) < 0g means that for nozero initial data the solution exhibits instantaneous blow-up.
Nevertheless, for all � 2 (�1; 0)[ (0; 1) the �nal time problem is well-conditioned. In the case
� = 0, the �nal-time problem becomes ill-conditioned and S becomes degenerate irregular
under Locker’s classi�cation.

When � = �1, S is self-adjoint and the initial- and �nal-boundary value problems are
both well-posed. For j�j > 1, the �nal-boundary value problem remains well-posed but the
initial-boundary value problem becomes ill-posed. Thus the self-adjoint cases represent the
transitions between well-posedness of the initial- and �nal-boundary value problems. Anal-
ogous to the � = 0 case, in the limit � = 1, the initial-boundary value problem becomes
ill-conditioned, the solution to the �nal-boundary value problem may not be represented as a
series and S becomes degenerate irregular.
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3.3 Comparison

The explicit computation of the operator norms in section 3.2 requires the evaluation of the
biorthogonal family of eigenfunctions and the precise asymptotics for the corresponding eigen-
values.

On the other hand, the integral representation of the solution of the boundary value prob-
lem can be constructed algorithmically from the given data, without the need for any precise
asymptotic information about the eigenvalues, except their asymptotic location (always along
a ray for odd-order problems; see Smith, 2012, Theorem 6.3). This is su�cient for a direct
analysis of the terms that blow up and prevent deformation of the contour of integration and
a residue computation around the eigenvalues, thereby precluding a series representation of
the solution.

In the example above, the particular term in the integral representation exhibiting this
blow-up is the termZ 1

0

2i sin

�p
3Rjx

2

�
e
Rj
2

(1�x)�
p

3Rj



The associated di�erential operator

For the real parameter � 2 (2 � �; 2], we investigate the di�erential operator S� with pseu-
doperiodic boundary coe�cient matrix

A =

0@1 �1 0 0 0 0
0 0 1 � 0 0
0 0 0 0 1 �1

1A ;

and the associated initial- and �nal-boundary value problems �� and �0� .

Remark 4.1. The restriction from � 2 R n f�1; 0; 1=2



� Let

	k(x) =
 k(x)

h k; �ki
: (4.6)

Then there exists a minimal Y 2 N such that ((�k)1k=Y ; (	k)1k=Y ) is a biorthogonal
sequence in ACn[0; 1]. Moreover

h k; �ki =

p
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k � 1
2

�
�
e

4�p
3
(k� 1

2 ) +O(e
p

3�kk�1) as k !1: (4.7)

� The eigenfunctions have the same norm and it grows at the same rate as their inner
product.
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p

3�kk�1
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Also

�
(2)
2 (�k) = �i!2

p
3R2

k

�
�qT (�k)e�i!�k � !2qT (!�k)e�i�k + !qT (!2�k)ei!

2�k
�

+O(eRk=2R2
k)

= �!2i
p

3R2
k

�
�
Z 1

0

qT (x)e
Rk

2
[x+1+i

p
3(x�1)] dx

�!2

Z 1

0

qT (x)e
Rk

2
[x+1�i

p
3(x�1)] dx+ !

Z 1

0

qT (x)eRk[1�x] dx

�
+O(eRk=2R2

k)

= �!2i
p

3R2
k

�
� 2qT (1)eRk

Rk(1 + i
p

3)
� !2 2qT (1)eRk

Rk(1� i
p

3)
+ !

qT (0)eRk

Rk

+O(eRkR�2
k )
�

+O(eRk=2R2
k)

= �i
p

3Rk (2qT (1)� qT (0)) eRk +O(eRk ):

Note that qT (1) = q(1; T ) = �q(0; T ) = �qT (0), by the �rst boundary condition. Hence,
provided we can be sure that qT (0) 6= 0, 2qT (1)� qT (0) 6= 0.

As 0 < arg(�k) < �=3, and Rk was chosen to ensure that �PDE (�k) is bounded away from

0, �k 2 eD1. Hence, by Smith (2012, Theorem 1.1), � is ill-posed.

The rate of blowup exhibited in Proposition 4.2 is maximal in the sense that for any
sequence (�k)k2N such that j�k�1j < j�kj < j�kj and for any j 2 f1; 2; 3g,

�
(2)
j (�k)

�
(2)
PDE (�k)

= O(eRk=2R�2
k ):

The problem �0 is well-conditioned for all � 2 (2� �;
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