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1 Introduction

Let C(x), S(x), and F (x) be the Fresnel integrals deflned by

C(x) :=
Z x

0

cos
¡

1
2 …t2

¢
dt; S(x) :=

Z x

0

sin
¡

1
2 …t2

¢
dt; (1)

and

F (x) :=
e¡i…=4

p
…

Z 1

x

eit2 dt: (2)

Our deflnitions in (1) are those of [2] and [1, x7.2(iii)], and F , C and S are
related through

p
2 ei…=4F (x) = 1

2 ¡ C
‡p
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function f = fresnel(x,N)
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When x > 0 is large this approximation is very accurate, indeed is essentially
identical to the approximation FN (x) with N large if the choice

h = …=AN =
p

…=(N + 1=2) (26)

is made. However, this approximation becomes increasingly poor as x > 0
approaches zero.

In the context of developing methods for evaluating the complementary
error function of complex argument (by (20), evaluating F (x) for x real is just
a special case of this larger problem), Chiarella and Riechel [7], Matta and
Reichel [18], and Hunter and Regan [15] proposed modiflcations of the trapez-
ium rule that follow naturally from the contour integration argument used to
prove that the trapezium rule is exponentially convergent. The most appro-
priate form of this modiflcation is that in [15] where the modifled trapezium
rule approximation

F (x) … xh

…
ei(x2+…=4)

1X

k=1

e¡¿2
k
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real line by a discontinuous function (albeit with small discontinuities). This
contribution is further to realise that the approximation formula proposed on
0 < x <

p
2 …=h in fact provides a smooth and accurate approximation on the

whole real line. The third contribution, the contribution which is most sub-
stantial in terms of analysis, is to improve the error bound (28) of [15]. This
error bound is unsatisfactory in that it blows up at x =

p
2 …=h in a way not

seen in the numerical results in x4 (though there is some increase observed in
the error when x is near this value; see Figure 3). The bounds we prove in x4
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2 The approximation of F (x) and its error bounds

In this section we derive the approximation (5) to F (x) and derive (12) and
related error bounds for this approximation, these error bounds demonstrating
that both the absolute and relative errors in the approximation FN (x) converge
exponentially to zero as N increases, uniformly on the real line, and that
N = 12 is large enough to achieve errors < 10¡15.

The flrst part of our derivation follows in large part Matta and Reichel [18]
and Hunter and Regan [15]. From (22) we have that, for x > 0,

I :=
Z 1

¡1
f(t) dt = F (x); where f(t) := ei(x2+…=4) x

2…

e¡t2

x2 + it2
; (29)

and we have suppressed in our notation the dependence of f(t) on x. Choose
a step-size h > 0 for the trapezium rule and let

g(z) = i tan(…z=h);

which is a meromorphic function with simple poles at the points ¿k, deflned
by (25), which has the property that, for z = X + iH with X 2 R, H > 0,

j1 + g(z)j • 2e¡2…H=h

1 ¡ e¡2…H=h
: (30)

The approximation (27) is obtained by considering the integral in the complex
plane,

J =
Z

¡

f(z)(1 + g(z)) dz;

where the path of integration is from ¡1 to 1 along the real axis, except
that the path makes small semicircular deformations to pass above each of the
simple poles at the points ¿k, k 2 Z. Explicitly, the kth deformation is the
semicircle °k = f¿k + †e¡iµ : … • µ • 2…g, with † in the range (0; h=2) small
enough so that the simple pole singularity in f(z) at z = z0 := ei…=4x lies
above ¡ . Then, since f(z)g(z) is an odd function, we see that

J =
Z

¡

f(z) dz +
Z

¡

f(z)g(z) dz = I +
X

k2Z

Z

°k

f(z)g(z) dz:

In the limit † ! 0,
R

°k
f(z)g(z) dz ! ¡…i Res(fg; ¿k) = ¡hf(¿k), where

Res(g; ¿k) denotes the residue of fg at ¿k. Thus J = I ¡ Ih, where

Ih = h
X

k2Z
f(¿k) = 2h

1X

k=1

f((k ¡ 1=2)h) (31)

is a trapezium/midpoint rule approximation to I. On the other hand, where
¡H = fx + iH : x 2 Rg, by the residue theorem,

J =
Z

¡H

f(z)(1 + g(z)) dz + H
‡p

2 H ¡ x
·

P Ch;
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for H > 0, where H is the Heaviside step function and

P Ch = 2…i Res(f(1 + g); z0) =
1
2

(1 + g(z0)) =
1
2

‡
1 + i tan

‡
ei…=4x…=h

··
:

Thus
I = Ih + H

‡p
2 H ¡ x

·
PCh +

Z

¡H

f(z)(1 + g(z)) dz: (32)

The point here is that the integral over ¡H can be negligible so that a
good approximation is obtained by the modifled trapezium rule approximation,
Ih + H

¡p
2 H ¡ x

¢
P Ch. In particular, noting (30) and that, for z = X + iH,

jx2 + iz2j = jz0 ¡ zj jz0 + zj ‚ jx=
p

2 ¡ Hj jx=
p

2 + Hj = jx2=2 ¡ H2j
and that

R 1
¡1 e¡t2 dt =

p
…, we see that

flflflfl
Z

¡H

f(z)(1 + g(z)) dz

flflflfl • x eH2¡2…H=h

p
… jH2 ¡ x2=2j ¡

1 ¡ e¡2…H=h
¢ :

Choosing H = …=h, to minimise the exponent H2 ¡ 2…H=h, it follows that
I = Ih + H

¡p
2 …=h ¡ x

¢
P Ch + eh with

jehj • –1(x) :=
x e¡…2=h2

p
… j…2=h2 ¡ x2=2j ¡

1 ¡ e¡2…2=h2
¢ : (33)

Note that Ih + H
¡p

2 …=h ¡ x
¢

P Ch = Ih + R(h; x) is precisely the approxi-
mation (27), and that the above bound on eh is precisely the bound (28) from
[15].

Let I⁄
h := Ih + P Ch and e⁄

h := I ¡ I⁄
h. Then (33) implies that

je⁄
hj • –1(x); for 0 < x <

p
2 …=h: (34)

Since, applying (30),

jP Chj • e¡p
2 …x=h

1 ¡ e¡p
2 …x=h

;

we see that

je⁄
hj • –3(x) := –1(x) +

e¡p
2 …x=h

1 ¡ e¡p
2 …x=h

; for x >
p

2 …=h: (35)

The bounds (34) and (35) both blow up as x approaches
p

2 …=h. Contin-
uing to choose H = …=h, select † in the range (0; H) and consider the case
that flflflfl

xp
2

¡ H

flflflfl < †: (36)

In this case we observe that the derivation of (32) can be modifled to show
that

e⁄
h =

Z

¡∗H

f(z)(1 + g(z)) dz (37)



10 M. Alazah, S. N. Chandler-Wilde and S. La Porte

where the contour ¡ ⁄
H passes above the pole in f at z0; precisely, ¡ ⁄

H is the
union of ¡ 0 and °, where ¡ 0 = fz 2 ¡H : jz ¡ z0j > †g and ° is the circular
arc ° = fz0 + †eiµ : µ0 • µ • … ¡ µ0g, where µ0 = sin¡1((H ¡ x=

p
2)=†) 2

(¡…=2; …=2). For z 2 ¡ 0 it holds that

jx2 + iz2j = jz0 ¡ zj jz0 + zj ‚ † jx=
p

2 + Hj: (38)

Thus, and applying (30), similarly to (34) we deduce that
flflflfl
Z

¡ ′
f(z)(1 + g(z)) dz

flflflfl • x e¡…2=h2

p
… †j…=h + x=

p
2j ¡

1 ¡ e¡2…2=h2
¢ : (39)

To bound the integral over ° we note that, for z = X + iY = z0 + †eiµ 2 °,
(38) is true and Y ‚ H. Further, je¡z2 j = eP , where

P = Y 2¡X2 = 2x† sin(µ¡…=4)¡†2 cos(2µ) < 2x†+†2 • 2
p

2H†+(2
p

2+1)†2;

using (36). From these bounds and (30), deflning fi = †=H 2 (0; 1), we deduce
that

flflflfl
Z

°

f(z)(1 + g(z)) dz

flflflfl • 2x exp((2
p

2fi + (2
p

2 + 1)fi2 ¡ 2)…2=h2)
†j…=h + x=

p
2j ¡

1 ¡ e¡2…2=h2
¢ : (40)

Choosing fi = 1=4, we can bound e⁄
h using (37), (39), (40), and the triangle

inequality, to get that

je⁄
hj • –2(x) :=

4hx e¡…2=h2

…3=2j…=h + x=
p

2j ¡
1 ¡ e¡2…2=h2

¢
‡

1 + 2
p

… e¡fl…2=h2
·

; (41)

for x =h
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which, for x > 0, is bounded by

jTN j • hx

…

1X

m=N+1

e¡¿2
mp

x4 + ¿4
m

• x

2…
q

x4 + ¿4
N+1

ˆ
2he¡¿2

N+1 + 2h

1X

m=N+2

e¡¿2
m

!

• x

2…
q

x4 + ¿4
N+1

ˆ
2he¡¿2

N+1 + 2
Z 1

¿N+1

e¡t2dt

!

• x

2…
q

x4 + ¿4
N+1

ˆ
2he¡¿2

N+1 +
e¡¿2

N+1

¿N+1

!
=

(2h¿N+1 + 1)x

2…¿N+1

q
x4 + ¿4

N+1

e¡¿2
N+1 :

To arrive at the last line we have used that, for x > 0,

2
Z 1

x

e¡t2dt =
e¡x2

x
¡

Z 1

x

e¡t2

t2
dt <

e¡x2

x
: (45)

The choice of h we make is designed to approximately equalise ¢h(x) and
this bound on TN . We choose h so that H = …=h = ¿N+1 = (N + 1=2)h,
i.e., we make the choice h =

p
…=(N + 1=2) given by (26), in which case

¿N+1 = AN =
p

(N + 1=2)…, and ¿k = tk, where tk is deflned by (7). With
this choice of h it holds that

EN (x) = F (x) ¡ FN (x) = e⁄
h + TN

and that

jTN j • (2… + 1)x
2…AN

p
x4 + A4

N

e¡A2
N :

Thus we arrive at our main pointwise error bound, that

jEN (x)j • ·N (x) := ¢h(jxj) +
(2… + 1)jxj

2…AN

p
x4 + A4

N

e¡A2
N ; (46)

with h =
p

…=(N + 1=2) so that H = …=h = AN . We have shown this bound
for x > 0, but the symmetries (16) and (17) imply that EN (¡x) = ¡EN (x),
so that (46) holds also for x < 0, and, by continuity, also for x = 0 (and in
fact EN (0) = ·N (0) = 0). Explicitly, for this choice of h we have that

¢h(x) =

8
>>>>>>>>><
>>>>>>>>>:

x e¡A2
N

p
… (A2

N ¡ x2=2)
¡
1 ¡ e¡2A2

N

¢ ; 0 • xp
2

• 3
4 AN ;

4x e¡A2
N

‡
1 + 2

p
… e¡flA2

N

·

p
… AN (AN + x=

p
2)

¡
1 ¡ e¡2A2

N

¢ ; 3
4 AN <

xp
2

< 5
4 AN ;

x e¡A2
N

p
… (x2=2 ¡ A2

N )
¡
1 ¡ e¡2A2

N

¢ +
e¡p

2 AN x

1 ¡ e¡p
2AN x

;
xp
2

‚ 5
4 AN :

(47)
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We will compare jE9(x)j to the upper bound ·9(x) in Figure 2 below.
Note the factor exp(¡A2
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where

c⁄
N = 2e…N

"
¡
1 + 5

4

p
2…AN

¢
¢h

¡
5
4

p
2 A¡

N

¢
+

(2… + 1)
2…

e¡A2
N

AN

µ
1p

2 AN

+
p

…

¶#

=
10

p
2

¡
4 + 5

p
2…AN

¢ ‡
1 + 2

p
…e¡flA2

N

·

9
p

… e…=2 AN

¡
1 ¡ e¡2A2

N

¢ +
(2… + 1)
…e…=2AN

µ
1p

2 AN

+
p

…

¶
:

Note that c⁄
N decreases as N increases, with c⁄

1 … 10:4 and limN!1 c⁄
N =

100e¡…=2=9 … 2:3. The bound (51) shows exponential convergence of the rel-
ative error, jFN (x) ¡ F (x)j=jF (x)j, uniformly on the real line, in particular
showing that the relative error is • 1:6 £ 10¡16 on the whole real line if
N = 12 (see Figure 1 below).

The above estimates use (46) and (47) to bound the maximum absolute and
relative errors in the approximation FN (x). Let us note that these inequalities,
additionally, imply that FN (x) is particularly accurate for jxj small. For jxj •
AN =

p
2 =

p
(N + 1=2)…=2, it follows from (46) and (47) that

jF (x) ¡ FN (x)j • ·(x) • ~cN jxj e¡…N

2N + 1
(52)

where

~cN =
8

3…3=2e…=2
¡
1 ¡ e¡2A2

N

¢ +
(2… + 1)

…2e…=2AN
: (53)

Note that ~cN decreases as N increases, with ~c1 … 0:17 and limN!1 ~cN =
8=(3…3=2e…=2) … 0:10.

In x1 we have made claims regarding the analyticity of the approximation
FN (x), considered as a function of x in the complex plane. We justify these
claims now. One attractive feature of the modifled trapezium rule approxima-
tion I⁄

h is that, in contrast to Ih, it is entire as a function of x. This is not
immediately obvious: I⁄

h = Ih +PCh, and P Ch has simple pole singularities at
x = e¡i…=4¿k, k 2 Z. But Ih also has simple poles at the same points and it is
an easy calculation to see that the residues add to zero, so that the singulari-
ties cancel out. Since FN (x) = I⁄

h ¡ TN , with h given by (26), it follows that
the singularities of FN (x) are those of TN , i.e., simple poles at §e¡i…=4tk, for
k = N +1; N +2; :::. Thus FN (x) is a meromorphic function and, in particular,
is analytic in the strip jIm(x)j < AN =

p
2 and in the flrst and third quadrants

of the complex plane.
We will note two consequences of this analyticity and the bounds that

we have already proved. In these arguments we will use an extension of the
maximum principle for analytic functions to unbounded domains, that if w(z)
is analytic in an open quadrant in the complex plane, let us say Q = fz 2 C :
0 < j arg(z)j < …=2g, and is continuous and bounded in its closure, then

sup
z2Q

jw(z)j • sup
z2@Q

jw(z)j; (54)
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where @Q denotes the boundary of the quadrant. (This sort of extension of the
maximum principle to unbounded domains is due to Phragmen and Lindelõf;
see, e.g., [25].)

The flrst consequence is that, from (11), (12), and (18), it follows that
(12) holds if x is real or if x = iY with Y 2 R, i.e., the bound (12) holds on
both the real and imaginary axes. Further, from (20) and the asymptotics of
erfc(x) in the complex plane [2, (7.1.23)], it follows that F (x) ! 0, uniformly
in arg(x), for 0 • arg(x) • …=2; moreover, it is clear from (6) that the same
holds for FN (x) and hence for EN (x). Thus (54) implies that (12) holds for
0 • arg(x) • …=2, and (16) and (17) then imply that (12) holds also for
… • arg(x) • 3…=4.

It is clear from the derivations above that, if h is given by (26), then I⁄
h

also satisfles the bound (12), i.e.,

jF (x) ¡ I⁄
hj • cN

e¡…N

p
N + 1=2

; (55)

this holding in the flrst instance for real x, then for imaginary x, and flnally for
all x in the flrst and third quadrants. The bound (12) cannot hold in the second
or fourth quadrant because EN (x) = F (x)¡FN (x) has poles there. This issue
does not apply to F (x) ¡ I⁄

h, which is an entire function, but (55) cannot hold
in the whole complex plane because this, by Liouville’s theorem ([25]), would
imply that F (x) ¡ I⁄

h is a constant. What does hold is that e¡ix2
(F (x) ¡ I⁄

h)
is bounded in the second and fourth quadrants, this a consequence of the
deflnition of I⁄

h and the asymptotics of ez2
erfc(z) at inflnity. Thus it follows

from (54), and since je¡ix2 j = 1 if x is real or pure imaginary, that

jF (x) ¡ I⁄
hj • cN e¡XY e¡…N

p
N + 1=2

; (56)

for x = X + iY in the second and fourth quadrants.
We can use the bound (56) to obtain a bound on EN (x) in the second and

fourth quadrants. Clearly, where TN is deflned by (44), with h given by (26),
for x = X + iY in the second and fourth quadrants,

jF (x) ¡ FN (x)j • cN e¡XY e¡…N

p
N + 1=2

+ jTN j:

Further, arguing as below (44), if jY j • AN =(2
p

2) so that

jx2+it2
kj ‚

µ
ANp

2
¡ jY j

¶ ˆµ
ANp

2
¡ jY j

¶2

+
µ

ANp
2

+ jXj
¶2

!
‚ AN

2
p

2

¡
A2

N =8 + jXj2¢
;

which implies that jx2 + it2
kj ‚ jxjAN =(2

p
2), then

jTN j • e¡XY (2… + 1)
p

2
…A2

N

e¡A2
N = e¡XY

p
2(2… + 1)

…3=2 exp(…=2)(N + 1=2)
e¡…N :
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Thus, for x = X+iY in the second and fourth quadrants with jY j • AN =(2
p

2),

jF (x) ¡ FN (x)j • ĉN e¡XY e¡…N

p
N + 1=2

(57)

where

ĉN := cN +
p

2(2… + 1)
…3=2 exp(…=2)

p
N + 1=2

: (58)

The sequence ĉN is decreasing with ĉ1 … 1:14 and limN!1 ĉN = limN!1 cN …
0:208.

We observe above that the bound (12) on EN (x) = F (x)¡FN (x) holds for
all complex x
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and are given explicitly in (8) and (9). We note the similarity between (8) and
(9) and the formulae [1, (7.5.3)-(7.5.4)]

C(x) = 1
2 + f(x) sin

¡
1
2 …x2

¢ ¡ g(x) cos
¡

1
2 …x2

¢
; (62)

S(x) = 1
2 ¡ f(x) cos

¡
1
2 …x2

¢ ¡ g(x) sin
¡

1
2 …x2

¢
; (63)

which express C(x) and S(x) in terms of the auxiliary functions, f(x) and
g(x
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function [C,S] = fresnelCS(x,N)

% Evaluates approximations to the Fresnel integrals C(x) and S(x).

% x is a real scalar or matrix,

% N is a positive integer controlling accuracy (suggest N=12),

% C and S are the scalars/matrices of the same size as x approximating C(x) and S(x).

h = sqrt(pi/(N+0.5));

t = h*((N:-1:1)-0.5); AN = pi/h; rootpi = sqrt(pi);

t2 = t.*t; t4 = t2.*t2; et2 = exp(-t2);

x2pi2 = (pi/2)*x.*x; x4 = x2pi2.*x2pi2;

a = et2(1)./(x4+t4(1)); b = t2(1)*a;

for n = 2:N

term = et2(n)./(x4+t4(n));

a = a + term; b = b + t2(n)*term;

end

a = a.*x2pi2;

mx = (rootpi*AN)*x; Mx = (rootpi/AN)*x;

Chalf = 0.5*sign(mx); Shalf = Chalf;

select = abs(mx)<39;

if any(select)

mxs = mx(select); shx = sinh(mxs); sx = sin(mxs);

den = 0.5./(cos(mxs)+cosh(mxs));

Chalf(select) = (shx+sx).*den;

ssdiff = shx-sx;

select2 = abs(mxs)<1;

if any(select2)

mxs = mxs(select2); mxs3 = mxs.*mxs.*mxs; mxs4 = mxs3.*mxs;

ssdiff(select2) = mxs3.*(1/3 + mxs4.*(1/2520 ...

+ mxs4.*((1/19958400)+(0.001/653837184)*mxs4)));

end

Shalf(select) = ssdiff.*den;

end

cx2 = cos(x2pi2); sx2 = sin(x2pi2);

C = Chalf + Mx.*(a.*sx2-b.*cx2); S = Shalf - Mx.*(a.*cx2+b.*sx2);

Table 2 Matlab code to evaluate CN (x) and SN (x) given by (8) and (9). See x3 for details.

applied. In particular, from (50) and (52) it follows that both jC(x) ¡ CN (x)j
and jS(x) ¡ SN (x)j are

• 2cN
e¡…N

p
2N + 1

; for x 2 R; (65)

and

• p
… ~cN jxj e¡…N

2N + 1
; for jxj •

p
N + 1=2 : (66)

Here cN < 0:83 and ~cN < 0:18 are the decreasing sequences of positive numbers
deflned by (8) and (53), respectively.

These bounds show that CN (x) and SN (x) are exponentially convergent as
N ! 1, uniformly on the real line, so that very accurate approximations can
be obtained with very small values of N ((65) shows that both jCN (x)¡C(x)j
and jSN (x)¡S(x)j are • 1:4£10¡16 on the real line for N ‚ 11). In x4 we will
conflrm the efiectiveness of these approximations by numerical experiments,
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checking the accuracy of (8) and (9) by comparison with the power series [1,
x7.6(i)]

C(x) =
1X

n=0

(¡1)n
¡

1
2 …

¢2n
x4n+1

(2n)!(4n + 1)
; S(x) =

1X
n=0

(¡1)n
¡

1
2 …

¢2n+1
x4n+3

(2n + 1)!(4n + 3)
: (67)

It follows from the analyticity of FN (x) in the complex plane, discussed in
x2, that FN (x) has a Maclaurin series convergent in jxj < AN =

p
2, and from

(61) that CN (x) and SN (x) have convergent Maclaurin series representations
in jxj < AN =

p
…. From the observations below (19) it is clear that, echoing

(67), these take the form

CN (x) =
1X

n=0

cnx4n+1; SN (x) =
1X

n=0

snx4n+3: (68)

Further, it follows from (61) and (59) that the coe–cients cn and sn are close
to the corresponding coe–cients of C(x) and S(x), with the difierence having
absolute value

•
p

2 ĉN
e¡…(N¡1=2)

p
N + 1=2

; (69)

for N ‚ 4, where ĉN • ĉ4 < 0:77 is the decreasing sequence of positive
numbers given by (58). This implies that, near zero, where C(x) has a simple
zero and S(x) a zero of order three, the approximations CN (x) and SN (x)
retain small relative error. For CN (x) this follows already from (66) but to see
this for SN (x) we need the stronger bound implied by (69) that, for jxj < 1,

jS(x) ¡ ((66))-293(but)-293(to)]8 0 TD[(()]TJ/F7 9.96 Tf 3.4S•

2 ĉNe
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Methods for evaluation of w(z) based on continued fraction representations
for larger complex z (which can be applied to evaluate F (x) and hence C(x)
and S(x)) are also discussed in Gautschi [11] and are flnely tuned, to form
TOMS \Algorithm 680", in Poppe and Wijers [21,22], which achieves relative
errors of 10¡14 over \nearly all" the complex plane by using Taylor expansions
of degree up to 20 in an ellipse around the origin, convergents of up to order
20 of continued fractions outside a larger ellipse, and a more expensive mix of
Taylor expansion and continued fraction calculations in between.

Weideman [29] presents an alternative method of computation (the deriva-
tion starts from the integral representation (21)) which approximates w(z) by
the polynomial

wM (z) =
2

L2 + z2

MX
n=0

anZn¡
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Fig. 1 Left hand side: maximum error, maxx‚0 jF (x) ¡ FN (x)j, and its upper bound (12)

(¡), plotted against N , where F (x) is approximated by F w(x) := eix2
w36(ei…=4x)=2 with

w36(
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Fig. 2 Left hand side: maximum error, maxx‚0 jF (x) ¡ F w(x)j, where F w(x) :=

eix2
wM (ei…=4x)=2 with wM (z) given by (71), plotted against M . Right hand side: same,

but maximum relative error, maxx‚0 j(F (x) ¡ F w(x))=F (x)j, is plotted against M . In each
plot the two curves correspond to difierent methods for approximating the exact value of
F (x), either F (x) … F20(x) given by (5) (¡), or F (x) … F w(x) with M = 50 (¡¡).

is large enough in (71). Exploring this in more detail, in Figure 2 the maximum
absolute and relative errors in the approximation F w(x) = eix2

wM (ei…=4x)=2
for F (x), with wM (z) given by (71), are plotted against M . (The maxima, as
in Figure 1, are taken over 40,000 equally spaced points between 0 and 1,000.)
In each of the plots in Figure 2 the trend is one of exponential convergence,
but the convergence is not monotonic and is slower than that in Figure 1.

In Figure 3 we plot against x the absolute and relative errors in FN (x)
for N = 9. On the same graphs we plot the upper bounds ·N (x) and 2(1 +p

… x)·N (x), respectively, with ·N (x) deflned by (46). We see that the the-
oretical error bounds are upper bounds as claimed, and that these bounds
appear to capture the x-dependence of the errors fairly well, for example that
EN (x) = O(x) as x ! 0, = O(x¡1) as x ! 1, and that EN (x) reaches a
maximum at about x =

p
2 AN =

p
…(2N + 1) (… 7:7 when N = 9).

The above flgures explore the accuracy of the approximation FN (x). Let
us comment now on e–ciency. Most straightforward is a comparison of the
Matlab function F(x,N) in Table 1 with computation of F (x) via the Mat-
lab code exp(i*x.^2).*cef(exp(i*pi/4)*x,36)/2 that uses cef.m from [29]
which implements (71). Both F(x,N) and cef(x,M) are optimised for e–ciency
when x is a large vector. Assuming that the time for computation in cef of the
coe–cients an in (71) is negligible, the main cost in computation of F (x) via
cef when x is a large vector is a complex vector exponential (for eix2

), slightly
more than M complex vector multiplications and M additions, and 2 complex
vector divisions (all vector operations componentwise). The major part of this
computation is that required to evaluate the polynomial (71) of degree M us-
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0 5 10 15 20

Fig. 3 Left hand side: absolute error, jF (x)¡FN (x)j (¡), and its upper bound ·N (x) given
by (46) (¡¡), plotted against x. Right hand side: relative error, jF (x) ¡ FN (x)j=jF (x)j (¡),
and its upper bound 2(1 +

p
… x)·N (x) (¡¡), plotted against x. In both plots N = 9 and

F (x) is approximated by F20(x).

ing Horner’s algorithm. In comparison, evaluation of F (x) using the function
F(x,N) in Table 1 requires 2 complex vector exponentials, one complex vec-
tor division, and slightly more than N real vector multiplications/divisions,
real vector additions, complex vector multiplications, and complex vector ad-
ditions. From Figures 1 and 2 we read ofi that to achieve absolute and relative
errors below 10¡8 requires N = 6 and M = 18; to achieve errors below 10¡15

requires N = 12 and M = 36. Thus it seems clear that computing F (x) via
F(x,N) requires a substantially lower operation count than computing via cef.
(We note, moreover, as discussed in x3.1 and in x7 of [29], that, at least for
intermediate values of x (1:5 • x • 5), the operation counts via cef are lower
than those required via the method for w(z) of [21,22].)

To test whether F(x,N) is faster we have compared computation times in
Matlab (version 7.8.0.347 (R2009a), running on a laptop with dual 2.4GHz
P8600 Intel processors) between exp(i*x.^2).*cef(exp(i*pi/4)*x,36)/2
and F(x,12) when x is a length 107 vector of equally spaced numbers between
0 and 1,000. The elapsed times (average of 10 executions) were 11.1 and 15.6
seconds, respectively, so that F(x,12) is a little less than 50% faster.

Turning to C(x) and S(x), these can of course be computed using F(x,N)
to calculate FN (x), and then using (61) which incurs negligible additional com-
putation. This is entirely satisfactory except for small x, where this method
fails to maintain small relative errors. As discussed in x3, the Matlab func-
tion fresnelCS.m in Table 2 directly implements (8) and (9), taking care
in the evaluation of sinh ¡ sin in (9) so as to achieve the high accuracy of
SN (x) for small jxj predicted in (70). To test the e–ciency and accuracy of
the implementation in Table 2 we have compared evaluation of C12(x) and
S12(x) via fresnelCS with their evaluation via F(x,12) and (61), computing
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C12(x) and S12(x) at 107 equally spaced x-values between 0 and 20. The values
of C12(x) and S12(x) computed by these slightly difierent methods difier by
• 4:5 £ 10¡15; this good but not perfect agreement is because there is a dif-
ference between exp(i(

p
…=2 x)2) and exp(i…x=2) in °oating point arithmetic.

In this test fresnelCS requires only 67% of the computation time of comput-
ing via F(x,12), this because the real arithmetic in fresnelCS is faster and
because the expressions (64), with t =

p
2 AN x, are evaluated (e–ciently and

accurately) in fresnelCS as sign(t) when jtj ‚ 39 (corresponding to x ‚ 3:51
for N = 12), as discussed in x3.
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Fig. 4 Left hand side: maximum values of jCN (x)¡C(x)j and jSN (x)¡S(x)j on 0 • x • 20.
Right hand side: maximum values of jCN (x) ¡ C(x)j=C(x) and jSN (x) ¡ S(x)j=S(x) on
0 • x • 20.

These small absolute errors in CN (x) and SN (x), evaluated by fresnelCS,
do not guarantee small relative errors near the only zero of C(x) and S(x)
at x = 0. Near zero, from (67), C(x) … x and S(x) … …x3=6, so very ac-
curate calculations are needed to maintain small relative errors. The bounds
(66) and (70) do, in fact, guarantee small relative errors near zero in infl-
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errors are • 4:5 £ 10¡16 for N ‚ 11, the maximum relative error in CN (x) is
… 3:6 £ 10¡15 for N = 11 and that in SN (x) as large as 2:7 £ 10¡13. These
errors may be entirely acceptable, but the truncated power series (67) must
achieve smaller errors for small x, and may be cheaper to evaluate. (In fact,
evaluating at 107 equally spaced points between 0 and 1:5 takes 2.9 times
longer in Matlab with fresnelCS than evaluating 15 terms of both the series
(67) via Horner’s algorithm.)

5 Extensions and Concluding Remarks

To conclude, we have presented in this paper new approximations for the
Fresnel integrals, derived from and inspired by modifled trapesium rule ap-
proximations previously suggested for the complementary error function of
complex argument in [18,15]. These approximations are simple to implement
(Matlab codes are included in Tables 1 and 2): the computation of FN (x) re-
quires a couple of complex exponentiations and a short summation to compute
a quadrature sum, and that of CN (x) and SN (x) evaluation of trigonomet-
ric and hyperbolic functions and a similar short summation. The numerical
methods are proven to converge exponentially (in absolute and relative error),
approximately in proportion to exp(¡…N) where N is the number of quadra-
ture points used. Simple explicit error bounds are provided, and the predicted
exponential convergence is precisely observed in practice. The approximation
FN (x) with N
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With respect to this hope, most obviously the results in this paper suggest
a revisit of the methods of [18,15] for erfc(z). Clearly, (20) suggests erfcN (z) :=
2FN (ei…=4z), given explicitly as

erfcN (z) =
2

e2AN z + 1
+

2z

AN
e¡z2

NX

k=1

e¡t2k

z2 + t2
k

; (72)

as an approximation for erfc(z). (For 0 < Re(z) < AN , this is precisely the
approximation of [15] truncated to N quadrature points and with the par-
ticular choice (26) for h made.) The results of x2 show that (12) holds for
0 • arg(x) • …=2 and for … • arg(x) • 3…=4 which implies that

jerfc(z) ¡ erfcN (z)j • 2cN
e¡…N

p
N + 1=2

< 2
e¡…N

p
N + 1=2

; (73)

for j arg(z)j • …=4 and 3…=4 • arg(z) • 5…=4. This is a strong result in
3…=4 • arg(z) • 5…=4, where it is known that jerfc(z)j ‚ 1 so that (73) is
a bound on both the absolute and relative error. However, in j arg(z)j < …=4
the bound (73) is less satisfactory. In particular, since erfc(x) » e¡x2

=(
p

…x)
as x ! +1, for larger x > 0 (73) does not guarantee small relative errors.
Indeed, erfcN (x) » 2e¡2AN x has the wrong asymptotic behaviour as x ! +1.

A large part of a possible flx and analysis is already in [18] and [15] (see
equations (7)-(8) in [15] and cf. (27), [19]), namely to discard the flrst term in
(73) for Re(z) > AN , so that erfc(z) is approximated by

erfc0
N (z) = RN (z) +

2z

AN
e¡z2

NX

k=1

e¡t2k

z2 + t2
k

; (74)

where

RN (z) :=
‰

2=(e2AN z + 1); Re(z) • AN ;
0; Re(z) > AN :

Figure 5 plots the supremum, on 0 • x • 25, of the absolute and relative errors
in erfc0

N (x) against N , computing erfc(x) with the inbuilt Matlab function
erfc, and with erfc0

20. Clearly, both plots show exponential convergence at
a rate approximately proportional to e¡…N . The absolute error in erfc0

N is
< 4:5 £ 10¡16 for N ‚ 10 and the relative error < 6:7 £ 10¡16 for N = 12,
while the maximum relative error of the standard Matlab function is limited
to about 5:7£10¡14
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In the right hand flgure we plot this lower bound which accurately predicts the
maximum error, this suggestive that the small size of error present is associated
with the discontinuity in erfc0

N .
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A Appendix

In this appendix we prove the bounds

1
2

‚ jF (x)j ‚ 1
2

flflei…=4 +
p

… x
flfl =

1

2
p

1 +
p

2… x + …x2
‚ 1

2 + 2
p

… x
; (76)

for x ‚ 0. The lower bounds in (76), which appear to be new, are used in x2
to prove an upper bound on the relative error in the approximation FN (x) to
F (x). From (76) and (16) we immediately deduce bounds for negative argu-
ments which are also used in x2, that

3
2

‚ jF (¡x)j ‚ 1
2

; for x ‚ 0: (77)

We can also immediately deduce bounds on the version of the Fresnel integral
deflned by (4), and on the complementary error function of argument §…=4
(via (20) and that erfc(z) = erfc(„z)), for example that

jF(x)j ‚ 1p
2 + …x

and
flflflerfc

‡
e§i…=4x

·flflfl ‚ 1
1 +

p
… x

; for x ‚ 0: (78)

The remainder of this appendix is the proof of (76). But note flrst that
both

L1(x) :=
1

2
p

1 +
p

2… x + …x2
and L2(x) :=

1
2 + 2

p
… x

(79)

are sharp lower bounds for jF (x)j for x = 0 (since jF (0)j = L1(0) = L2(0) =
1
2 ) and in the limit x ! +1 (since jF (x)j » (2

p
…x)¡1 as x ! +1, and

L1(x) and L2(x
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where, for n = 0; 1; :::;

gn(x) :=
Z 1

¡1

e¡x2u2
u2n

1 + u4
du:

Clearly, gn(x) > 0 is well-deflned for all n and all x > 0 by this deflnition,
and also for x = 0 for n = 0; 1, with (this computation done, e.g., by contour
integration) g0(0) = g1(0) = …=

p
2. Further, for x > 0 (and x = 0 for n = 0),

g0
n(x) = ¡2xgn+1(x) < 0; (81)

so that
gn(x) < gn(0) =

…p
2

; for x > 0 and n = 0; 1: (82)

Using this last inequality in (80) gives jF (x)j • 1
2 , for x ‚ 0. Moreover, (80)

implies that

2
flflflei…=4 +

p
… x

flflfl jF (x)j ‚ G(x) :=
1p
2 …

Re
‡‡

1 +
p

2… x + i
·

(g0(x) ¡ ig1(x))
·

=
1p
2 …

‡
(1 +

p
2… x)g0(x) + g1(x)

·
: (83)

Clearly, (76) will follow if we can show that G(x) ‚ 1 for x ‚ 0.
Now, for x > 0,

g0(x) + g2(x) =
Z 1

¡1
e¡x2u2

du =
p

…

x
; (84)

so that, for x ‚ 0,

g0
1(x) = ¡2xg2(x) = ¡2

p
… + 2xg0(x)

and

g0(x) = g0(0) +
Z x

0

g0
0(t) dt =

…p
2

¡ 2
Z x

0

tg1(t) dt; (85)

g1(x) = g1(0) +
Z x

0

g0
1(t) dt =

…p
2

¡ 2
p

…x + 2
Z x

0

tg0(t) dt: (86)

From (82) we see that g0(x) • …=
p

2, and then from (86) that

g1(x) • …p
2

¡ 2
p

…x +
…p
2

x2:

It follows from (85) that

g0(x) ‚ …p
2

¡ …p
2

x2 +
4
3

p
… x3 ¡ …

2
p

2
x4; (87)

and then from (86) that

g1(x) ‚ …p
2

¡ 2
p

…x +
…p
2

x2 ¡ …

2
p

2
x4 +

8
15

p
… x5 ¡ …

p
2

12
x6; (88)
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all these bounds holding for x ‚ 0. Using these lower bounds in (83) we see
that, for x ‚ 0,

G(x) ‚ 1 +
1p
2…

(… ¡ 2)x ¡ 1p
2…

µ
… ¡ 4

3

¶
x3 +

5
6

x4 ¡
r

2
…

µ
…

4
¡ 4

15

¶
x5 ¡ x6

12

= 1 +
xp
2…

h0(x);

where

h0(x) = … ¡ 2 ¡
µ

… ¡ 4
3

¶
x2 +

5
p

2…

6
x3 ¡

µ
…

2
¡ 8

15

¶
x4 ¡

p
2…

12
x5:

We will show now that h0(x) > 0 for 0 • x • 1 which will show that
G(x) ‚ 1 for 0 • x • 1. To see this we observe that h0

0(x) = xh1(x) where

h1(x) = ¡2
µ

… ¡ 4
3

¶
+

5
p

2…

2
x ¡

µ
2… ¡ 32

15

¶
x2 ¡ 5

p
2…

12
x3

< ¡10
3

+ 7x ¡ 4x2 = ¡
µ

2x ¡ 7
4

¶2

+
1
15

¡ 1
3

< 0;

so that h0
0(x) < 0 for x > 0. Thus, for 0 • x • 1,

h0(x) ‚ h0(1) =
3
p

2…

4
¡ …

2
¡ 2

15
> 0:

We have shown that G(x) ‚ 1 for 0 • x • 1. It remains to show that
G(x) ‚ 1 for x > 1. To see this we make use of (83) and (84) which give that,
for x > 0,

G(x) >
1p
2 …

(1 +
p

2… x)
µp

…

x
¡ g2(x)

¶

= 1 +
1p
2… x

µ
1 ¡

µ
1p
…

+
p

2 x

¶
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To show that G(x) ‚ 1 for 1 < x <
p

2 we need a sharper upper bound on
g2(x) than (90). To obtain this upper bound we write

xg2(x) = I :=
Z 1

¡1

e¡t2 t4

x4 + t4
dt;

and approximate this integral by the trapezium rule as

Ih = h

1X
n=¡1

e¡n2h2
n4h4

x4 + n4h4
= 2h

1X
n=1

e¡n2h2
n4h4

x4 + n4h4
:

Arguing as in x2 (or see [24, x5.1.4]), the error in this trapezium rule approx-
imation is I ¡ Ih = PCh + E⁄

h, where PCh, a pole contribution, and E⁄
h are

given by

PCh = 2…i(r0 + r1) and E⁄
h =

Z

¡H

f(z)(1 + g(z)) dz:

Here, f(z) = e¡z2
z4
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provided that H > x. In particular, for 1 < x <
p
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