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1. Introduction

Combining observational data with a dynamical system presents many challenges to

different areas of science. Usually, both observations and model are uncertain, which

leads to formulating the problem in a statistical framework [1][2][3]. However, this

problem can also considered in a deterministic setting [1][2]. In many areas of climate

and forecasting science, the dimension of the system dictates the method which is used to

combine observations and dynamics. Data assimilation algorithms need to be applicable

within situations where the dimension of the state space, typically in numerical weather

prediction, ranges between orders of O(107 − 108) and observational data is of order of

O(106). Since these algorithms deal with such high dimension, it is natural to extend

analysis into infinite dimension to capture the key features of large-scale systems. Using

an infinite dimensional approach, we are able to work within a framework that is best

suited to analyse directly, challenges that exist in high dimensional data assimilation

algorithms. In this work we restrict ourselves to analysing three dimensional variational

data assimilation (3DVar) type methods in a large-scale or infinite dimensional setting.

This work is primarily interested in an estimate for the ion
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is equal to the true observation operator and that the given observations yk ∈ Y are
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is called the Tikhonov inverse, with regularization parameter α > 0. In other disciplines,
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such that

lim sup
k→∞

‖ek+1‖ ≤ ‖N‖ υ + ‖Rα‖ δ

1 − Λ
. (32)

Proof. We use induction as follows. For the base case we set k = 0, and from (29) we

obtain

‖e1‖ ≤ Λ‖e0‖ + ‖N‖ υ + ‖Rα‖ δ, (33)
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In this finite dimensional setting, it is clear that from Lemma 3.3 that given any

global Lipschitz constant K > 0, i.e. any model dynamics, we can always choose an

α > 0, sufficiently small so that Λ ≤ Kρ < 1. This is an interesting conclusion to draw,

since the regularization parameter controls how much we trust the background term

in (8). Of course reducing α means that we solve the problem in (6) more accurately

which implies that solving the problem accurately keeps the data assimilation scheme

stable for all time. However, from the theory of Tikhonov regularization, we know that

α must be kept large enough to shift the spectrum of H∗H to combat ill-posedness in

the observation operator. Representing the problem in an infinite dimension allows us

to directly represent this effect of ill-posedness into the problem. We will see that for an

ill-posed observation operator, significant damping must be present on higher spectral

modes for us to control the behaviour of the analysis error over time. Firstly we explore

the less interesting situation of well-posed observation operators H to highlight the

difficulty in treating ill-posed operators in an infinite dimension.

Lemma 3.4. For an infinite dimensional state space X, an injective well-posed operator

H and a parameter 0 < ρ < 1, by choosing the regularization parameter α > 0

sufficiently small we can always achieve Λ ≤ ρ < 1.

Proof. As the operator H is well-posed, G := H∗H has a complete orthonormal basis

ϕ(1), . . . , ϕ(∞) of eigenvectors with eigenvalues λ(1), . . . , λ(∞) > 0. If K > 1 we choose ρ

such that ρ < 1/K, otherwise we choose any ρ < 1. Then we choose an α such that

α

(

1

ρ
− 1

)

= min
j=1,...,∞

∣

∣λ(j)

∣

∣
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+ ‖Nζk‖ +
∥

∥Rαηk+1

∥

∥ (50)

≤
(

Λ
(1)
k + Λ

(2)
k

)

‖ek‖ + ‖N‖ υ + ‖Rα‖ δ, (51)

where we have assumed Lipschitz continuity,
∥

∥

∥
M(j)

k (x
(a)
k ) −M(j)

k (x
(t)
k )
∥
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∥
≤ K

(j)
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∥

∥

∥
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(a)
k − x

(t)
k

∥

∥

∥
(52)

for j = 1, 2, defining Λ
(1)
k := K

(1)
k · ‖N |X1‖ and Λ

(2)
k := K

(2)
k · ‖N |X2‖ with restrictions

according to the singular system of H. Again, we now assume that the modelled

nonlinear operator M
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Lemma 3.8. For the Hilbert space (X, ‖·‖B−1), on the subspace X1 and for a parameter

0 < ρ < 1, by choosing the regularization parameter α > 0 sufficiently small, we can

always achieve ‖N |X1‖ ≤
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Theorem 3.11. For the Hilbert space (X, ‖ · ‖B−1), assume the system Mk is Lipschitz

continuous and dissipative with respect to higher spectral modes of H
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error. The Lorenz ‘63 equations are as follows,
dx

dt
= − σ(x − y), (65)

dy

dt
= ρx − y − xz, (66)

dz

dt
= xy − βz, (67)

where typically σ, ρ and β are known as the Prandtl number, the Rayleigh number and

a non-dimensional wave number respectively. Throughout these experiments we will

use the classical parameters, σ = 10,x.9980.312447(d)-057(0)0.2c5J
/R491 0 Td
[(x)08(e)443107 Td
[(x)0.084d
[ Tf
6.8851
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We set the background weight equal to the background variance such that w(b) = σ2
(b)
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The theory in Section 3 was for weighted norms with respect to the error

covariances. As previously discussed, we consider 3DVar-type methods which involves

a static covariance matrix for all time. Therefore the inverse background covariance

matrix C−1 is acting as a scaling on the analysis error. We calculate the analysis error

‖ek‖C−1 and plot its evolution over time for regularization parameters, α = 200, 2 and

10−10. The figures are identical to Figure 2(a), Figure 3(a) and Figure 4(a) with a

rescaled vertical axis. For α = 200 the analysis error fluctuate around 0.005, then for

α = 2 the analysis error reduces to 10−5. With a further inflation such that α = 10−10

the analysis error increases and fluctuates around 0.002.

We have repeated these experiments for a variety of observation operators H,

different initial conditions and observation error drawn from different distributions. We

obtain similar results, however we omit these experiment to keep this paper concise.

10
−10

10
−5

10
010

−2

10
−1

10
0

10
1

10
2



Nonlinear error dynamics for cycled data assimilation methods 18

0 200 400 600 800 1000
0

10

20

30

40

50

k

E
rr

or

(a) -20

-10

0 10

20

0

10

20

30

40

50

xz(b) -20-10010201020304050xz(c) -20-100102001020304050





Nonlinear error dynamics for cycled data assimilation methods 20

0 20 40 60 80 100
10

−2

10
0

10
2

10
4



Nonlinear error dynamics for cycled data assimilation methods 21

in future work.
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