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THE STOKES CONJECTURE FOR WAVES WITH VORTICITY

EUGEN VARVARUCA AND GEORG S. WEISS

Abstract. We study stagnation points of two-dimensional steady gravity
free-surface water waves with vorticity.

We obtain for example that, in the case where the free surface is an injective
curve, the asymptotics at any stagnation point is given either by the \Stokes
corner ow" where the free surface has a corner of 120 , or the free surface ends
in a horizontal cusp, or the free surface is horizontally at at the stagnation
point. The cusp case is a new feature in the case with vorticity, and it is not
possible in the absence of vorticity.

In a second main result we exclude horizontally at singularities in the
case that the vorticity is 0 on the free surface. Here the vorticity may have
in nitely many sign changes accumulating at the free surface, which makes
this case particularly di cult and explains why it has been almost untouched
by research so far.

Our results are based on calculations in the original variables and do not
rely on structural assumptions needed in previous results such as isolated sin-
gularities, symmetry and monotonicity.
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The classical hydrodynamical problem of traveling two-dimensional gravity water
waves with vorticity can be described mathematically as a free-boundary problem
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for a semilinear elliptic equation: given an open connected set in the (X;y) plane
and a function of one variable, nd a non-negative function in such that
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the vorticity function , and therefore, as a a consequence of [22], the free surface
of such a wave necessarily has corners of 120 at stagnation points.

The present paper is the rst study of stagnation points of steady two-dimensional
gravity water waves with vorticity in the absence of structural assumptions of iso-
latedness of stagnation points, symmetry and monotonicity of the free boundary,
which have been essential assumptions in all previous works. We obtain for example
that, in the case when the free surface is an injective curve, the asymptotics at any
stagnation point is given either by the \Stokes corner ow" where the free surface
has a corner of 120 , or the free surface ends in a horizontal cusp,

Figure 2. Cusp
or the free surface is horizontally at at the stagnation point.
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>0

Figure 3. Horizontally at stagnation point
The cusp case is a new feature in the case with vorticity, and it is not possible

without the presence of vorticity [23]. It is interesting to point out that Gerstner
[10] constructed an explicit example of a steady wave with vorticity whose free
surface has a vertical cusp at a stagnation point. However, this vertical cusp is due
to the fact that in his example the vorticity is in nite at the free surface, while in
the present paper we only consider the case of vorticities which are smooth up to
the free surface. We conjecture the cusps in our paper [ the existence of which is
still open | to be due to the break-down of the Rayleigh-Taylor condition in the
presence of vorticity.

The second half of our paper is devoted to excluding horizontally at singularities
in the case that the vorticity is non-negative at the free surface. (Horizontally

at singularities are possible if the vorticity is negative at the free surface.) Of

particular di culty is the case when the vorticity is 0 at the free surface, and may
have in nitely many sign changes accumulating there.

Let us brie y state our main result and give a plan of the paper:

Main Result. Let be a suitable weak solution of (1.1) (compare to De nition
3.2) satisfying
ir y)ji2 Cmax( y;0) locallyin

let the free boundary @f > Og be a continuous injective curve = ( 1; »2) such that

(0) = (x°;0), and assume that the vorticity function satis es either j (z)j Cz,
or (z) O, for all z in a right neighborhood of 0.

(i) If the Lebesgue density of the set f > 0g at (x°;0) is positive, then the free

boundary is in a neighborhood of (x°;0) the union of two
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that for every non-negative 2 Cg-(D)
z

(rmax(u ;0) r Cp )dx
bz V4

= ( fu= g U+Cp)dx ru dH" 1 o0
D D\@fu=> g

provided that jf(u)] Cp in D. Letting ¥ 0 and using that u is continuous and
nonnegative in , we obtain

(ru r Cp)dx O0:
D

Thus u+ Cp is a nonnegative distribution in D, and the stated property follows.

Since we want to focus in the present paper on the analysis of stagnation points,
we will assume that everything is smooth away from x,, = 0, however this assump-
tion may be weakened considerably by using in fx, > 0g regularity theory for the
Bernoulli free boundary problem (see [2] for regularity theory in the case f = 0
I which could e ortlessly be perturbed to include the case of bounded f | and see
[5] for another regularity approach which already includes the perturbation).

De nition 3.2 (Weak Solution). We de ne u 2 Wléf( ) to be a weak solution
of (3.1) if the following are satis ed:
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Mxo;u(r) =M (r) = I(r)
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Also observe that letting 1 0in
z

ru rmax(u ;0)* dx= f(uymax(u ;0)** dx
Br(x°%) BZ(XO)

+ max(u ;0)** ru dH" 1
@Br(x°)

for a.e. r 2 (0; ), we obtain the integration by parts formula
z z

jrui? uf(u) dx= uru dH" ! (3.10)
B, (x°) @B (x°)
forae. r2(0; ):
Note also that 7
)= (h+r " ? (Gruj®  uf(u)+Xn fu=og) dx
Br(x°%)
n 1x

+r
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Lemma 4.4. Let u be a variational solution of (3.1) satisfying Assumption 4.1.
Then:
(i) Let X 2 be such that X3 = 0. Then the limit Myo.,(0+) exists and is
nite. (Note that u =0 in fx, = 0g by assumption.)
(ii) Let x> 2 be such that x> =0, andlet0 <r,, ® O+asm ¥ 1 bea
sequence such that the blow-up sequence
() = SO Tm) 4.2)
'm

converges weakly in W,ﬁf(R”) to a blow-up limit ug. Then ug is a homogeneous
function of degree 3=2, i.e.

uo( X) = 32up(x) forany x2R"and =>0:

(iii) Let uy, be a converging sequence of (ii). Then un, converges strongly in
Wige (R™).
(iv) Let x° 2 be such that x2 = 0. Then

Myo.,(0+) = lim
! r"/F10 69388 Tf ( —83 —3_.45 Td [(+DS56TF 12_19 3_.05 2@ 0
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(ii): Foreach0 < < 1 the sequence up, is by assumption bounded in C%1(B ).
Forany 0 <% < < 1, we write the identity (3.8) in integral form as

Z Z 3y 2
2 r "1t ru == dH" dr
" 8B (x°) 2r
Z
=M() M®) r " 2K(r)dr: (4.4)

%

It follows by rescaling in (4.4) that

Z 3 2
2 Xi "% rum(®) X Sum(x) dx
B (0)nBy(0) 2
Z,
M(rm ) M(rm%) + r " 2jK()jdr 10 asm ¥ 1;
rm%

which yields the desired homogeneity of ug.
(iii): In order to show strong convergence of um, in W,f);cz(R“), itissu cient, in
view of the weak L?-convergence of rup,, to show that

Z Z
limsup  jrumj?® dx jruej® dx
mbYl RN RN
foreach 2 C3(R"). Let :=dist(x%;@ )=2. Then, for each m, uy, is a variational
solution of
Un = rE2F(r82uy) in B o, \ fuy, > 0g; (4.5)
jrumj2 =Xn onB -, \@fun>00g:

Since um, converges to ug locally uniformly, it follows from (4.5) that ug is harmonic
in fup > 0g. Also, using the uniform convergence, the continuity of ug and its
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of ug, we obtain that
Z Z
; ; i2 3 2 qqn 1
lim Myo.,(rm) = jrugjcdx - ugdH
mu 1 ’ B, 2 =N
z
+ limr "1t x*t X
r %0+ Br(XO) n fu>Ogd
Z
= limr"? x+ X:
reo+ By (x0) fu>0g @

0, and equality implies that for each > 0, uy, converges to 0
¥ 1, and consequently up =0 in R".

Thus Myo.(0+)

in measure in the set fx, > gasm
(v): For each > 0 we obtain from the Monotonicity Formula (Theorem 3.4),

Remark 4.2 as well as the fact that limy s xo My.,(r) = Myo.,(r
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Proof. Consider a blow-up sequence um,

15
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@fu > 0g is in a neighborhood of x° a continuous injective curve : ( to;ty) ¥ R?

such that = ( q; ﬁ) and (0) = x°. Then the following hold:

(i) If M(0+) = B, X5 fx =6< <5 =6gdX, then (cf. Figure 4) (1) & X9 in

( t1;t) nf0g and, depending on the parametrization, either

20 _ 1 . 20 1
al T o P It T PR
or
20 _ 1 o) 1
tro+ (1) X‘l)_ piand tI!O 1(b) x‘l)_p?
u=>0
u=20

Figure 4. Stokes corner

(i) If M(0+) = 5 x; dx, then (cf. Figure 5) 1(t) & x? in ( t1;t) n fOg,

1 x? changes sign at t =0 and
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Figure 5. Full density singularity
(i) If M(0+) = 0, then (cf. Figure 6 and Figure 7) 1(t) & x% in ( t;;t;)nf0g,
x? does not change its sign at t =0, and
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u=20
u=~0

Figure 6. Left cusp

u=0
u=0

Figure 7. Right cusp

Proof. We may assume that x$ = 0. Moreover, for each y 2 R? we de ne arg y as
the complex argument of y, and we de ne the sets

L =f,2]0;
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Remark 4.7. In [23] we used a strong version of the Rayleigh-Taylor condition
(which is always valid in the case of zero vorticity) in order to prove that the cusps
of case (iii) are not possible. Unfortunately we do not have the Rayleigh-Taylor
condition (4.1) in the case with nonzero vorticity, and the method of [23] breaks
down here. Still we conjecture that the cusps in case (iii) are not possible when
assuming the Rayleigh-Taylor condition.

5. Partial regularity at non-degenerate points

De nition 5.1 (Stagnation Points). Let u be a variational solution of (3.1). We
call SY:=fx 2 :x,=0and x 2 @fu > 0gg the set of stagnation points.

Throughout the rest of this section we assume that n = 2.

De nition 5.2 (Non-degeneracy). Let u be a variational solution of (3.1).
We say that a point xX° 2 \ @fu > 0g \ fx, = 0g is degenerate if

u(x® + rx)
r3=
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By the proof of Theorem 4.5(ii), the sequence u,, converges strongly in WI};CZ(RZ)

to the homogeneous solution
p_

uo( ; )= ?2 =2 cos(g(min(max( ;
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Lemma 6.6. Letrg>0and =>1. Let
G:=f(cos ; sin ):0< <rgji< =2 )g

Let w 2 C2(G) \ C(G) be a superharmonic function in G, such that w(0;0) = 0
and w > 0 in G n f(0;0)g. Then there exists > 0 such that

w( cos ; sin ) cos in G;

and in particular

w( ;0) for all 2 (0;rp):

Suppose for a contradiction that M (0+) = RBl X, dx. Then, the assumption
on f and Theorem 4.6 yield the existence of ro > 0 and 2 (0; =6), such that
u is superharmonic in fu > 0g \ B,, and G n f(0;0)g fu > 0g \ B,,, where
G:=f(cos; sin):0< <rgp < < g. After a suitable rotation, we
may apply Lemma 6.6, obtaining the existence > 0 such that

u(0; x2) x, for all x; 2 (0; ro);
where = =( 2 ), sothat < 3=2. But this contradicts the estimate
u0;xz) Cx37%
which is a consequence of the Bernstein estimate assumption 4.1.
Motivated by Remark 6.4, we will focus in the present paper on the case f(0) = 0.

Theorem 6.7 (Frequency Formula). Let u be a variational solution of (3.1) sat-

isfying Assumption 4.1, let x° be a stagnation point, and let := dist(x%;@ )=2.
Let R
r Bﬁxo)(jrujz uf(u)) dx
Dyo.u(r) =D(r) = d
XO,U( ) ( ) 0B, (<) U2 dHn 1

and
X;_ (1 fu>Og) dX_

N 5 o
Vaoru(r) = V (1) = B0 O

@Br(x°)

Then the \frequency"

Hyo.u(r) =H()=D(r) V(r)
R 1 1 —+
_ r B (x°) JrUJs Uf(u) + Xn( fu=>0g 1) dx

B uzdHn 1

@Br(x%)
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satis es for a.e. r 2 (0; ) the identities

H'(r)
2 3,
Z
=§ 9 ‘v ) b - u & dnn
0
@Br(x°) 0B, () u2dHn 1 0B, (%) u2dHn 1
2 2 3 K(r)
+ZV2(r)+ZV(r) H(r) = +R 6.1
NOFVO HO G R (6.2)
and
H’(r)
2
z
2 r(ru ) u
=2 0 8 — H(D
@Br(x°) u2dHn 1

@Br(x%)
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Using the identities (3.6) and (3.7), we therefore obtain that, for a.e. r 2 (0; ),

R 2 n 1 R n 1
2r @Br(xo)(ru )de 3 uru dH + K(r)

@Br(x°)
H(r) = R
@Br(x°) u2 dHn '
1 2rR wuru dH" 1 SR oy u2dH" 1
Om V() D g ERD
A r @Br.(xo)“ dH
2 r2 @@r(xo)(ru ZdH" 1 4 )
=7 W drn 1 2P
@Br(x%)
2 3 K (r)
—-(D V D -~ +R : 6.3
r( (r (r)) D(r) > 25 oy UZAH T (6.3)
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Note that when f is a C! function, the above is a consequence of f(0) = 0.
Assumption 6.10 also implies that

jF(2)j Cz%=2 forall z 2 (0;z0):
As a corollary of Lemma 6.9 we obtain thus:

Corollary 6.11. Let u be a variational solution of (3.1) such that Assumption 4.1

and Assumption 6.10 hold. Then there exists ro > 0 such that
z z

r uZdH" ! u? for all r 2 (0;rg)
@By (x°%) Br(x%)

and 7

jK()j Cor u? for all r 2 (0; ro): (6.8)
@Br(x°)

Theorem 6.12. Let u be a variational solution of (3.1) such that Assumption 4.1
and Assumption 6.10 hold, let x



26

E. VARVARUCA AND G.S. WEISS

Let Y : (0;ro) ¥ R be given by
zZ, z
Y= t"* u®dH"
0 @B (x°)
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Since, by part (i), r @ H(r) is bounded below as r ¥ 0, we obtain (iii). We
also deduce from (6.16) and part (i) that H(r) has a limit as r ¥ 0+, and that
H(0+) 3=2, thus proving (iv).
We now consider (6.2), and deduce from part (i) using (6.15) that, for a.e.
r 2 (0;ro),
z

HO(r) r(rU )

= (6.17)

=1IN

R
@Br(x°)
8 @Br(x°) uzdHn 1

u n 1
H(r) R 1=2 dH

u2dHn 1

@Br(x°)
2CorV(r) Cor

1
VA Cir® Cor; (6.18)

which, together with part (iii), proves (v).

7. Blow-up limits
The Frequency Formula allows passing to blow-up limits.
Proposition 7.1. Let u be a variational solution of (3.1), and let x° 2 Y. Then:

(i) There exist limewo+ V (r) =0 and limy x g+ D(r) = Hyo.,(0+).
(ii) For any sequence r, ¥ 0+ asm ¥ 1, the sequence

u(x® + rmx)
Ay

1n 2 1
Fm " ge,, ooy U° dH"

Vin(X) = ¢ (7.1

is bounded in W12(B,).

(iii) For any sequence r, ¥ 0+ as m ¥ 1 such that the sequence v, in (7.1)
converges weakly in W12(B) to a blow-up limit vg, the function vy is homogeneous
of degree Hyo.,(0+) in By, and satis es

z

Vo 0inBi,vg 0inB;\fx, 0gand vadH" 1 =1,
@B1

Proof. We rst prove that, for any sequence r,, ¥ 04S RBB'Sequence
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Indeed, for any such % and , it follows by scaling from (6.18) that, for every m
such that r,, <

2 3,
z ZZ r(rv ) Vv
r 9 = = Hmn R - 1:2g dH" *dr
b0 8B g V& dHN 1 o, V& dHN 1
Z i 4
H(rm ) H(@rm%) + “V2(r)+C2r3+Cordr ¥ 0 asm ¥ 1;
rm%

as a consequence of Theorem 6.12 (iv)-(v). The above implies that

2 32
z z
% g m ) ooy Ym L ann tar
LI Ve [ L o, Vi dHN 1
0 asm?¥ 1: (7.3)

Now note that, for every r 2 (%; ) (0;1) and all m as before, it follows by using
Theorem 6.12 (ii), that

z

0B = (¢
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and

(@1¥m)?  (@2¥m)> ¥ (@1v0)®  (B2v0)°
in the sense of distributionson B asm ¥ 1. It follows that
@1Vm@2vm ¥ @1Vol2vo (8.4)
and
(@1vm)?  (@2vm)* ¥ (@1v0)®  (B2v0)°
in the sense of distributions on B asm ¥ 1. Let us remark that this alone

would allow us to pass to the limit in the domain variation formula for vy, in the
set x, > 0g.
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z 2 f( 1=2;0); (1=2;0)g. Consider the blow-up sequence v, given by (7.1), and
also the sequence
() = U0 F TmX),
'm
Note that each up, is a variational solution of (4.5), and vy, is a scalar multiple of
Umn. Since Xpjm 2 ¢
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N(x°) 2 such that

u(x® + rx)
) uzdH?

vr(X) =€ o
r @Br(x°)

NCOjsin(N (x°) min(max( ; 0)

(10.1)
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We are going to use a atness-implies-regularity result of [5]. Note that although
not stated in [5], [5, Lemma 4.1] yields as in the proof of [5, Theorem 1.1] that for
each 2 (0; o)

max(x ;00 w max(x + ;0)in By (10.3)
implies that the outward unit normal " on the free boundary @fw > Og satis es

iY@ j c*

Note that W(0) = ( ). Since (10.3) is by (10.2) satis ed for = (1=2; p§:2),

r =r( ) andevery su ciently small > 0, we obtain that the outward unit normal
(x) on @fu > 0g convergesto as x ¥ 0;x; > 0. It follows that the present curve
component is the graph of a C*-function (up to x; = x?) in the x,-direction.
The remaining statements of the Theorem follow from Theorem 4.6.
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