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Abstract. We study the approximation of harmonic functions by means ofmbaic polynomials in two-
dimensional, bounded, star-shaped domains. Assuming th&iribons possess analytic extensions ®reeigh-
bourhood of the domain, we prove exponential convergendeecdpproximation error with respect to the degree of
the approximating harmonic polynomial. All the constants apipg in the bounds are explicit and depend only on
the shape-regularity of the domain andd®n

We apply the obtained estimates to show exponential cormeegeith rateO (exp(—bv/N)), N being the
number of degrees of freedom am&> 0, of ahp-dGFEM discretisation of the Laplace equation based orepiese
harmonic polynomials. This result is an improvement over thesital rateD (exp(—b+/N)), and is due to the use
of harmonic polynomial spaceas opposed to complete polynomial spaces.

1. Introduction. We fix a domain that meets the following requirements, seareity 1.
ASSUMPTION1.1. The domairD  Cis open and satisfies



gleaned in Sectio by means of fairly intricate estimates. A result similar toedbrem1.2
was stated in25, Theorem 2.2.10]; the novelty of the present contributies in theexplicit
expressiongor the constant€ andb in terms of the parameteds p andp, only.



such that, foranyw 0D,
a) there exists a codevith vertexw, opening angle\rt and heigh#H, contained irD,
b) there exists an infinite cone with vertexand opening anglan contained inC\D.
The proof is postponed to Lemn#al in AppendixA. The uniform cone conditions imply
thatD is Lipschitz (see, e.g.1p, Theorem 1.2.2.2]).

REMARK 1.3. If D is convex, we could choogg = p. However, in order to avoid
the discussion of special cases, we will always asspgne& p, obviously with no loss of
generality.

We also notice that, in the convex case, the exterior condition holds withA = 1
(the cone is a half plane through that does not intersedd), while for the interior cone






3. Distance estimates for level lines of . We need precise quantitative information
of how far the level lined ;, move away fromdD ash increases. It is provided by the
following key result.

THEOREM 3.1. Let Ly, be theh-level line of the conformal mapping &. Define
0<é&<las

— arcsin
18



the minimum ish?






Then|y (0)] = u;fp)" and the proof is completél
The inverse ofl is given by ¥~ (re') = g5re’® or, in Cartesian coordinates (after
the identification ofC with R?),

Ul (rcosB,rsinf) = ﬁcose,ﬁsine =: (F1,F2). (4.1)

Of course, U~ is Lipschitz continuous as well, and an esti}nate for its thpz constant is
given in the next Lemma. '
LEMMA 4.2. The functiont~! : C - C



where
V_
Cp =4m 2LyL —,

with Ly andL — asin Lemmat.1and Lemmat.2, respectively.

Proof. Fixwy  Lp, and assume, with no loss of generality, thgtis on the positive
real axis. Definal := wy — ((0) and notice thatl(wp,0D) < d < 1.

Settingw(8) := ¥ (e'®) = y(6)e'® 9D, using Lemmat.2, Lemmad.3andy(6) < 1
we obtain, foral® [—, ],

Iw(8) —wol” = L™% [T} (w(8)) | =L7% [ —wo/(0))? (4.2)

2[
=L2¢C Wo 4 — L2 ¢c2 wo — (0)
= Bkw k o

>L"2 C2 @2 %L—% (6% + d?) — LQD(92+>d2).

Then,

' 1 d ' 1 w (8)] do Lem.4.1 L ' 1 "
——dw = — W = _—

/D [w — wol e IW(8) — wo| v e [w(B) — wol

(4<'2)|_ L_ll a/l—d9<2\/§L Lot /nlde

- UJ D _n 2 2 - LIJ D b e +d

< 2 2LyLp' (log(m+d) —log




Define the sequence of complex polynomigls }, ~ with

wp(w) _ p]%w _ ¢(e2nik/p))'

k=0

whered



Sinced is a curve parametrisatiap: 0B, 35 —» Lap,

length(Lgn) < 2m(1+3h) sup |d (2)];
|z]=1+3h

this, together with the lower bound dfLp, Lsn) and the upper bound ¢ (z)| given in
Lemmaz2.1, and the bounds in Lemnka6, gives

8(1+3h)5¢ (o0)?

f—q < (3h?)~Co 1+h P _
P Leo(nt Ln) 6h3p2 1+ 3h Lo (Int L 4)
4 (0)* 5 o0, 1+h P 5
= 31+CDp2 ° ,1+3h (1+3h f Lo (Int L 4)
p
< 20(1 —p)? h—3—2Co 1 \ f
3p2 \1_’_h/ Lm(Inth) !

where in the last step we have usedCe > 3, |d (oo>| <1-p, £ < 15 and
(1+3h)®> <5,sinceh <p/4 h < 1/8. The use of Lemm4.6 (and thus of Lemm4.4)
is legitimate due to the hypothesis imposedioandd. The result of the theorem follows

from the bound ofcp derived in Remarld.5. 0

Obviously, Theoreni.2 from the Introduction is an immediate consequence of Theo-
rem4.7. given0 < h < h , just defineC := C,,,,(h (8)) 8&¥



U w ey = U Loogs) + diam(Ds) u Lo (S) -

THEOREM4.10.Fix 0 < d < 1/2, and leth satisfy(4.4). For any real, harmonic func-
tionu in the inflated domaiDs defined in(4.3), there is a sequence of harmonic polynomials
{Qp}p=1 of degree at mogi such that

U=Qp |wip) = Capprh™ (1 +0)"" U e (e 4 -
28 e e
|U - Qp|Wj,oo(D) = Cappr ‘W h (1 + h) U w > (Int L gy)

U= Qcya s § RpeTROT B RM’“}*WW PEL®RT (Wipded B ReETQT D RIBTAQT F RLGTRAQT BOT



and the previous inequalitie.

From Theorent.2, with the same considerations as in the proof of Theofehi, we
obtain the following result.

COROLLARY 4.11. Fix0 < 8 < 1/2andj Nj. There exisiC > 0 andb > 0,
depending only o, pg, 0 andj, such that, for any real-valued, harmonic functionvhich
is bounded along with its first-order derivatives in the itgh domainDs defined in(4.3),
there is a sequence of harmonic polynomig, }, of degree at mosi such that

—b
[u— Qp|Wj,oe(D) =Ce ™ u W .50 (Dg) *

—b
lu—Qplyipy=Ce P u W ¢ (Ds) *

REMARK 4.12. The constant€ andb in Theoreml.2 and Corollary4.11depend ord
only throughh (8) defined in(4.4).

The boundedness #f u and u in Theoreml.2 and Corollary4.11is assumed only
in order to write estimates with.°>-norms in the whol@j3 on the right-had side. Actually,
the estimates hold true also withf | ;.\ ) and U .« ) respectively, on the
right-hand side, for any) < h < h , with no need of assuming boundednesE,afand u
in Ds.

REMARK 4.13. The interpolating polynomialg, (and Qp) in Theoreml.2, Theorem
4.7 and Corollary 4.9 (Theorem4.10 and Corollary4.11, respectively) interpolate exactly
the functionf (u, respectively) in at leagt + 1 points lying on the boundary &. The exact
location of the points depend on the conformal npgp This fact follows from the definition
of qp given in the proof of Theoredh 7 and the relationsi = Re f andQp = Reqp.

5. Application: exponential convergence of Trefftz hp-dGFEM. In this section, we
outline how to apply the estimates of Corollatyl1and prove exponential convergence of
a Trefftzhp-dGFEMfor the mixed Laplace boundary value problem (BVP), i.e. &Rkith
discontinuous, piecewise harmonic, polynomial basis tions or/a geometrically graded
mesh. We establish exponential convergence with @gtexp(—b N)), for someb > 0,
in terms of the overall numbeX/of degrees of freedom. This result is an improvement
over the classical rat®(exp(—b °N)) shown for inhomogeneous problems &) 4]; this
improvement is due to the use of harmonic polynomials, atst#f complete polynomials, in
the trial spaces.

Since we rely on thép-dGFEM theory from 87], we restrict ourselves to the case of
(straight) polygonal domains and meshes comprising {gitpiriangles or parallelograms.
The extension to curvilinear domains and mesh elementsdvegjuire to develop, for such
elements, several tools as polynomimgd-inverse estimates, scaling estimates of Sobolev
seminorms, and approximation estimates for linear anddali polynomials near corners.
This goes beyond the scope of this paper.

5.1. ThelLaplaceBVP. Without further explanation, we use the notation for theghéi
ed Sobolev spaceHg”"(Q)) and the countably normed spacg (£2) andCg(£2)) from [2,
§2], along with the analyticity and analytic continuatiosués given in -5].

Let Q  R? be a bounded, Lipschitz polygon with cornexs 1 < v < n,, whose
boundary is partitioned into a Dirichlet and a Neumann beum %! andT'[!), respectively,

such that the interiors (% andT! do not overlap and™” T'" — 39. Moreover, we

assume thaf%! has positive 1-dimensional measure. Consider the follgwrell-posed)
boundary value problem: givegll, i = 0,1, findu H'(Q)



you = =g onr® yu _ =gt onrl. (5.1b)
A

Here,yo andy; denote trace and normal derivative operators, respegtivel
- 3 -
There exists a weight vect@r  (0,1)"= such that, iigl!  BZ '(I'), i = 0, 1, prob-
lem (5.1) admits a unique solution which belongs tcﬁg(ﬂ), [2, Theorem 3.5]. Moreover,

as in P, page 841], it can be proved that there exist two cons@pts 0 andd, = 1 such
that

|(D%)(x0)| < Cy k! Xo Q,a N2 Ja=k=1, (5.2)

@(Xo)

where®(xg) := HC; min{1, [Xg — (%}, thusu admits a real analytic continuation to the
set :

(I)(Xo)
2dy

N (u) := 'S X R?: |x—Xo| < R2. (5.3)

x* s \UD2 oy !

5.2. Trefftz hp-dGFEM. We now formulate théap-dGFEM discretisation of the BVP
(5.2) on geometric mesh families = {T,}°2, in £, with increasing number of layers
and geometric grading factr< o < 1.

5.2.1. Geometric meshes. Given N, the meshT is a partition of the domait
into open triangles or parallelograrfi; (such that) = Uij ﬁij andQ;; n Q5 = f
(i,j) = (i,J )). The elements are groupedlayers denoted byl ;, 1 <i < , such that

T.= 0



(GM3) The size of an elemef¥; depends geometrically on its layer index 0 < K3— <
K34 < oo, independent of, ,iandj, suchthatforalll, MgandQ; T,,

K3—0' < hj; < Kgy 0",
(GM4) For = 2, T, is obtained fromT, ! by only refining the elements in the layer
Lc,,_l_1 adjacent to the domain corners, forming two new laylegs _, andL .

Equivalently, the elements bf; ; are uniquely defined for all = i + 1:

/ 7 ]

Lei=Los i {L2...min(, )—1% Ly =W Lo > =1
i=

(5.4)
Note that (GM2) and (GM3) imply that the diameter of an eleti&q is proportional to
its distance from the domain corners:

K3—

Ko+

Ks+

I’ij = hlj = K2






PROPOSITIONS.3. [37, Theorem 2.3.7, Corollary 2.4.2] L@t (0, 1)"= be such that
the analytical solutioru to (5.1) belongs toCé(Q). If either® = 1 and a is positive, or
8 = —1 anda is sufficiently large, then thiep-dGFEM (5.9) admits a unique solution.

Moreover, letrr : Hé’Q(Q) - Vp(Ty) be an arbitrary operator such that, for every

elementK T, there exist at least two zeros pf:= u — mru in K. For § = +1 (with
sufficiently largen, if 8 = —1), it holds

u—uf 2 (5.10)

2 2 2(1-B ) |42
cCp? E Nl k) T E h|2< |r|||-|?(K) + E hk = |n|H§-”(K)
j< T, K T,\K, K K, =

whereC > 0 is independent of, andp. Here,K; := L, T, designates thes‘% of
elements abutting at domain corners and, for &y Kg, Bk :=sup{By : ¢, 0K}

5.3. Exponential convergence of hp-dGFEM. We apply the approximation estimates
proved in Sectiort.2to establish exponential convergence of kipedGFEM scheme. We
begin with the following lemma, which puts in relation thenaiin of analyticity ofu and the
geometric mesiM.

LEMMA 5.4. Let Mgy be a family of geometric mesh&g on Q2 satisfying Assump-
tion 5.1, and letu be the solution of the BV{5.1) on ). Then, there exists > 0u






Remark4.13guarantees that the interpolation is exact in at Ipast points on the boundary
of £3;;. From the usual scaling of Sobolev seminofai§us ) < C(hij)l"‘ |-|erf”), we

X oij X ij
obtain

\
> i g )+ (i)?liag ) =C e,

1sis —1,1=sj<J(i) ~

with C andb depending only om, o, 2 andMg. Here we used the fact that the number of
elements irT, isO( ), as proved in Lemm&.2

The assertion is then obtained by combining the last Rputid twe one previously ob-
tained for the elements incident to the corners, using O( N), and noting thattr (u)
interpolatesu at least in two points per element, thus Proposio®applies, and thép-
dGFEM error is bounded by the approximation ertbr.

REMARK 5.6. In standard FEM convergence analysis, approximation e are
derived only forfew reference elementahich are then mapped to the “physical” mesh el-
ements. For Trefftz schemes this is usually not possiblEcespmade of harmonic functions
(or harmonic polynomials) are not invariant under general a



has openind



sinceb,, = 0, we have the second (exterior) cone condition.
REMARK A.2. If D is a polygon with interior anglegaym}t.; and satisfies the hy-
pothesis of LemmaA.1, then
P1

2 2
farcsinﬁsaks2—farcsin— k=1,...,N.
s P2 s P2

Appendix B. Proof of the upper bound (3.2) for non convex domains. We consider
first the case of polygonal domains (with straight sides)eot®nB.1, then we extend the
result to more general curvilinear domains in Sec#2. We recall that we are assuming
0<h=sl

B.1. Polygonal domains. Denote by{ogn}.c, and{o}!°n} NS the convex and non
convex internal angles, respectively,df by {wg }/ S, and{w ©}N¢






consequently, as can be inferred from FigBr2,

(B.2)

C
ZnC,?,Q

FIG. B.2. The location of the pre-vertices;,’s in case ii) with two non consecutive non convex corner® Th
four dashed segments have lengtisx {|” -V




In order to conclude, we only need to pro&yJ).

Consider the counterclockwise oriented pard &f formed by the consecutive
(oriented) sidessi, i = 1,...,m := nc,1 + 3, abuttingw}'®, wf,, j =
1,...,nc,1, andwhC. Let ; be the oriented line containirgg, i = 1,..., m.
SinceD is star-shaped with respectBys , thenB,s lies in the intersection of
the half planes lying on the left of thg’s.

Let K be the infinite cone obtained by intersecting the right hieihps gener-
ated by ; and m,. Itsopening ig1+ B )n <, with < 0 (cf. FiguresB.1
andB.3).

DefineD :=D\K;D



of consecutive convex angles. With a similar notation asteefve can write

/nll il'y— 7 B ﬂ—ZE%B’?‘ .

Setting, fori =1,...,n
: -C- . -NC
Nfar,i = argmax- 1 —Zy; Npear,i = argmin - 1 —Zj5=
J=1,...nc;i | | J=1,...nnc.i | |

we can bound as

/“l,y QLSI.IZ’B"?y—??M,&‘ 3 P dy=:/SP(y>dy-
| | |

We order the blocks in such a way that

: ‘1 jrl:legr; = 11 negr i+i | =1, n—1,
- 7 - - [
»;—zgr,hs; ZGeivr,  i=1,...,n—1
| | |
consequently (see FiguBa4),
- o SNC - ;
- ]]‘_Zfar,i ‘S’ g‘_znear,i+1 I 1= 1,,n_1 (86)

| | | |
Thus, we have

P(y) =

- - 35 B - 35 BT B . BS
) Y Zk‘e(ajl 1 J i j{y _Znear T 1 L e (2+ h)zl BJ"".
|

C
NC Z;

NC

near,1

c near 2
Zfar,4
FiG. B.4.The pre-vertices;, satisfy the ordering relatio(B.6). Notice thatz\.S, | andzf,  (inthe picture

near,1

n =2) do not enter the relation. Therefore it is not relevant whane betweezf , and zNC is closest tG .

near,1

The number of pre-vertices lying in the upper and in the loladf of the complex plane does not affect the ordering
of the distances.

We consider the term with indem — 1 in the product and look at its exponent
( Bt BN
25



a) ifitis=0



FIG. B.5. The geometric configuration in Ler.

Proof. We consider the limit casg= = arcst— < 1. Then,

depicted in Figurd.6, the lines ; and » are parallel to each other.
is smaller than this threshold valug,and » will intersect on the central hau. .



FIG. B.6. The limit case) = 2
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