
  







allow them to flip-flop between such alternative norm-based groupings. Hence we propose a
fully coupled stochastic evolutionary model for individuals behavioural trajectories, within
and across possible subgroup formation associated with alternative social norms. The novelty
of this model lies in the tension created between the homophily within the evolving social
network and the possibility of network-induced instabilities within the individuals’ activator-
inhibitor behavioural-state dynamics.

In section 2 we introduce the notion of activator inhibitor system that coexists within both
the psychological and mathematical literatures. In section 3 we present the model and
an analysis of its dynamics. We show that a combination of a Turing instability process,
quite common in activator-inhibitor dynamics, and the homo



very act of simple ‘passive’ coupling between those individual systems. Such Turing insta-
bilities [9] naturally break the uniform symmetry, resulting in localized subsets of relatively
increased activation and relatively increased inhibition. This occurs when the coupling be-
tween individuals’ is stronger for the inhibitor variables than for the activator variables. Such
instabilities may seem counter intuitive at first sight since individuals are seeking pairwise
alignment: yet, for example, the dissipation (dilution) of inhibitions allows extremes to de-
velop. Thus any pairwise coupling of activator-inhibitor variables is a potential mechanism
for creating variability across populations.



Now consider an evolution equation for A(t). Each edge is assumed to evolve independently,
though each is conditionally dependent on the current network (so edges conditional on
related current sub-structures may well be highly correlated over time). So rather than
model a full probability distribution for future network evolution, conditional on its current
structure, say

Pδt(A(t + δt)|A(t)),

it is enough to specify its expected value E(A(t+δt)|A(t)) (a matrix containing all edge prob-
abilities, from which edges may be generated independently). Their equivalence is trivial,
since E(A(t + δt)|A(t)) =

∑

B BPδt(B|A(t)), and

Pδt(B|A(t)) =

N−1,N
∏

i1=1,i2=i1+1

(W )
(B)i1,i2
i1,i2

.(1 − (W )i1,i2)
1−(B)i1,i2 ,

where W = E(A(t + δt)|A(t)). Hence we shall specify our model for the stochastic network
evolution via

E(A(t + δt)|A(t)) = A(t) + δtF(A(t),X(t)),

valid as δt → 0. Here the real matrix valued function F is symmetric; it has a zero diagonal,
and such that all elements of right hand side are in [0,1]. We write

F(A(t),X(t)) = −A(t) ◦ {Death rates} + (1 − A(t)) ◦ {Birth rates}.

Symmetry is a powerful consideration here. If there are no distinguished individuals then
the dynamic must be invariant under any permutation of the vertices. So for example if Q
is an N × N permutation matrix then we must have

F(A,X) = QT .F(Q.A.QT , Q.X).Q, for all A,X,

This is not as restrictive as it appears. Forms involving polynomials, or Hadamard products
of polynomials in A all satisfy this restriction. In [GHP] this symmetry suggested a raft of
mean field approaches.

The dependence of F upon X is critical since it fully couples the system. We have in mind



measuring the similarity between the corresponding pairs of vertex-states. So edges between



consider the Schnackenberg model, which is minimal in that m = 2, and x = (x1, x2)
T , for

each node. It is given by

f(x) = (p − x1x
2
2, q − x2 + x1x

2
2)

T ,

where p and q are positive constants. It has the the equilibrium

x∗ =

(

p

(p + q)2
, p + q

)

.

Consider (1) with D = diag(d1, d2). We have

df(x∗) =

(

−(p + q)2 − 2p

p+q

(p + q)2 p−q

p+q

)

.

This is a stability matrix if and only if

(p + q)3 > (p − q). (5)

Now consider (df(x∗) − λiD). Its eigenvalues, say σ±, satisfy

0 = σ2 − σ(−(p + q)2 +
p − q

p + q
− λi(d1 + d2)) + h(λi)

where h(λ) = d1d2λ
2 − λ(d1

p−q

p+q
− d2(p + q)2) + (p + q)2. Note, since λi > 0 we have

σ+ + σ− < 0, and hence there is a loss in stability only when h(λi) < 0. This occurs if and
only if λi ∈ (λ−, λ+), say, where

λ± =
d1

p−q

p+q
− d2(p + q)2 ±

√



5. Projections

Here we shall present some simulations of the system. Since the output is a very long series
of very large matrices, which themselves are difficult to visualize, we shall employ some
different projections to capture the structure of our network at each time step, ultimately
to show that it is pseudo periodic.

Our projections are of the form

A → PB(A) = (A : B)B (7)

where : denotes the Frobenius inner product, given by A : B =
∑

i,j AijBij, A is an adjacency
matrix, at any time, and B is a given real symmetric matrix, normalized so that B : B=1,
spanning the projection space. We say A : B is the amplitude of the projection PB.

To be more specific we denote

1̂ =
1

√

n(n − 1)
1,

the normalized clique matrix, and define a clique projection, denoted R, by (7) with

R(A) = P
1̂
(A).

The amplitude of the projection, R, simply counts the edge density in the binary adjacency
matrix A.

We generated an evolving network A(t) and states X(t) using small discrete time steps
(δt = 0.01) and the parameter values N = 40, p = 2, q = 1, d1 = 2, d2 = 0.005, δ = 0.8
and ω = 0.8. In this case we started from an Erdos-Renyi network with 50% edge density at
its initial timestep. We ran a significant burn-in period before we began taking projections
at each time. Figure 1 shows the projection amplitude plotted against time and clearly
illustrates the almost periodicity in this network’s edge density.

Almost periodic behaviour can usually be observed in complex dynamical systems by pro-
jecting the dynamics into two dimensions (as in state space embedding). So we will look for
a second projection that is orthogonal to the first.

Suppose that W is real, symmetric, and such that W : W = 1 and W : 1̂ = 0. We shall
define our second projection, S, by (7) with S(A) = PW (A) so that 1̂ and 1̂ : W = 0.

At any time t, A(t), may be decomposed into a combination of our projections S and R,
plus error terms, denoted E(t), as follows

A(t) = R(A(t)) + S(A(t)) − E(t)

(8)

8



Figure 1: The amplitude of the projection R plotted against time across 2000 time steps, indicating the

periodic nature of this network. The projection was applied to a generated evolving network, constructed

with parameter values N = 40, p = 2, q = 1, d1



Figure 2: The amplitude of the projection S plotted against time across 2000 time steps, indicating the

periodic nature of this network. The projection was applied to a generated evolving network, constructed

with parameter values N = 40, p = 2, q = 1, d1 = 2, d2 = 0.005, δ = 0.8 and ω = 0.8.

Figure 3: The projection amplitudes plotted against each other at each time step, with the amplitude for

projection R along the x-axis and the amplitude for projection S



Laplacian’s normalized eigenvectors. Letting δt → 0, we obtain the deterministic system

ρ̇ = −ρ(1 − φ(||u||))ω + (1 − ρ)φ(||u||),

u̇ = (df(x∗) − ρND).u.

For example we may set φ(||u||) = (1 − tanh( ||u||−ε̂

µ
))/2, where ǫ̂, µ > 0, chosen so that φ

switches rapidly, as desired, as ||u|| increases through ǫ̂. Taking suitable values, numerical
solution shows that this last systems possesses periodic orbits.

6. Conclusion

These models show that when individuals, who are each in a dynamic equilibrium between
their activational and inhibitory tendencies, are coupled pairwise in a homophilic way, then
we should expect a relative lack of global social convergence to be the norm. Radical and
conservative behaviours can coexist across a population and are in a constant state of flux.
While the macroscopic situation is predictable, the journeys for individuals are not, within
both deterministic and stochastic versions of the model. There are are some commentators
in socio-economic fields who assert that divergent attitudes, beliefs and social norms require
leaders and are imposed on populations; or else they are driven by partial experiences and
events. But here we can see that the transient existence of locally clustered subgroups,
holding diverse views, can be an emergent behaviour within fully coupled systems. This can
be the normal state of affairs within societies, even without externalities and forcing terms.

Even if the stochastic dynamics for A(t) are replaced by deterministic dynamics for a
weighted communication adjacency matrix, one obtains a system that exhibits a-periodic,
wandering and also sensitive dependence. This alternative model is discussed in [10]. In such
cases the orbits are chaotic: we know that they will oscillate but we can not predict whether
any specific individuals will become relatively inhibited or relatively activated within future
cycles.
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