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Abstract



When evolving networks are very large (in terms of the numberof vertices) there is usually
some need to summarize those networks. Here we introduce the
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then thenM insults have had little impact on the primary network, whichmust consequently be
relatively large. If this is large then theM insults have removed a more significant amount of
functionality and the primary network must consequently berelatively small.

Next consider the successive fractional losses,
{

‖Q j−1‖ −‖Q j‖

‖Q0‖ −‖QM‖
| j = 1, . . . ,M

}

,

and suppose that they are sorted into descending order. Thenwe may plot the cumulative fraction
of total loss against the cumulative fraction of the total knockouts (ordered by descending size
of loss), see Fig. 1. This curve lies within the unit square, connecting(0,0) to (1,1), above the
diagonal with a negative second derivative. We shall calculate the area under this (ROC-like) curve.
It is equal to one half if and only if all of the fractional losses are equal (all knock-outs produce



Figure 2: Three primary networks plotted as estimates and two sided ranges, with respect to both
performance measures.

3 Primary networks for fMRI brain scan data

We consider data from an fMRI scan of a human brain, which contains aroundn = 2.5× 105

voxels (small three dimensional volumes within which activity can be measured), which we shall
treat as vertices. Hereai j represents a one-sided covariance of the measured activities (transient
blood oxygen level which is related to energy usage) within voxelsvi andv j, over 10 successive
time frames (from the scan). We step the 10-frame window through a full set of 110 time frames,
producing an evolving weighted network overK = 11 discrete time steps, as a sequence of such



we may see those regions of the brain, voxel by voxel, for which b dominatesr: that is, they have
more downstream paths than upstream paths, coloured red in Fig. 3. Similarly, those voxels for
which r dominatesb: that is, they havemore upstream paths than downstream paths, which are
coloured green in Fig. 3.

Clearly these dynamics paths (representing successive chains of events carrying over at least
two time-steps) yield a highly structured field. Moreover, if we randomly permute all of the time-
steps (permute theAk’s) and then repeat the whole operation, the resulting differences,b − r, be-
come much smaller. Such a permutation can be carried throughto show this field observed within
the unpermuted data is highly statistically significant. Sothe dynamical information extracted con-
fidently reflects some sorts of processes that are actually taking place and is not simply an artifact
of the observations or the method. The structures in Fig. 3 themselves are intersting too. They
have relatively short wavelength and display clear striping throughout the cortex.

Scientists working in the fMRI brain scan field may have neverencountered striping like this
either because they are in the habit of defining static networks, where the communicability (cen-
trality) matrix is symmetric and henceb = r, or else of analyzing the data at lower resolutions. A
common reaction is to declare that this ismerely noise, presumably because it shows evidence of
dynamic structure within regions that they typically wish to “parcellate”, and is aninconvenient
phenomenon. In fact these patterns are very far from being spatial noise indeed, and they have
a very distinctive scale. Our permutation tests also show that the patterning is not the result of
temporal noise: these patterns represent dynamical flows form small scale volumes behaving as
relative sources and relative sinks for inter-brain communication.

The resulting distributions forb = (b1, ...,bn)
T andr = (r1, ...,rn)

T are shown in Fig. 4. From
these we select threshold values ofβ ∗ andρ∗ so as to retain the upper modes within the primary
network. This means that approximately half the vertices (1.25×105) are retained withinV ∗.

Using this approach, we have analysed 967 separate fMRI scans, which are part of the data
available from the 1000 Connectome Project1. The multimodal structure in these distributions is
similar in all cases: so it is straightforward to select a primary network containing about half of the
voxels.

Next we recalculate the measures associated with the primary network’s communicability ma-
trix, Q∗. In Fig. 5 we show the values obtained inb∗ versus those inb; and the values obtained
in r∗ versus those inr. Since the primary network is dominant within the full communicability
matrix, by construction, these are very closely correlated.

To visualize the resulting primary network on the reduced set of vertices,V ∗, consider the field
given by the source communicability, the row sums,b∗. This is shown in Fig. 6. Notice that the left
and right hemispheres have now become mostly separated within the primary network and there
are some voids within the brain mass. The most extreme positiveb∗-values are towards the outside
layers of the cortex.

Next we apply the method given in section 2.3 to consider an ensemble of 967 fMRI brains
scans. These are all scans of resting brains, from a number oflaboratories, and each has been
downloaded from the connectime database and then normalized (mapped onto a standard voxelated
representation). We also restricted each normalized scan to 110 time frames, and thusK = 11

1For more information visithttp://fcon_1000.projects.nitrc.org/ or http://www.nitrc.org/.
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Figure 3: A 3D map of a brain obtained from the source minus sink scores,b − r.

timesteps.
For each brain we procceeded independently as follows:

(a) we identified the primary network using suitable threshold parameters(β ∗,ρ∗);

(b) we calculated‖Q∗‖ and its related measures (and tests);

(c) we degraded the primary network withM = 1000 successive voxel knock-outs;

(d) we repeated step (c) independently 100 times to estimatemeans and ranges for the two perfor-
mance measures.

This process involved making around 100000 separate communicability calculations for orig-
inal and degraded primary networks; each of which, conceptually at least, was made based on
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