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Abstract

Variational data assimilation is commonly used in environmental fore-
casting to estimate the current state of the system from a model forecast
and observational data. The assimilation problem can be written simply
in the form of a nonlinear least squares optimization problem. However
the practical solution of the problem in large systems requires many care-
ful choices to be made in the implementation. In this article we present
the theory of variational data assimilation and then discuss in detail how
it is implemented in practice. Current solutions and open questions are
discussed.

KEYWORDS: 3D-Var, 4D-Var, adjoint model, background errors, er-
ror covariance, incremental formulation, nested models, observation er-
rors, optimization, reduced order models, tangent linear model, weak-
constraint.

1 Introduction

Data assimilation is the process of combining a numerical model forecast with
observational data in order to estimate the current state of a dynamical system.
It has been an essential part of numerical weather prediction (NWP) since its
beginnings in the 1940s, when it was recognized that errors in the initial model
state could rapidly lead to large errors in the forecast. Early data assimilation
schemes were based on a simple interpolation between the observations and
the model state, with later schemes also taking account of the statistics of
the errors in the data. Such schemes included smoothing splines, successive
correction, optimal interpolation and analysis correction [68], [71]. The possible
use of methods based on variational calculus was proposed by Sasaki [86], [87]
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in the late 1950s and 1960s, but at the time a practical implementation was
not possible. A real breakthrough in the application of variational schemes to
NWP came in the late 1980s with a series of papers demonstrating how the



that are related to the model state through the equation
Vi = Hi(xi) + 2

where H; : RP* — R" is known as the observation operator and maps the state
vector to observation space. The observation errors ; are usually assumed to be
unbiased, serially uncorrelated, Gaussian errors with known covariance matrices
R;. For the numerical weather prediction problem the vector x; would contain
several meteorological variables, such as pressure, temperature and the three-
dimensional wind, at each grid point of the model domain. The observation
operator H; may just be a simple interpolation in space, if the state variable
is observed directly. However, it could be a much more complicated nonlinear



data assimilation is discussed in more detail in section 3.4. On each iteration
of such methods the value of the cost function and its gradient at the current
iterate must be calculated. The gradient of (3) with respect to the initial state
Xp can be found by rst solving the discrete adjoint equations

i =M{ s — HIR Y(Hi(xi) — i) 4)

where  are the adjoint variables, with N+1 = 0, and H; and M; are the
Jacobians of the nonlinear operators H; and M; with respect to the state vari-
able x;. In the data assimilation literature these Jacobians are referred to as
the tangent linear operator and the tangent linear model (TLM). The gradient
of the cost function with respect to the initial state is then given by

VI (%) =— o+ B (xo—x%; ®)

where the operators H] and M/ are the adjoints of the observation operator
and the nonlinear model. We note that these adjoints are usually taken with
respect to the Euclidean inner product and therefore the adjoint is equivalent
to the matrix transpose of the Jacobians. Other inner products are only neces-
sary where a physical interpretation of the adjoint variables is required. Each
iteration of a numerical optimization method therefore requires one run of the
forward model (1) to calculate the value of the cost function and one run of the
adjoint model (4) to calculate the gradient. This makes 4D-Var very expensive
from a computational point of view.

2.1 Incremental variational data assimilation

The possibility of implementing variational data assimilation in an operational
setting came with the proposal of incremental variational data assimilation [19].
In this formulation the solution to the nonlinear miminimization problem (3) is
approximated by a sequence of minimizations of linear quadratic cost functions.
We de ne x(()k) to be the k'™ estimate to the solution and linearize the cost
function (3) around the model trajectory forecast from this estimate. The next

estimate is then de ned by

XD = 59 + X ©
where the perturbation x(()k) € R" is a solution of the linearised cost function
K 1« K
TR = S0x7 — " =x®DTB (x5 — [x —x®)
1 X
+ 5 H —d)TRIH O —d): @)
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Here dgk) =VYi —Hi(xi(k)), where xi(k) is the nonlinear trajectory calculated from
the current estimate at the initial time using the nonlinear model equation (1).
The perturbation X; satis es the linear dynamical equation

Xi+1 = M X;: (€))



The linearized observation operator H; and the tangent linear model operator
M; are evaluated at the current estimate of the nonlinear trajectory, usually
called the linearization state. The minimization (7) is referred to as the inner

loop, while the update of the nonlinear model trajectory xgk) is the outer loop.
On each iteration of the inner loop the TLM is integrated to calculate the
evolution of the perturbation, in order to calculate the cost function (7), and
the adjoint model is integrated to provide the gradient. A major advantage of
the incremental approach is that the inner loop minimization problem may be
solved in a smaller dimensional space than the outer loop step, for example at a
lower spatial resolution. In this way the TLM and adjoint model need only be
run at the lower resolution on each inner loop iteration, while the linearization
trajectory from the nonlinear model is still calculated at the higher resolution
on each outer loop. The computational savings made by implementing the inner
loop in this way made incremental 4D-Var feasible for operational weather and
ocean forecasting.

The incremental method was later shown to be equivalent to an inexact
Gauss-Newton method applied to the original nonlinear cost function (3) [58].



3 Practical implementation

3.1 Model development

The development of a 4D-Var scheme for the large models used in operational
weather and ocean forecasting is often a huge undertaking. In most cases the
nonlinear model code already exists and has been developed over many years.
These models are very large pieces of software, with maybe close to one million
lines of code. In order to develop an incremental 4D-Var scheme the code for
the TLM and adjoint model must rst be written. The development of a TLM
code and adjoint model code from the source code of a nonlinear model is a
fairly automatic procedure. The correct code for the TLM can be found from
a linearization of each statement of the nonlinear model source code, based on
treating the nonlinear model as a series of arithmetic operations and applying
the chain rule. The adjoint model is then found by a line-by-line transpose of
the TLM source code in reverse order. This method is known as automatic
di erentiation. We do not go into details of its application here, but refer the
reader to several good introductions in the literature [18], [8], [85], [33]. The au-
tomatic nature of this procedure has led to many software tools being developed
that will produce a TLM and adjoint model code from a nonlinear mode source
code. These automatic di erentiation tools, or automatic adjoint compilers, are
now available commercially for many di erent programming languages. 2

In practice the TLM and adjoint models of many large environmental models
have been developed by hand, rather than using the automatic compilers. There
are several reasons for this. The rstis that in many cases of operational weather
and ocean forecasting the complexity of the already exisiting nonlinear model
codes was such that simple application of the automatic compilers was not
possible. In many cases, particularly for large codes developed by many people,
it is necessary to tidy the nonlinear model codes to make them suitable for use
with the automatic compilers. Many centres felt that the e ort to do this would
have been greater than coding the TLM and adjoint model by hand.

The second reason for developing the TLM and adjoint codes by hand arises
from the nature of the incremental approach to variational data assimilation.
Since the TLM and adjoint are run at a lower resolution in the inner loop,
the TLM is already an approximate linearization of the nonlinear model used
in the outer loop. It is therefore justi able to make further simpli cations in
the TLM, in order to reduce the computational cost. As long as the adjoint
model is derived from the approximate TLM, then the inner loop minimization
will contain the correct gradient information for convergence. In coding the
models by hand it is easier to make such simpli cations based on physical ar-
guments. For example, many meteorological models contain parametrizations
of sub-grid-scale processes (known as the physics in the meteorological litera-
ture), which include such things as clouds, precipitation and surface drag. The
schemes used to represent these processes can be highly complex and often in-

2The term automatic di erentiation refers to the approach itself, not just to the automatic
tools.



clude non-di erentiable functions, such as on-o switches. While it is possible
for automatic di erentiation to deal with such functions it is usually felt that
this level of compexity is not necessary in the TLM and adjoint model. Hence
a series of simpler parametrizations have been developed solely for use in incre-
mental 4D-Var, that capture the main behaviour of the more complex schemes
[100], [51], [82], [74].

An alternative approach, devised by the Met O ce, is to start from the
premise that the linear model must evolve nite and not in nitesimal perturba-
tions and so there is no need for the linear model to be tangent to any nonlinear
model. In this approach the linear model is designed with this in mind. In
particular, the resolved dynamics is approximated by a discretization of the
linearized continuous equations, with various simpli cations in the equations
and the discretization. Then simpli ed parametrizations can be used to repre-
sent sub-grid-scale processes [72], [60]. The adjoint model is derived from this
approximate linear model by the process of automatic di erentiation, ensuring
that it provides the exact gradient of the discrete linear cost function.

An essential part of the development of the linear and adjoint models is
their testing, as any small mistakes could lead to lack of convergence of the
minimization algorithms. Robust tests exist to check the coding of a TLM and
adjoint model. The test for the TLM is based on comparing the evolution of
a perturbation in the TLM with the evolution of the same perturbation in the
nonlinear model. A Taylor series expansion of the nonlinear model operator
shows that the evolutions should be closer together as the perturbation size is



this matrix determine the relationships between increments to di erent physical
variables or between increments at di erent spatial points. Thus this matrix is
fundamental in allowing information to be inferred about unobserved variables
or unobserved regions. However, it is usually impossible to represent this matrix
in matrix form. If the state vector is of size n then the matrix B is of size n x n
and when n is of order 108 this matrix is impossible to calculate or store. Instead
the action of this matrix is usually represented by a variable transform.

We consider the variable transform in the context of incremental variational
data assimilation, since that is how it is usually implemented. We de ne a new
variable z; € R™ and a transformation matrix U; € R™ ", such that

Xi = U; z;; i=0;:::;N: (10)
In terms of this new variable the incremental cost function (7) can be written
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related. For the vertical correlations a transformation to the eigenvectors of a
vertical error covariance matrix is used, with the assumption that the errors
associated with each eigenvector are uncorrelated. A scaling transformation is
also needed to ensure that the variance of the transformed variables is equal to



3.3 Observation errors

As well as representing the errors in the background eld it is important to
treat properly the errors in the observations within a variational data assimi-
lation system. Observational data received into operational weather and ocean
forecasting centres can contain errors from a variety of sources, including limita-
tions in the measuring instrument, biases in the measurements and errors simply
due to human error in recording the measurement. The theory of variational
data assimilation assumes that all observational errors are random, unbiased
errors with a Gaussian distribution and known covariance. It is therefore im-
portant that as many of these sources of error as possible are accounted for in
the data assimilation system.

A rst essential step in an operational data assimilation system is to per-
form a quality control check on the data themselves. This may consist of several
stages. First a check for obvious errors is made, so that if, for example, a ship
observation is reported over a land point it will be rejected from the assimilation.
Then a so-called ‘background check’ may be made to see how close the observa-
tion is to the forecast background eld. If the di erence from the background is
too large when compared with its expected error variance then the observation
may be rejected and not used in the assimilation [1]. Once this check has been
performed the next step is to identify observations that may have gross errors.
This can be done either outside or within the assimilation process. Outside the
assimilation each observation can be checked against nearby observations and






data are thinned so that many fewer of them are used [24]. The reasons for this
are the di culty in calculating what the error correlations should be and the
di culty in then representing these correlations within an assimilation scheme
in a way that the inverse correlation matrix can easily be applied. To estimate
the correlations in satellite data the methods that have mainly been used are
a comparison with independent measurements from radiosondes, based on the
method of [45], and the use of diagnostics calculated from the data assimilation
system itself, based on [26]. Various ways of then representing these correlations
within the data assimilation system have been proposed, including the use of
a circulant matrix [43], an eigenvalue decomposition [27] and a Markov matrix
[88]. However there is so far little use of these methods in operational practice.

3.4 Optimization methods

The minimization of the inner loop cost function (7) requires the use of a suit-
able optimization algorithm. For the large problems of environmental modelling
there are two particularly important constraints. The rst is that because of the
number of variables in the system it is not possible to obtain second derivative
information. The Hessian or second derivative matrix would contain of the order
106 elements, which is impossible to calculate or to store. Hence only methods
that require rst derivative information can be used. The second constraint is
that often these problems must be solved within a real-time forecasting system
and hence the computer time that can be used to solve the problem is very lim-
ited. Hence the methods much use as few function evaluations as possible. This
means that usually the problem is not allowed to run to full convergence and
the use of any line search algorithms is prohibitively expensive. Traditionally
the algorithms that have most been used within data assimilation systems are
quasi-Newton algorithms and conjugate gradient or related Lanczos algorithms.
The mathematical details of these algorithms are well explained elsewhere (e.g.
[78]) and so here we limit discussion to their implementation in data assimilation
systems.

An essential aspect of the minimization procedure for variational data as-
similation is an appropriate preconditioning. Experimental evidence indicates



O ce [41]. This can be explained by theoretical bounds obtained by [39], [41]
that show that the condition number of the transformed problem increases as
the spacing between observations decreases and as observations become more
accurate. Hence ideally a second level of preconditioning is required after the
variable transformation has been performed.

In order to implement a further preconditioning some knowledge of the Hes-
sian (12) of the transformed cost function is required. One way that this can be
obtained is by using a Lanczos algorithm to perform the inner loop minimiza-
tion. The Lanczos method produces estimates of the leading eigenvectors and
eigenvalues of the Hessian of the function being minimized. If the rst m eigen-

Hessian (12) can be approximated by the expression

= ¢
I+ (j—Dujuj: (18)
j=1

This expression can then be used for the preconditioning of subsequent mini-
mizations, under the assumption that the Hessian does not change greatly be-
tween one minimization and another [29], [94]. This method, known as spectral
preconditioning, is used in the operational forecast system of ECMWF, where
three outer loops are performed for each assimilation. During the rst inner
loop minimization the Lanczos vectors are stored and these are then used to
precondition the mininimization of the second and third inner loop cost func-
tions [29]. It has been shown that this preconditioner belongs to a larger class
of limited memory preconditioners [94]. The authors of [94] propose an alterna-
tive preconditioner from the same class, based on the Ritz pairs of the Hessian.
They found that this can provide an improvement over spectral preconditioning
when the estimates of the Hessian eigenpairs are inaccurate. A similar result
was also found in the Regional Ocean Modelling System (ROMS), in which both
of these preconditioners are implemented [76]. One drawback of both of these
methods is that, in order to generate the required information, the rst mini-
mization must be performed before any preconditioning can be applied. So far
little attention has been paid to preconditioning of this rst minimization.
With any minimization method it is important to specify appropriate stop-
ping criteria and this is also the case in variational data assimilation. It has
been proved that the inner-loop steps of the Gauss-Newton method need to be
solved to su cient accuracy in order to ensure convergence of the outer loops
[34]. The theory has been used to show how it is natural to use an inner-loop
stopping criterion based on the relative change in the norm of the gradient [59].
The tolerance used to stop the iterations must therefore be chosen carefully. If
it is too high then there is no guarantee that the outer loop steps will converge.
However the convergence should not be pushed below the level of noise on the
observations, as then small spatial scales are adjusted to t the observational
noise [55]. In many practical forecasting problems such care is not always taken
and other criteria are introduced. There are two main reasons for this. One
is that in a time-critical forecasting system it may considered more important
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and so the background term can be written in the form
1
To(W) = W' By W; (20)

where the covariance matrix B,, is taken to be the diagonal matrix of eigen-






transform to be used in the de nition of the spatial background error covariances
described in section 3.2, which then enforces zero boundary increments [69].
However, observational information close to the boundaries can be di cult to
use, since the nested model cannot use observations lying outside the domain
and the analysis inside the domain may not be consistent with the boundary
conditions provided [3], [36]. This can lead to features being arti cially cut-o
close to the boundaries.

The alternative approach is to estimate the boundary variables within the
assimilation procedure [37], [54], [38]. In this way observations inside the nested
domain can update the boundary values and so it is possible to ensure that
the analysis is consistent throughout the domain. However in this case it is
no longer possible to apply a sine transform to impose the spatial background
error covariances. In order to be able to apply a spectral transformation an
extension zone is created around the domain to obtain elds that are horizontally
periodic. A Fourier transform can then be applied. One di culty in analysing
the boundaries in this way is that the lateral boundary conditions are only
updated during the assimilation period. During the subsequent forecast no
updates are available and the values from the parent model must be used, so
there is some inconsistency between the boundary conditions of the analysis and
those of the forecast.

The second challenge we consider is the di erence in the spatial scales that
can be represented in the nested and parent models. In particular, since the
nested model often covers only a small domain, the assimilation scheme is not
able to analyse adequately scales of the size of the domain and larger. In ap-
plications such as weather prediction it is important to capture these larger
scales, since the physical system is inherently multiscale, with strong feedbacks
between large and small scales. Hence attempts have been made to improve
the large-scale information in nested model data assimilation by providing in-
formation on these scales from a parent model analysis. For example, the Met
O ce experimented with a system that combined large scale increments from
a parent model analysis with the small scale increments from the nested model
analysis [3]. In this method the large scales of the nested model analysis are
forced to be equal to those of the parent model. An alternative, proposed by
[36], is to use the large scales of the parent analysis over the nested model do-
main as a weak constraint on the variational problem. This is done by adding
an extra term to the inner loop cost function (7) that measures the distance
between the large scales of the global analysis and those forecast by the nested
model. This means that the analysis is constrained by large scales from the
parent model, through this additional term, and by large scales from the nested
model, through the background term. In theory this should introduce another
term including the cross-correlation between these two sources of information.
However, in their demonstration of the method in a 3D-Var scheme of the AL-
ADIN model at Meteo-France the authors of [36] concluded that this correlation
could be neglected, though at the cost of some inaccuracy.

A more theoretical study of this problem was carried out by [7]. They used
a spectral analysis to show how information from waves longer than the domain
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size is projected onto di erent scales in the nested model domain, corresponding
to the lowest wave numbers that can be represented on this domain. They
demonstrated that by giving more weight to these scales in the background term
of the cost function it was possible to retain more of the large scale information
from a parent model background. In this method only the large spatial scales
from the parent model are used as a constraint in the assimilation, as in [3], but
they are not imposed exactly and may be altered by the assimilation process.
The authors of [7] demonstrated bene t from this in an idealised system, but
the method has not been tested in a realistic model.

3.7 Weak constraint variational assimilation

The formulation of variational data assimilation presented in section 2 assumes
that the discrete dynamical model (1) is an exact representation of the physical
system being observed. In practice we know that the models contain errors,
caused by limitations in our knowledge of the physical equations and limitations
in the numerical modelling, such as the need for sub-grid scale parametrizations.
In theory it is possible to account for and estimate such errors in variational
data assimilation, though implementation in practice is more complicated. We
assume an additive error to the model equations, so that the true dynamical
system can be written

Xi+1 = Mi(Xi) + 4 (25)

where ; is the unknown model error at time t;. Then we can de ne a weak
constraint 4D-Var problem, in which the model equations do not have to be
exactly satis ed over the assimilation window. We de ne a cost function of the
form

1< To. 1
2 iQi~ i (26)
i=0 i=0

1 X T 1
+ 5 (Hixi) —yi) R “(Hi(xi) —yi) +
subject to (25), where Q; is the covariance matrix associated with the model
errors ;. The weak constraint problem is then to minimize (26) with respect
to the initial state Xy and all the model errors ;.
An alternative formulation of the weak constraint problem (26) is to write it
in terms of the model state x; at each time t; rather than in terms of the model
errors. This leads to the cost function

J(Xo; X1, Xn) = %(Xo—xb)TB Y(xo — x%)
1 X T 1
+ 5 (Hi(xi) —yi) Ry “(Hi(Xi) — Vi)
i=0
1>
+ 2 Kier — Mi(xi) " Q; T (Xiw1 — Mi(Xi)); (27)

2 i=0
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which is minimized subject to (25). Although (27) is mathematically equivalent



quickly from one analysis cycle to the next.

Despite these initial successes much more work is needed. One particular
di culty is that it is not clear how to di erentiate between model bias and
observation bias, since the assimilation only measures the di erence between
the model and the observations. [93] showed a case study of observation bias
being interpreted as a model error by weak-constraint 4D-Var. This problem
was discussed further by [64] in the context of ocean data assimilation. They
suggested that to estimate both model and observation bias it is necessary to
include information on the spatial and temporal structure of these biases in the
covariance matrices.

In order to then move away from the assumption of a constant bias and treat
time-varying systematic and random model errors, more sophisticated methods
for describing the evolution of errors must be developed. This evolution is
likely to be dependent on the speci ¢ model being used, yet general methods
for representing this are also needed. At the same time e cient and accurate
representations of the covariances of these model errors must be found. The use
of the weak-constraint formulation of 4D-Var holds much promise to counteract
the inadequacies of models, but many challenges remain open to be able to
implement this in very large environmental models

4 Summary and future perspectives

Variational data assimilation is now a well-established method for combining
observational data with very large environmental models. However, as has been
illustrated in this article, its successful implementation requires careful and ju-
dicious choices in each aspect of the assimilation scheme. In some cases these
choices are determined by the physical system being modelled or the observa-
tional data available, such as the speci cation of the error covariances in the
system. In other cases the choices may be determined by the size of the problem
and the need to solve it in an e cient manner, often for real-time forecasting, or
by features of the numerical model itself, such as lateral boundary conditions.
In each instance the choices to be made will inevitably be a compromise between
the ideal solution and what is practically feasible in a given system. We have
presented some of the solutions that have been found that have allowed varia-
tional data assimilation to be implemented in large environmental forecasting
systems. Nevertheless much research continues to improve on these solutions so
as to nd better estimates of the state and so produce better forecasts.

One particularly active area in numerical weather prediction is the desire
to use more information from ensembles of forecasts to provide time-varying
covariances for the background errors, combining the advantages of ensemble
methods with the advantages of 4D-Var. ECMWF have implemented a system
in which an ensemble of 4D-Var assimilations are run and the statistics from
this ensemble are used to update the variances of the background errors [10].
Extensions to this method to calculate also the covariance information are be-
ing sought. An alternative approach is to use information from ensembles of
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forecasts to calculate covariance information throughout the whole assimilation
window. This method was proposed by [67] and tested in a global weather pre-
diction model by [14], [15]. An advantage of this method is that the tangent
linear and adjoint models are not required in the 4D-Var, since all the evolution
information comes through the ensemble of nonlinear model forecasts. Hence
this makes development of the system much easier.

Besides the many great challenges that we have discussed in this article,
new challenges are arising for the future evolution of variational data assim-
ilation systems. The advent of massively parallel computers means that the
algorithms used currently to solve the assimilation problem may no longer be
e cient on future computer architectures. Hence work is needed to develop
new algorithms to solve the problem, particularly with respect to e cient min-
imization and preconditioning methods. This may be easier as systems move
to a weak-constraint form of 4D-Var but, as discussed above, that introduces
its own di culties [30]. Another challenge comes from the move towards more
integrated Earth-system models, with di erent environmental models coupled
to each other. For example, for seasonal to decadal prediction it is now common
to use coupled atmosphere-ocean models, but the initialization of these models
with data assimilation is still in its infancy. Particular problems arise from the
very di erent time scales in the atmosphere and ocean system and from the
model biases in atmosphere and ocean models. Some work has been done to
implement 4D-Var in such systems in order to estimate the ocean state and cou-
pling parameters [89], [75], but the estimation of the complete state in coupled
atmosphere-ocean models remains an open problem for the coming years.
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