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Abstract

We propose a new model for the propagation of acoustic energy from a time-harmonic point source
through a network of interconnecting streets in the high frequency regime, in which the wavelength
is small compared to typical macro-lengthscales such as street widths/lengths and building heights.
Our model, which is based on geometrical acoustics (ray theory), represents the acoustic power 
ow
from the source along any pathway through the network as the integral of a power density over the
launch angle of a ray emanating from the source, and takes into account the key phenomena involved
in the propagation, namely energy loss by wall absorption, energy redistribution at junctions, and,
in 3D, energy loss to the atmosphere. The model predicts strongly anisotropic decay away from
the source, with the power 
ow decaying exponentially in the number of junctions from the source,
except along the axial directions of the network, where the decay is algebraic.
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1. Introduction

The main di�culties arising in a mathematical study of urban sound propagation are due to the
complex geometry of the propagation domain. The presence of multiple scatterers such as buildings,
vegetation, vehicles, pedestrians and street furniture, all of which have di�erent acoustical scattering
properties, serves to create an extremely complicated sound �eld, an exact description of which,
either analytical or numerical, is usually impossible.

Broadly speaking, the e�ect of domain complexity occurs on two distinct lengthscales. On the
‘microscale’ we have the e�ects of wall absorption, scattering by wall inhomogeneities, and scattering
by the obstacles present in each street. On the ‘macroscale’ we may view an urban environment as
a network of streets and junctions, through which acoustic energy propagates.

The existing urban acoustics literature focuses mainly on the modelling of microscale e�ects, in
particular on the accurate prediction of the sound �eld in a single street. Even in the absence of
tra�c, pedestrians, vegetation and street furniture this presents a major challenge, because of the
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absorbent and inhomogeneous nature of building facades. A number of di�erent models have been
proposed, some based on ray theory [1, 2, 3, 4, 5], others on modal decomposition [6, 7] and others on
transport and di�usion approximations [8, 9] - for a more detailed overview see e.g. [10, 11, 12, 13].

The di�culty of the microscale problem has meant that relatively little theoretical work has been
published on the macroscale problem of propagation in environments involving multiple streets,
and this is the problem we address in this paper. Speci�cally, we consider the propagation of
acoustic energy from a time-harmonic point source in a network of interconnecting streets, in the
high frequency regime where the wavelength is small compared to typical macro-lengthscales such as
street lengths and widths. In order to facilitate study of the macroscale problem we adopt a rather
simple microscale model, in which building facades are assumed to be homogeneous, the scattering
e�ect of obstacles inside streets is neglected, and metereological e�ects are ignored.

Our objective is to calculate the acoustic power 
ow down each street in the network. Our method
is based on geometrical acoustics (ray theory), with both the interference between ray �elds and
di�raction e�ects being neglected. We shall show how the acoustic power 
ow across a street
cross-section can be approximated by an integral over a ray-angle-resolved power density. A key
component in our analysis is a careful study of the redistribution of acoustic energy incident at
a typical junction between streets. This single-junction problem has been studied previously in
[14, 15], the latter work being in the context of modelling sound propagation along o�ce corridors.
However, to the best of our knowledge the results of [14, 15] have not been extended to domains
involving more than one junction, until now.

The structure of the paper is as follows. x2 reviews the ray-theoretical model of acoustic energy
propagation that will be used. x3 applies this model to the case of a single 2D street, and shows
that, under certain assumptions, the acoustic power 
ow across a street cross-section far from the
source can be approximated by an integral over a ray-angle-resolved power density. x4 derives similar
integral approximations to the power 
ows out of the exits of a junction between two 2D streets. x5
extends the method to the calculation of power 
ows along pathways involving multiple junctions.
x6 concerns the calculation of the power 
ows through a network of interconnecting 2D streets, and
shows how the problem can be reformulated as a coupled system of partial di�erence equations, with
an exact solution of this system being derived in a special case. x7 demonstrates the applicability
of our 2D model to the prediction of sound propagation in a network of 3D corridors, comparing
our results to those in [15]. Finally, x8 describes the generalisation of the 2D model to a 3D urban
environment.

2. Ray theory and energy propagation

We assume that the propagation is described by a velocity potential �(x; t) satisfying

@2�

@t2
(x; t) = c2

0r2�(x; t);

where c0 is the propagation speed, and �(x; t) is related to the velocity and pressure perturbations
u(x; t) and p(x; t) in the acoustic approximation by(x; t) =x; t 0



(a) 3D model (b) 2D model

Figure 1: 3D and 2D models of an urban environment.

where �0 is the equilibrium density. For time-harmonic waves we assume that �(x; t) = Re[�(x)e�i!t]
for some angular frequency ! > 0. Then, assuming a point source, �(x) satis�es the Helmholtz
equation

(r2 +



a numerical or asymptotic calculation of the full wave solution in one particular realisation of the
domain could be achieved, it would be of limited practical relevance [19, 20].

A more robust measure of the broad spatial variation of the sound �eld can be obtained by studying
the distribution of acoustic energy across the domain (cf. e.g. [1, 3, 6]) . The acoustic energy and
the associated acoustic intensity are ‘quadratic’ quantities (i.e. they involve products of two ‘small’
perturbations in the acoustic approximation), which can be averaged both temporally and spatially
to provide measures of the magnitude of the sound �eld that are less sensitive to perturbations in
the domain characteristics than are the full details of the wave solution. The instantaneous acoustic
energy density W and acoustic intensity I are de�ned by [21]

W (x; t) :=
1

2
�0ju(x; t)j2 +

1

2

(p(x; t))2

�0c2
0

; I(x; t) := p(x; t)u(x; t); (4)

and satisfy the equation of conservation of acoustic energy

@W

@t
= �r � I;

so that I describes the instantaneous acoustic energy 
ux at a given point in space. In the time-
harmonic case we remove the temporal oscillations by averaging (4) over one period of oscillation.
Denoting the resulting quantities by hW i(x) and hIi(x), we �nd, using (1), that

hW i(x) =
�0

4

�
r�(x) �r�(x) + k2�(x)�(x)

�
; hIi(x) =

�0!

2
Im[�(x)r�(



of ‘Statistical Energy Analysis’ (SEA), a technique used to predict the distribution of vibrational
energy in complex mechanical structures (see e.g. [20, 24]). Even in the fully deterministic case, it
is sometimes possible to justify the neglect of interference e�ects by performing some sort of spatial
averaging over either the source or receiver location, provided that the averaging region is chosen
so that the interference terms oscillate su�ciently to average to zero in the high frequency limit. In
[10, x3.5] this statement is veri�ed in the case of a single 2D street, with the averaging region chosen
to be a street cross-section. To be precise, in [10] the acoustic power 
ow down the street is studied,
and it is shown that the prediction of the ray model does indeed approximate the exact power 
ow
in the high frequency limit, provided that the source is not too close to either of the street walls
and that resonance e�ects are dealt with appropriately.

The boundary condition (3) assumes that the street walls are perfectly re
ecting, and leads to the
familiar specular ray re
ection law \angle of incidence equals angle of re
ection". In practice, some
energy incident on the walls is absorbed, and the simplest way of including this in the ray model (cf.
[1, 4]) is to introduce an absorption coe�cient � 2 [0; 1], such that the magnitude I of the intensity
along a ray undergoing a re
ection at the boundary is attenuated according to the rule

Ire
ected = (1� �) Iincident:

As a �rst approximation, we take � to be independent of the angle of incidence/re
ection. The
relationship between this simple ray-based absorption model and full wave-based models such as
impedance boundary conditions is rather subtle (see e.g. [25, 26, 27, 28]), and will not be discussed
here. However, we remark that the form of the integral approximations derived in this paper would



 source

Figure 2: Association between image sources and rays in a single 2D street.

constructed by the method of images. Introducing an in�nite array of image sources at the points
(0; yn), n 2 Z n f0g, where

yn =

(
n+ y0; n even, n 6= 0;

n+ (1� y0); n odd;
(10)

a formal solution of (8) satisfying the boundary conditions (9) can be obtained by setting

�(x; y) =
X
n2Z

�n(x; y); (11)

where �n(x; y) is the free space velocity potential associated with each of the image sources,

�n(x; y) = �A i

4
H

(1)
0 (k

p
x2 + (y � yn)2):

The sum (11) is convergent whenever k 62 �N, i.e. away from resonance.

The geometrical acoustics approximation is an in�nite sum of ray �elds, each being the far-�eld ap-
proximation of the Hankel function associated with one of the image sources. As Figure 2 illustrates,
the contribution of each image source (0; yn) can be associated with exactly one ray emanating from
the physical source, with launch angle �n given by

�n(x; y) =

(
sgn(n)(�1)n arctan

�yn�y
x

�
; n 6= 0;

� arctan
�y0�y

x

�
; n = 0:

According to the ray model, the acoustic power 
ow P across a street cross-section at distance
x from the source is equal to the incoherent sum of the free space power 
ows across the street
cross-section from each of the image sources. As a fraction of the total free space power output of
the source (we shall adopt this normalisation for the remainder of the paper), the power 
ow from
the nth image source is equal to 1=(2�) times the angular width �n = �n(x; y0) of the tube of rays
from the image source that intersect the street cross-section at x (see Figure 3(a)), and

P (x) =
1

2�

X
n2Z

(1� �)jnj�n: (12)
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Figure 3: The geometrical interpretation of �n and ~�n in a single 2D street.

It is convenient to rewrite (12) as

P (x) =
1

2�

X
n2Z

(1� �)jnj ~�n; (13)

where

~�n =

(
��n; n even;

�n; n odd:
(14)

Explicitly, ~�n = ~�+
n � ~��n , where

~�+
n = arctan

n+ 1� y0

x
; ~��n = arctan

n y

0

x
:(14)



absorption coe�cient. When � � 1=x, the main contribution to the sum comes from near n = 0,
and [10, x3.5.2]

P (x) � 2� �
2��x

�
1 +

1

x2

�
y0(1� y0)� 1

3
� 2(1� �)

�2

�
+O

�
1

x4

��
; x!1; �� 1=x: (17)

To deal with the case � = O (1=x), we �rst use the identity

arctan z1 � arctan z2 = arctan
z1 � z2

1� z1z2
(18)

to deduce that

~�n = arctan
1

x+ (n+1�y0)(n�y0)
x

� 1

x+ n2

x

�
1 +O

�
1

x

��
; x!1; (19)

uniformly for all n. Inserting (19) into (13) then gives

P (x) � 1

2�
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Figure 5: The geometrical interpretation of �n and ~�n at a crossroads.

The power 
ow PE out of the East exit of the junction is then computed by incoherently summing
the power 
ows along the ray tubes reaching the exit from each of the image sources de�ned in (10),
so that

PE =
1

2�

X
n2Z

(1� �)jnj�n; (23)

where � is the absorption coe�cient of the street containing the source and �n = �n(l; w; y
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Figure 6: Comparison of ray tube sum (24) (solid line) and the corresponding integral approximation (27) (dotted
line) for the power 
ow past a crossroads, plotted against the side street width w. Here l = 2, y0 = 0:3, � = 0:02.

Inserting (26) into (24) and approximating the sum by an integral, we �nd that

PE � 1

�

Z 1=w

0
(1� �)lt

1� wt
1 + t2

dt+O

�
1

l

�
; l!1; w = O(1); � = O(1=l): (27)





a crossroads of side street width 2w, so that

PW � 1

�

Z �=2

0
(1� �)l tan �FC(�; 2w) d�; PN � PS � 1

�

Z �=2

0
(1� �)l tan �FT (�; 2w) d�;

where PW should be interpreted as the power 
ow back down the main street due to re
ection o�
the far wall. Power 
ows in the ‘right-angled bend’ geometry of Figure 4(d) can be treated similarly.
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Figure 10: Plot of the error R = P
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Figure 12: Multiple-junction geometries

5.3. Further examples

The case where the absorption coe�cient takes a value �0 between the source and the �rst junction,
and a di�erent value �1 between the �rst and second junctions, can be treated by modifying (36) to

PEapp(2) =
1

�

Z �=2

0
(1� �0)l0 tan �FC(�;w1) (1� �1)l1 tan �FC(�;w2) d�: (38)

Expected values of PN (2) and PS(2) can be obtained by replacing the factor of FC(�;w2) in (38)
by a factor of FT (�;w2), so that

PNapp(2) = PSapp(2) =
1

�

Z �=2

0
(1� �0)l0 tan �FC(�;w1) (1� �1)l1 tan �FT (�;w2) d�:

In Figure 12(a) we consider another two-junction geometry. The integral approximations we propose
for the expected power 
ows out of the second junction are

PNapp(2) =
1

�

Z �=2

0
(1� �0)l0 tan �FT (�;w1) (1� �1)

l1
w1

tan (�=2��)
FC

�
�=2� �; w2

w1

�
d�;

(39)

PEapp(2) = PWapp(2) =
1

�

Z �=2

0
(1� �0)l0 tan �FT (�;w1) (1� �1)

l1
w1

tan (�=2��)
FT

�
�=2� �; w2

�



5.4. More than two junctions

Integral approximations for the expected power 
ows in domains involving more than two junctions
can be constructed similarly. For example, consider the path shown in Figure 12(b). For generality,
the street width w0 is assumed to be of the same order of magnitude, but not the exactly equal to,
the characteristic lengthscale L used in the nondimensionalisation. We then approximate PN (3) by

PNapp(3) =
1

�

Z �=2

0
(1� �0)

l0
w0

tan �
FC

�
�;
w1

w0

�
(1� �1)

l1
w0

tan �
FT

�
�;
w2

w0

�
� (1� �2)

l2
w2

tan (�=2��)
FC

�
�=2� �; w3

w2

�
d�:

Since FC(�;w1=w0) vanishes for � � arctan (w0=w1), and FR(�=2 � �;w3=w2) vanishes for � �
arctan (w3=w2), we �nd that if w3=w2 � w0=w1 then the expected power 
ow is zero, since the
integrand vanishes completely on the range (0; �=2).

This example illustrates a more general result. Suppose that an arbitrary path through a network
of streets crosses a junction in the East-West direction, with the ratio between the widths of the
‘side street’ and the ‘main street’ given by REW , and that this path also crosses a junction in the
North-South direction, with the ratio between the widths of the ‘side street’ and the ‘main street’
given by RNS . Then if REWRNS � 1, the expected power 
ow along the path is zero. In particular,
in the special case where the street widths are all equal, there is no expected power 
ow along any
path which crosses junctions in both the East-West and North-South directions.

6. A network of streets in 2D

We now apply the ideas developed in x3-5 to estimate the power 
ows in an in�nite rectangular
network of streets intersecting at right-angled crossroads. Indexing the crossroads by (x; y) 2 Z�Z,
we let lSx;y; w

S
x;y; �

S
x;y and lWx;y; w

W
x;y; �

W
x;y denote the lengths, widths and absorption coe�cients of the

streets to the South and West respectively of junction (x; y). We assume that the source lies in the
street between junctions (0; 0) and (1; 0), a distance d0 from the junction (1; 0).

The net power 
ows PNx;y, P
E
x;y, P

S
x;y and PWx;y out of a junction (x; y) are made up of contributions

from the in�nitely many propagation paths that exist between the source and that junction. The
expected power 
ow along any particular path can be estimated by the integral approximation
method developed in x3-5, provided that the street lengths are much larger than the street widths,
and that the absorption coe�cients are small. Some paths make a positive contribution to the power

ow, and others make a negative one, depending on the direction in which the energy is propagating
when it crosses the junction exit in question. Some paths make no contribution at all, as remarked
in x5.4. Classifying all of these paths and explicitly summing their respective contributions might
appear to be rather di�cult, but in x6.2 we show how this can be achieved by reformulating the
problem as a coupled system of partial di�erence equations. Before describing this model, we �rst
show how an approximation to the net power 
ows can be obtained by considering a subset of paths
which make the largest contribution. To demonstrate this, we consider the special case of a regular
network in which lSx;y = lWx;y = l, wSx;y = wWx;y = w and �Sx;y = �Wx;y = � for all (x; y), where l, w and
� are constant. Furthermore we assume, without loss of generality, that x � 1 and y � 0, and study
the net power 
ow PEx;y out of the East exit of the junction (x; y).
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Figure 13: (a)-(b) Contour plots of log10 P
E
x;y for two di�erent values of �, computed by (41) (i.e. using only paths of

minimal length). (c)-(d) Corresponding plots of log10 P
E
x;y, computed by (52) (i.e. by solving the full partial di�erence

equation model). (e)-(f) Relative error between the two.

which is a Laplace-type integral with large parameter N . The main contribution to (43) comes
from the left endpoint � = 0, and a local expansion around this point reveals that

PE0 (N) � 1

N�
; N !1; (44)

so that the decay is algebraic in the number of junctions encountered.

� Along the diagonal � = 1=2 (with N even) there is again only one contributing path of minimal
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length (M1=2(N) = 1 for all N even) and our estimate for PE1=2(N) is

PE1=2(N) =
1

�

Z �=2

0
FT (�; 1)N=2 FT (�=2� �; 1)N=2 d� =

2

�

Z �=4

0
exp

�
N

�
1

2
log

�
tan �

4

���
d�;

where we have used the symmetry of the integrand to reduce the range of integration to
� 2 (0; �=4). Again, this is a Laplace-type integral, although this time the main contribution
comes from the right endpoint � = �=4, with

PE1=2(N) � 2

N�

�
1

2

�N
; N !1; N even; (45)

so that the decay is exponential in the number of junctions encountered.

� In the intermediate case 0 < � < 1=2, we �rst note that by Stirling’s approximation,

M�(N) =
((1� �)N)!

(�N)!((1� 2�)N)!
�

s
(1� �)

2�N�(1� 2�)

 )

 ))�



6.2. Partial di�erence equation model

So far we have considered only the contribution from paths of minimal length. We now generalise our
model to take into account the contribution of all the propagation paths through the network. At
each junction in the lattice we de�ne pNx;y(�); p

E
x;y(�); p

S
x;y(�); p

W
x;y(�) to be the �-resolved power 
ows

out of the junction (x; y) in the North, East, South and West directions, respectively. We can use
the energy redistribution and absorption rules suggested by the integral approximations developed
in previous sections to write down a coupled system of partial di�erence equations satis�ed by these
quantities. For example, the power 
ow pNx;y(�) out of the North exit is a sum of contributions 
owing
in from the East, South and West streets, each involving an appropriate choice of the redistribution
functions FC and FT . The resulting system of partial di�erence equations, for the case of a general
network of streets, is

pNx;y = FC

�
�=2� �; w

W
x;y

wS
x;y

�
(�Nx;y�1)1=tpNx;y�1 + FT

�
�;

wS
x;y

wW
x;y

� �
(�Ex�1;y)

tpEx�1;y + (�Wx+1;y)
tpWx+1;y

�
+ �N

x;y;

pEx;y = FC

�
�;

wS
x;y

wW
x;y

�
(�Ex�1;y)

tpEx�1;y + FT

�
�=2� �; w

W
x;y

wS
x;y

� �
(�Nx;y�1)1=tpNx;y�1 + (�Sx;y+1)1=tpSx;y+1

�
+ �E

x;y;

pSx;y = FC

�
�=2� �; w

W
x;y

wS
x;y

�
(�Sx;y+1)1=tpSx;y+1 + FT

�
�;

wS
x;y

wW
x;y

� �
(�Ex�1;y)

tpEx�1;y + (�Wx+1;y)
tpWx+1;y

�
+ �S

x;y;

pWx;y = FC

�
�;

wS
x;y

wW
x;y

�
(�Wx+1;y)

tpWx+1;y + FT

�
�=2� �; w

W
x;y

wS
x;y

� �
(�Nx;y�1)1=tpNx;y�1 + (�Sx;y+1)1=tpSx;y+1

�
+ �W

x;y;

(50)

where t = tan �,

�Sx;y = (1� �Sx;y)
lSx;y

wS
x;y ; �Wx;y = (1� �Wx;y)

lWx;y

wW
x;y ;

�Nx;y = �Sx;y+1; �Ex;y = �Wx+1;y;

and �N , �E �S and �W are source terms to be speci�ed according to the distribution of sources
in the network. For example, in the case where the source lies in the street between junctions (0; 0)
and (1; 0), the

�



Furthermore, knowledge of the �-resolved power densities also allows us to calculate the average





With pN determined by (57) and (60), the remaining variables pE ; pS and pW can be expressed in
terms of pN as follows:

pS = pN + (�S � �N ); (61)

pE =
�
1� �X�1

��1

 
�1=t

2

�
(Y + Y �1)pN + Y (�S � �N )

�
+ �E

!
; (62)

pW = [1� �X]�1

 
�1=t

2

�
(Y + Y �1)pN + Y (�S � �N )

�
+ �W

!
: (63)

The inverse operators
�
1� �X�1

��1
in (62) and (63) are given formally by the sums

�
1� �X�1

��1
=
1X
n=0

(�X�1)n



and the source functions are zero everywhere except for

�N
0;0 = �S

0;0 = �
(l�d)t

l

�
1

2�

�
; �N

1;0 = �S
1;0 = �

dt
l

�
1

2�

�
: (67)

Noting that (66) is simply (54) with

N $ E; S $W; t$ 1=t; X $ Y; (68)

the solution of (66), valid for �=4 < � < �=2, is found to be

pN = ~ � ~H+ + ~S1; pE = ~ � ~G;

pS = ~ � ~H� + ~S3; pW = ~ � ~G+ ~S2;
(69)

where ~ and ~Si are the previously de�ned expressions  and Si under the transformations (68), and

~Gx;y = Gy;x; ~H�x;y = H�y;x;

under the transformation t$ 1=t. From (67) we �nd that ~ is zero everywhere except for

~ 0;0 = �1�t
2�t �

1=t+
(l�d)t

l ; ~ 1;0 = �1�t
2�t �

1=t+ dt
l ;

~ 0;�1 = ~ 0;1 = � 1
4��

(l�d)t
l ; ~ 1;�1 = ~ 1;1 = � 1

4��
dt
l :

In Figure 13(c)-(d) we show logarithmic plots of the net power 
ow PE de�ned by (52), computed
using the solutions (65) and (69), for two di�erent values of �. Comparing these to Figure 13(a)-
(b) we note that the anisotropic decay predicted by the minimal length paths approach is clearly
visible, although, as might have been expected, the minimal length path calculation underestimates
the power 
ow derived via the full partial di�erence equation model. The relative error between
(41) and (52) is plotted in Figure 13(e)-(f). Note that the relative error decreases as � decreases,
so that the contribution of the non-minimal-length paths becomes less important as the amount of
absorption increases.

As remarked in x6.3, knowledge of the power densities pNx;y(�); p
E
x;y(�); p

S
x;y(�); p

W
x;y(�) also allows us

to estimate average energy densities and mean-square pressures. In Figure 14 we show logarithmic
plots of the average energy density WE de�ned by (53) for two di�erent values of �.

6.5. The case � = 1 (� = 0)

When � = 1 (� = 0) the integral (59) is no longer convergent, and the �-resolved power 
ows are
no longer well-de�ned. However, we note that it is still possible to compute net power 
ows such as
(52) by considering the limiting value of the net power 
ow as � ! 1, which is well-de�ned because
the singularities in pEx;y and pWx;y+1 for � = 1 exactly cancel.
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(a) Problem geometry and image source con�guration (b) Projection onto the unit sphere

Figure 15: A single street in 3D

8. A 3D urban environment

We now discuss the generalisation of the results of the preceding sections to 3D urban environments.
The main ways in which the 3D problem di�ers from the 2D case are the higher rate of geometrical
spreading, the presence of a ground re
ection, and the fact that energy emitted from the source can
escape to the atmosphere.

8.1. Ray approximation in a single street

As a simple model of a single street in 3D, we consider an in�nitely-long channel running parallel
to the x-axis, as illustrated in Figure 15(a). After nondimensionalising lengths by the street width,
the street is bounded by buildings (�1;1)� (�1; 0)� (0; h) and (�1;1)� (1;1)� (0; h), where
h > 0 is the (nondimensional) building height, assumed constant along the length of the street, and
a rigid ground (�1;1)� (0; 1)� f0g. We assume that a point source is located within the street
at (0; y0; z0), where 0 < y0 < 1 and 0 < z0 < h.

As in the 2D case, we simplify the analysis by neglecting the e�ects of di�raction, and consider
the contribution of the multiply-re
ected �eld alone. This can be computed by the introduction of
image sources at the points (0; yn;�z0), n 2 Z, with yn de�ned as in (10) (see Figure 15(a)). We
note that although a ray can undergo an arbitrarily large number of re
ections in the walls of the
street, no ray undergoes more than one ground re
ection. The �eld is then approximated by

� � � 1

4�

X
z2Z

eikr
�
n

r�n
+

eikr
+
n

r+
n
; (72)

where r�n =
p
x2 + (y � yn)2 + (z � z0)2. For simplicity we consider only the case where the source

is close enough to the ground to ensure that the interference between each image source and its
corresponding ground-re
ected image source in (72) is entirely constructive (the general case would
require a more careful treatment of the ground re
ection, and will not be considered here). Each
pair of image sources at (0; yn;�z0) can then be replaced by a single image source at (0; yn; 0) of
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double the amplitude (four times the power output), so that

� � � 1

2�

X
z2Z

eikrn

rn
; (73)

where rn =
p
x2 + (y � yn)2 + z2. It is shown in [10, x3.9.1] that for (73) to hold it is su�cient to

assume that x� 1=k (so we are not too close to the source) and that z0 � x=(kh).

8.2. The acoustic power 
ow in a single street

As in the 2D case, we assume that the intensity contributions from the in�nitely many image sources
in (73) can be summed incoherently, with the e�ect of interference being neglected. The power 
ow
P across the street cross-section fxg � (0; 1) � (0; h), as a fraction of the total free space power
output of the source, is then

P =
1

�

X
n

(1� �)jnj ~
n; (74)

where � is the absorption coe�cient of the walls and ~
n is the solid angle subtended at the source
by the ray tube incident on the
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Figure 16: A crossroads in 3D.

where the absorption factor A(�) and the energy redistribution factor F (�) are exactly as in the
analogous 2D problem. We expect (82) to provide a good approximation to (79) only when the
streets in the network are long and the typical absorption coe�cient is small. Furthermore, when
multiple junctions are involved, we conjecture, as in the 2D case, that the approximations represent
expected power 
ows after averaging over a suitable range of street lengths. Note that when also
L(�)� h



By comparison with (76), we see that the prefactor 2h=(�l) in (84) represents the power incident
on the junction. Thus the fraction E3D of energy incident on the junction that carries on down the
main street is given as a function of w by

E3D(w) =

Z �=2

0
FC(�;w) cos � d�:

The corresponding expression in 2D is

E2D(w) =
2

�

Z �=2

0
FC(�;w) d�:

A plot of the functions E2D and E3D is presented in Figure 16(b). Note that in 3D a greater
proportion of the incident energy passes the junction than in 2D. This is because in 3D the energy
incident on the junction is not distributed uniformly over all � 2 (0; �=2), as it is in the two
dimensional case; rather there is a bias towards rays with small �, as remarked at the end of x8.2
(and see Figure 15(b)). Such rays contribute more to the power 
ow than those with larger � because
FC(�; w) is a decreasing function of �.

8.5. A two-junction environment

As a further example, we consider the 3D analogue of the 2D two-junction environment illustrated
in Figure 12(a), for which the approximations (39) and (40) were obtained. In the 3D case the
integral approximation (82) of the power 
ows PE(2) and PW (2) would have

A(�) = (1� �0)l0 tan �(1� �1)
l1
w1

tan (�=2��)
; (85)

F (�) = FT (�;w1) F 093 Td [(;)]TJ/2 105 7.9701 Tf 9.383d [((1)]TJJ/F78 7.9701 Tf 4.234 0 Td [(�)]TJ/F39110.9091 Tf 4.243 0 Td [(�)]TJ/F15 10.9091 Tf 5.424 0 Td [(;)]TJ.900 77/F5.9091 Tf 4.848 0 Td [(w)]TJ/F38 7.9701 Tf 7201 -1.793 Td [(1)]T50 0 1 36F41.90346.286 391.4144701[]0 d 0 /2 5[00.9 w 0 0 m 9. Td [())]TJ/50 0 1 350 d [.9091 Tf 4.848 0 Td [(w)]TJ/F38 7.9701 Tf 7.81 -1.9 1 Td [(F)]TJ Td21 2.9091.9701 Tf 3f 5.424 0 Td [(;)]TJ9F39 101J/F5 1701 T791 -6.093 Td [(;)]TJ/4J/F30.9091 Tf 118.652 0 Td [((85))]TJ/F3/F420 72J/F05091 TfL519 3.959 Td [(E)]TJ/F15 10.9091 Tf  8.53 0 Td [(()]TJ/F39 10.9091 Tf 4.243 0 Td [(�)]TJ/F15 10.9091 Tf 5.424 0 Td [())-278(=)]TJ2/F41 77/F5.9091 lf 4.848 0 Td [(w)]T9 155 7.9701 Tf 6.978 -1.793 Td [(1)]240 d[(w33 10.30346.286 391.4144701[]0 d 0 21F39 10. w 0 0 m 9. Td [(�)]TJ240 d[(w35 167 1701 Tco)-333(
o)27(ws)]TJ3/F15 10.9091 Tf 4.243 0 Td [(�)]TJ9900 77/481 Tf 3.+502))-333(and)]TJ/F390 77/F5.9091 lf 4.848 0 Td [(w)]T9 155 7.9701 Tf 6.401 -1.793 Td [(1)]27J 074w33 10.30346.286 391.4144701[]0 d 0 61/F38 7. w 0 0 m 9. Td [(�)]TJ27J 074w35 167 1701 Tco



� When � = 0 we have

F (�) = FC(�; 1)N ; L(�) =
Nl

cos �
;

and our estimate for PE0 (N) is

PE0 (N) =
2h

�Nl

Z �=4

0
exp [N log (1� tan � )] cos � d�:

We �nd that

PE0 (N) � 2h

�N2l
; N !1;

so that the decay is algebraic in the number of junctions encountered.

� Along the diagonal � = 1=2 (with N even) we have

F (�) = FC(�; 1)N=2FT (�=2� �; 1)N=2 ; L(�) =
Nl

2

�
1

cos �
+

1

sin �

�
;

and our estimate for PE1=2(N) is

PE1=2(N) =
8h

�Nl

Z �=4

0
exp

�
N

�
1

2
log

�
tan �

4

���
1�

1
cos � + 1

sin �

� d�:
We �nd that

PE1=2(N) � 2
p

2h

�N2l

�
1

2

�N
; N !1; (N even);

so that the decay is exponential in the number of junctions encountered.

It is not clear whether the integral approximations derived here can be used to formulate a partial
di�erence equation model analogous to that proposed for the 2D case in x6.2. There we were able
to relate the �-resolved power 
ows into one junction to the �-resolved power 
ows out of the
neighbouring junctions. This formulation relies crucially on the fact that the absorption and energy



pathway through the network as the integral of a power density over the launch angle of a ray
emanating from the source. The dependence of the power density on the launch angle takes into
account the key phenomena involved in the propagation, namely energy loss by wall absorption,
energy redistribution at junctions, and, in 3D, energy loss to the atmosphere. We have shown, by
means of a number of examples, how the power density for a given propagation pathway may be
explicitly computed.

Computing the total net power 
ow across a street cross-section requires the summation of the
power 
ows along each of propagation pathways from the source. An estimate can be obtained by
considering only paths of minimal length. In 2D the full summation can be computed implicitly, by
formulating a system of partial di�erence equations for the power densities 
owing out of the exits
of each junction in the network. In a special case we were able to obtain an exact solution to this
system. However, the generalisation of this formulation to the 3D case remains an area for future
research.

In summary, our model predicts strongly anisotropic decay away from the source, with the power

ow decaying exponentially in the number of junctions from the source, except along the axial
directions of the network, where the decay is algebraic. The model is not only concerned with the
calculation of acoustic power 
ows - once the power density has been determined, an elementary
modi�cation of the integral allows us to compute the acoustic energy density and the mean-square
pressure, averaged over the street cross-section.
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