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state ’k at time tk into a new state ’k+1 at time tk+1, where we assume that we consider

time steps t0 < t1 < t2 < :::. Let Y be our measurement space, which we assume to

be �xed within this work. For the data assimilation task we are given measurements

fk 2 Y at time tk. Also, we assume that we know some initial guess ’0 2 X at time t0.

The task of data assimilation is to successively calculate some analysis ’
(a)
k at time tk

which is estimating the true system state ’
(true)
k at time tk[LLD06]. Usually, we are also

interested in an estimate for the uncertainty of the estimate ’(a), or an estimate for the

analysis error

e
(a)
k :=

������’(a)
k � ’

(true)
k

������ ; k 2 N0: (1.1)

Here, we are interested in Hilbert-space type error estimates for the �nite-dimensional as

well as the in�nite-dimensional case, which provides a good model for high-dimensional

systems. We call a data assimilation system stable, if e
(a)
k remains bounded by some

constant C > 0 for k !1. If e
(a)
k !1 for k !1, we call it unstable. When we have

an estimate ������fk � f (true)
k )
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The nonlinear case is beyond the scope of this work. The state space X is assumed to

be a Hilbert space with scalar product h�; �iX and the measurement space Y is a Hilbert

space with scalar product h�; �iY . Often, we will drop the indices X or Y , respectively,

since it is usually clear which scalar product is used.

At every time step tk, k 2 N
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where the di�erence in the last round bracket can be decomposed as the �rst di�erence

in (3.3), i.e.

’
(true)
k+1 � ’

(b)
k+1 = Mk

�
’

(true)
k � ’(a)

k

�
�
�
Mk �M (true)

k

�
’

(true)
k : (3.4)

This leads to

e
(a)
k+1 =

reconstruction errorz }| {
(I �R�H)

propagation of previous error + model errorz }| {n
Mke

(a)
k +

�
Mk �M (true)

k

�
’

(true)
k

o

+

data error influencez }| {
R�

�
f

(�)
k+1

�

+

observation operator errorz }| {
R�

�
(H(true) �H)’

(true)
k+1

�
(3.5)

We �rst study the simpli�ed situation where we assume that our computational

model is correct, i.e. M (true) = M , TJ/Frl [(�ie574 0 Td(f 15.946z -13.27 Td [( g  -397.258 -34.658 -34.658 -34.6iot -34.6ha)i.ev)i.e8 -34.6error11.9552in1.95521(tua95529(atov)54-29(r)-11.9552 Tf2 18(correct,)-op9(i.eer11.9.94694 Td [(M)]TJ/F19 7.9701 Tf7701 Tf 15.946d [(()]TJ/F22 7.9701 Tf 3.294 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946 0 Td [())]TJ/F22 7.9701 Tf -19.239 -9.44 Td [(k)(TJ/Frl [(�i8.2f 7..274 0 Td [(M)]TJ/F15 11.9552 Tf 12522 0 Td [())]TJ/F21 11.9552 Tf 4.553 0 Td.)-597(F(theur1(t9.94693-34..e8 -380mputation380mTJ -2)]TJ/F15 11.9552 Tf 41.8484 0 Td [(,)-379]TJ/F14 11.9552 Tf 7.776  3.33 Td [(+)]TJ/F27 11.95529 Tf4 776  3.33 Td79(i.eeson380miot -380mdep9(i.6e7 Td 80mr)-11.J/F15 11.9552 Tf 09559409 16.6 d [(+)]TJ/F27 11.955295589553 0 Td.)-597(T  -3 1111.954F2752368(corr3 0 Td leadson32i)1o(M)]TJ/F19 7.9701 Tf71 g 0 G21558951 Td [(()]TJ/F22 7.9701 Tf 3.2933 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946a)]TJ/F27 11.9552 Tf 1498.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf92622 0 Td [(+1)]TJ/F27 11.9552 Tf 11.319 16.6 Td [(�0)]TJ/F21 11. 1297597032956 0 Td [(H)]TJ/F15 11.9552 Tf 10.622 0 Td [[(()]TJ/F22 7.9701 Tf 3.2933 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946 0 Td [())]TJ/F22 7.9701 Tf -19.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf 4.621 0 Td [(+1)]TJ/F27 11.9552 Tf 18.319 16.6 Td [(�J/F27 11.955221572957032956 0 T(M)]TJ/F15 11.9552 Tf 1 T264 0 Td [(,)-379(TJ/Frl [(�ie574 0 Td(f 15 [(H)]TJ/F19 7.9701 Tf 10.6222 0 Td [[(()]TJ/F22 7.9701 Tf 3.2933 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946a)]TJ/F27 11.9552 Tf 1498.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf91621 0 Td [(+1)]TJ/F20)]TJ/F21 11. 4.2497032956 0 Td [(H)]TJ/F15 11.9552 Tf 10.652 0 Td [[(()]TJ/F22 7.9701 Tf 3.2933 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946 0 Td [())]TJ/F22 7.9701 Tf -19.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf 4.621 0 Td [(+1)]TJ/F2J/F27 11.95522396(197032956 0 Td  Td-222 Td [(obs1]TJ
0 g 0 G
/F197.239 -9. [(�)]TJ/F27 11.9552 Tf 5.937 15.064 Td [(�]TJ
0 g 0 G
9552 Tf5.937 15.0H)-77[(,)-379]7/F27 11.95522391f 1 12.53 0 Td [(2(H)]TJ/F15 11.9552 Tf552 Tf 4.5510 Td [[(()]TJ/F22 7.9701 Tf93.2933 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946 0 Td [())]TJ/F22 7.9701 Tf -19.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf 4.621 0 Td [(+1)]TJ/F20)]TJ/F21 11.(at68797032956 0 Td [(H)]TJ/F15 11.9552 Tf 10.652 0 Td [[(()]TJ/F22 7.9701 Tf 3.2933 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946a)]TJ/F27 11.9552 Tf 1498.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf92622 0 Td [(+1)]TJ/F1)]TJ
0 g 0 G
/275831.9552 Tf 176.731 -)]TJ/F27 11.95529 797.f 4.5510 Td [Td [(obs1]TJ
0 g 0 G
/f5.61.239 -9. [(�)]TJ/F27 11.9552 Tf 5.937 15.064 Td [(�]TJ
0 g 0 G
9552 Tf5.937 15.0f(()]TJ/F22 7.9701 0473.2933 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.94664 6)]TJ/F27 11.9552 Tf 1019.239 -9.44 Td [(k)]TJ/F19 7.97018.616621 0 Td [(+1)]TJ/F27 11.9552 Tf 18.319 16.6 Td [(�J/F27 11.9552-269 T264-22.17596 0 T(M(i.85 [(H)]TJ/F19 7.9701 Tf 1.95978.239 -9.I)]TJ/F20)]TJ/F21 11.85.6.239 -9.44[(H)]TJ/F15 11.9552 Tf 10.652 0 Td [ [(�)]TJ/F27 11.9552 Tf 5.937 15.064 Td [(�]TJ
0 g 0 G
9552 Tf5.937 15.0H)051)]TJ/F21 11.9552 Tf 43.239 -9.44 Td [(k)]9 7.9701 Tf 10.6222 0 Td [(,)-379]7/F27 11.9552e574 0 
 -397.258 -32(H)]TJ/F15 11.9552 Tf5524.62
 -397.258 [(()]TJ/F22 7.9701 Tf93.293 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946a)]TJ/F27 11.9552 Tf 1498.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf91621 0 Td [(+1)]TJ/F20)]TJ/F21 11. 4.2395703356 0 Td [(H)]TJ/F15 11.9552 Tf 10.652 0 Td [[(()]TJ/F22 7.9701 Tf93.293 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946 0 Td [())]TJ/F22 7.9701 Tf -19.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf 4.621 0 Td [(+1)]TJ/F]7/F27 11.9552239031.9552 Tf 176.731 -)]TJ/F27 11.95529 797.f 4.550 Td [Td [(obs1]TJ
0 g 0 G
/f5.61.239 -9. [(�)]TJ/F27 11.9552 Tf 5.937 15.064 Td [(�]TJ
0 g 0 G
9552 Tf5.937 15.0f(()]TJ/F22 7.9701 0473.293 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.94664 6)]TJ/F27 11.9552 Tf 1019.239 -9.44 Td [(k)]TJ/F19 7.97018.616621 0 Td [(+1)]TJ/F27 11.9552 Tf 18.319 16.6 Td [(�s1]TJ
0 g 0 G
/f53195703356 0 T: [(0 g19 G
)]TJ/F27 11.955296.5 Tf 15.94664503.644 Td [(
0 g19 G
9542Tf 74-22.61 0 Td [W(theion3i.ede64 4ned [(
0 g19 G
0 g19 G
971 g 0 G21558951 Td d [3M(i.85:(M(i.85 [(H)]TJ/F19 7.9701 Tf 131f 75.239 -9.I)]TJ/F20)]TJ/F21 11.85.6.239 -9.44[(H)]TJ/F15 11.9552 Tf 10.652 0 Td [ [(�)]TJ/F27 11.9552 Tf 5.947 15.064 Td [(�]TJ
0 g 0 G
9552 Tf5.947 15.0H)051)]TJ/F21 11.9552 Tf 43.239 -9.44 Td [(k)]9 7.9701 Tf 10.6222 0 Td [(,-50T: [(0 g19 G
)]TJ/F27 11.9552296.527f 15.94664503.744 Td [(
0 g19 G
9542Tf 74-21558951 Td Then,on32i)w)i.eeon32i)obtainon3i.etheon32i)iterationon32i)form)i.eulad [(
0 g19 G
0 g19 G
TJ/F19 7.9701 Tf71 g 0 G21558951 Td ))]TJ/F22 7.9701 5 T253.293 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946a)]TJ/F27 11.9552 Tf 1498.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf92622 0 Td [(+1)]TJ/F27 11.9552 Tf 11.319 16.6 Td [(�5)]TJ/F21 11. 4.645703356 0 T(M(i.85 [0Td [(�]TJ
0 g 0 G
2Tf652 0 Td [))]TJ/F22 7.9701 5 T263.293 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946a)]TJ/F27 11.9552 Tf 1498.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf91621 0 Td [(+1)]TJ/F25)]TJ/F21 11. 4.2395703356 0 TTd [(obs1]TJ
0 g 0 G
/f5.61.239 -9. [(�)]TJ/F27 11.9552 Tf 5.937 15.064 Td [(�]TJ
0 g 0 G
9552 Tf5.937 15.0f(()]TJ/F22 7.9701 0473.293 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.94664 6)]TJ/F27 11.9552 Tf 1019.239 -9.44 Td [(k)]TJ/F19 7.97018.616621 0 Td [(+1)]TJ/F27 11.9552 Tf 18.319 16.6 Td [(�s1]TJ
0 g 0 G
/f53195703356 0 T;)-722 1)]TJ/F2J/F27 11.955221f 99.239 -9.(M(i.85(H)]TJ/F15 11.9552 Tf 8.558.239 -9.;)]TJ/F2J/F27 11.95525.2452 0 Td [d [(�s1]TJ
0 g 0 G
5.853.239 -9.;)]TJ/F2J/F27 11.95525.24Tf 15.9462 [(�s1]TJ
0 g 0 G
5.853.239 -9.;)-167(::: [(0 g19 G
)]TJ/F27 11.9552173.549f 15.94664503.844 Td [(
0 g19 G
0 g19 G
)]47/F27 11.9552542Tf 74-25 T9651 Td Theoremon3.85391 [(0 g19 G
)]19.]TJ/F21 11.8191f7f 15.946Assumeon314ethaton314etheon314eerr)50Tor [(�s1]TJ
0 g 0 G
/f5.6.7f 15.946f(()]TJ/F22 7.9701 0473.293 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.94664 6)]TJ/F27 11.9552 Tf 1019.239 -9.44 Td [(k)]TJ/F19 7.97018.616621 0 Td [(+1)]TJ/F19.]TJ/F21 11..951635703356 0 Tdo)50Teson314enoton314edep)50Tendon315(ono[(�s1]TJ
0 g 0 G
/00.2052 0 Td [1)]TJ/F19.]TJ/F21 11.655895 0 Td [,on321(i.e.on315(thaton314eweon314ehaveon314esom)) n324.8452-Tf -115.946 ime-indep)50Tendenton406(dataon405eerr)50Tor n406(for n406(ouron405edataon406(assimilationon406(scheme.on616 Then)-1[,on419etheon406(err)50Tor n405(termso[(�s1]TJ
0 g 0 G
02-Tf -115.946))]TJ/F22 7.9701 5 T253.293 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946a)]TJ/F27 11.9552 Tf 1498.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf92622 0 Td [(+1)]TJ/F19.]TJ/F21 11..591f85703356 0 Twithon302(initialon303eerr)50Tor [(�s1]TJ
0 g 0 G
87.8062 0 Td [))]TJ/F22 7.9701 5 T263.293 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946a)]TJ/F27 11.9552 Tf 1498.239 -9.44 Td [(01 Tf91621 04239 -9.0)]TJ/F19.]TJ/F21 11..591f7 2552239 -9.ando [(�]TJ
0 g 0 G
22.1462 0 Td [))]TJ/F22 7.9701 5 T25f 1338 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.94664 6)]TJ/F27 11.9552 Tf 1019.239 -9.44 Td [(k)TJ/F27 11.95527293262 1338 0 Td :(M[(�s1]TJ
0 g 0 G
/5f 78.239 -9. [(�)]TJ/F27 11.9552 Tf 5.947 15.064 Td [(�]TJ
0 g 0 G
9552 Tf5.947 15.0f(()]TJ/F22 7.9701 046f 1338 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.94664 6)]TJ/F27 11.9552 Tf 1019.239 -9.44 Td [(k)19.]TJ/F21 11.7.40662 1338 0 Td describ)50Te)50Tdon302(byon303etheon302(up)50Tdateon303eformuladn302([(tr)-29
0 0 1 rg19 0 1 RG
9[5398d [(
0 g19 G
99.44 Tdn302(evolv)) n2270392-Tf -13 0 Td ac)50Tc)50Tor 50Tdingdn350Ttod [(
0 g19 G
0 g19 G
TJ/F19 7.9701 Tf71 g 0 G3Tf64115.946))]TJ/F22 7.9701 5 T253.2933 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946a)]TJ/F27 11.9552 Tf 1498.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf92622 0 Td [(+1)]TJ/F25)]TJ/F21 11. 4.90457032956 0 T(M(i.85 [0Td [(�TJ/F19 7.9702Tf6524552 Td [(+1)]TJ/F21]TJ
0 g 0 G
953262 152 Td [(+))]TJ/F22 7.9701 5 T263.2933 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946a)]TJ/F27 11.9552 Tf 1498.239 -9.44 Td [(01 Tf91621 04239 -9.0)]TJ/F25)]TJ/F21 11. 4.23952552156 0 TTd [(obs7]TJ
0 g 0 G
/f5.61.2Tf4447 15.0644r)-29(ue)]TJ/F19 7.9 Tf3.8 -5.5Td [(+1)]TJ/F25 11.9552 Tf 18.319 16.6  [00)]TJ/F27 11.9552 Tf6.589.239 -9.1d [(obs7]TJ
0 g 0 G
-12.120 G3.589.9 -9.X)-29(ue)]TJ/F19 7.9 14944-25 T9.9 -9.‘)]TJ/F27 11.9552 Tf3.4595 0 Td [=0)]TJ/F25)]TJ/F21 11. 4.308. 4.102 16.6  [0Td [(�TJ/F19 7.9708.12524552 Td [(+‘d [(obs7]TJ
0 g 0 G
3
0 7
/5f50 Td [(+! [(�s1]TJ
0 g 0 G
/f54574-2Tf4447 15.0))]TJ/F22 7.9701 5 T2634552 Td [(+[(tr)-29(ue)]TJ/F19 7.9701 Tf 15.94664 6)]TJ/F27 11.9552 Tf 1019.239 -9.44 Td [(k)]1]TJ
0 g 0 G
3
f91624552 Td [(+: [(0 g19 G
)]TJ/F27 11.9552202f 9Tf 15.94664503.944 Td [(
0 g19 G
k)19.]TJ/F21 11.542Tf 74-3f5318 0 Td If)]TJ/F25)]TJ/F21 11. 2.559.239 -9.44 (H)]TJ/F15 11.9552 Tf4f65Tf 15.946I)]TJ/F24]TJ
0 g 0 G
8.75919 16.6  [00)]TJ/F25]TJ
0 g 0 G
/f50 g19 16.6  [0344 Td [(k)]5 11.9552 Tf 2. 78. 1339 16.6  [00)]TJ/F27 11.9552 Tf6.589.239 -9.1d [(ob19.]TJ/F21 11.852 762 1339 16.6 exists,dn350Tthisdn350Tc)50Tandn350Tb)50Te)n350Twrittendn350Tasd [(
0 g19 G
0 g19 G
TJ/F19 7.9701 Tf6.0074-21558955.946))]TJ/F22 7.9701 5 T253.2933 0 Td [(tr)-29(ue)]TJ/F19 7.9701 Tf 15.946a)]TJ/F27 11.9552 Tf 1498.239 -9.44 Td [(k)]TJ/F19 7.9701 Tf92622 0 Td [(+1)]TJ/F25
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= �k+1e
(a)
0 +

 
kX
‘=1

�‘

!
e(�) + e(�)

= �k+1e
(a)
0 +

 
kX
‘=0

�‘

!
e(�); (3.11)

which is the formula for k replaced by k + 1 and the induction is shown. Then, in the

case where
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bounded by � > 0, � := jj�jj and � := jjR�jj�, then the analysis error e
(a)
k is estimated

by ������e(a)
k

������ � �k
������e(a)

0

������+

 
k�1X
‘=0

�‘

!
�: (3.17)

If � < 1, we have������e(a)
k

������ � �k
������e(a)

0

������+
1� �k

1� �
� (3.18)

such that

lim sup
k!1

������e(a)
k

������ � jjR�jj�
1� �

: (3.19)

We now come to the g1[(W)82(e)-298(eral(k)]TJe)-itt4(3.18)

such that
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such that

lim sup
k!1

������e(a)
k

������ � jjR�jj� + �

1� �
: (3.30)

4. Stabilizing Cycled Data Assimilation

We have described error estimates for the analysis error of cycled data assimilation in

Theorems 3.3 and 3.4. One key assumption to keep the error bounded is the estimate

� = jj�jj < 1. This condition means that jj(I �R�H)M jj < 1, i.e. the model dynamics

is not increasing the error stronger than the regularized reconstruction can reduce it.

Here, we investigate trace-class model operators M to show that we can obtain this

condition for appropriately chosen regularization parameter �.

Lemma 4.1 For a �nite dimensional state space X = Rn and injective operators H, we

can always make N := I �R�H arbitrarily small in norm.

Proof. This is due to the fact that H�H is self-adjoint and thus it has a complete

basis ’(1); :::; ’(n) of eigenvectors with eigenvalues �j > 0 for j = 1; :::; n. We set

c := min
j=1;:::;n

j�jj > 0: (4.1)

We can transform N into

N = I �R�H = I � (�I +H�H)�1H�H = �(�I +H�H)�1 (4.2)

and estimate

jjN jj � max
j=1;:::;n

���� �

� + �j

���� � �

� + c
: (4.3)

Given c we can always choose � > 0 su�ciently small such that the norm jjN jj of N is

arbitrarily small. �

Remark. As a consequence of the previous lemma, given M we can choose � > 0

such that jj�jj � jjN jjjjM jj < 1.

For the case of in�nite dimensions, which is much closer to realistic situations, we

need to take more care, since in general the constant c in the above arguments is zero.

Here, we will work out the case where M is a trace-class operator. We �rst collect

notations and set-up our scene for further arguments.

Let f ‘ : ‘ 2 Ng be a complete orthonormal system in X. Then, any vector ’ 2 X
can be decomposed into its Fourier sum

’ =
1X
‘=1

�‘ ‘ (4.4)

with �‘ := h’;  ‘i for ‘ 2 N X
‘=1

�’1.794 Td [(‘)]TJ/FTJ/F22 7.9701 Tf 20.523 -1.793 Td M‘f8r hX

‘=1

�

‘
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which yields (4.11). The second statement is a result of the order of the singular values

�1 � �2 � �3 � ::: > 0, such that we can choose � su�ciently small to make each term

in (4.11) arbitrary small. Since there are only a �nite number of such terms, we obtain

the estimate (4.12). �

Lemma 4.4 The norm of the operator N jX2 is given by

jjN jX2jj = 1 (4.14)

for all n 2 N and � > 0.

Proof. Since H is compact, we know that �n ! 0 for n!1. This means that

sup
‘=n+1;:::;1

���� �

� + �2
n

���� = 1 (4.15)

for all n 2 N and all � > 0, which implies the norm estimate (4.14). �

We now nee1.95 23.2tnee1.95 23stub8(�)]o138 0 T552 Tf 6.834s8(wm06 -6.409 -412.022 -27.82 0 Td  /(:::)-278(>)]TJ/F15 11.9552 Tf 25.3(=)-5F21 1]TJ/F33TJ/F195F30 )-327TJ/F1 0 05F21 1]TJ/F2.715 0 Td [(�)-284(>701:)-278(>)]TJ/F15 11.9552 Tf 25.3(=)-5F21 1]TJ/F23TJ/F195F30 limitatio
0 g 414ni g 42Tf 6.83414(wm06 -42T09 -412.022 -27.82 0 Td)]T811: >
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This means that given � > 0 there is an n 2 N such that
1X

‘=n+1

1X
j=1

jMj;‘j2 =
1X

‘=n+1

ja‘j2 < �2: (4.19)

This provides an estimate for jjM2jj
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(1.3). Here, we have shown that we need � su�ciently small to keep the error bounded

over time. But the error bound will also depend on � by the norm

jjR�jj �
1

2
p
�

of R�, compare equation (4.20). The bound might in fact be rather large. Given � there

will be some optimal � which leads to the best possible error bounds for a given set-up.

However, the maximal � for which jj�jj < 1 is achieved might still cause severe numerical

instabilities, such that there is the possibility that practically it is impossible to stabilise

the scheme, depending on the particular set-up and operators under consideration.

5. Numerical Examples

Here, we present two numerical examples to demonstrate the theory presented in this

work. Firstly we present a simple low-dimensional setup which con�rms the theoretical

results. Then, we investigate a more realistic system, the 2D Eady model [Ead49], which

con�rms the practical validity of the above results.

The numerics demonstrate that with a small regularization parameter � we can

achieve a stable cycled data assimilation scheme. For the simple low-dimensional system

we use construct M to be a random n � n-matrix, using Matlab rand function, giving

us a singular system by its SVD. To mimic a kind of trace-class operator, we then

manipulated the singular values to decay su�ciently strongly.

The interesting case is where some singular values are larger than one, leading to

a system with growing modes. Further, we want the rest of h
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jje(a)
k jjl2 over time tk with respect to the l2 norm. In Figure 3 we plot jje(a)

10000jjl2 as �

is varied. Here we observe for a �xed time t10000 that the analysis error is sensitively

dependent on the regularization parameter we choose.

Figure 1. The l2 norm of the analysis error as the scheme is cycled for the time index

k, for a regularization parameter, � =
�2

(o)

�2
(b)

� 1:2.

Figure 2. The l2 norm of the analysis error as the scheme is cycled for the time index

k, for a regularization parameter, � � 0:8.

As a second example, we now consider a more realistic system where the model

operator M arises from the discretization of a system of partial di�erential equations.
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Figure 3. The l2 norm of the analysis error as the scheme is cycled for a constant

time index k = 10000, varying the regularization parameter, �.

The system we consider is the two-dimensional Eady model, a simple model of

atmospheric instability, see [Ead49] for a detailed introduction. The model is de�ned in

the x� z plane, with periodic boundary conditions in x and z 2 [�1=2; 1=2]. The state

vector consists of the nondimensional buoyancy b on the upper and lower boundaries and

the nondimensional potential vorticity in the interior of the domain. For the current

study we assume that the interior potential vorticity is zero and thus we only need

to consider the dynamics on the boundaries. The buoyancy is advected along the

boundaries forced by the nondimensional streamfunction  according to the equation

@b

@t
+ z

@b

@x
=
@ 

@x
on z = �1=2 (5.1)

where the streamfunction satis�es

@2 

@x2
+
@2 

@z2
= 0 in z 2 [�1=2; 1=2]; (5.2)

with boundary conditions

@ 

@z
= b on z = �1=2: (5.3)

The equations are discretized as described in [Joh03] and [JHN05] using 40 grid points

in the horizontal, giving 80 degrees of freedom. The resulting discrete operator M has

a maximum eigenvalue of 1:3066.

We simulate the consequence of compact observation operator H with a random

80 � 80 matrix with the last 5 singular values �76:80 = (10�6; 10�8; 10�10; 10�12; 10�14)

respectively. Therefore, H is severely ill-conditioned with a condition number, � =

4:1367 � 1015 with respect to the l2 norm. We set up background and observation

standard deviations as follows �(b) = 0:25 and �(o) = 1 respectively. Random normally
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distributed noise is added to the observations with mean, 0 and standard deviation, �(o).

Initially we choose � =
�2

(o)

�2
(b)

� 16. In Figure 4 we observe that over time tk the analysis

error, jje(a)
k jjl2 blows up with respect to the l2 norm. Now in Figure 5 we choose a smaller

regularization parameter, � = 1
0:09
� 11:1, inating the background error variance, �2

(b)

from 0:252 to 0:32. Subsequently repeating with the same data, we observe a stable

analysis error, jje(a)
k jjl2 over time tk with respect to the l2 norm. In Figure 6 we plot

jje(a
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Figure 5. The l2 norm of the analysis error as the scheme is cycled for the time index

k, for a regularization parameter, � � 11:1.

Figure 6. Left: The l2 norm of the analysis error as the scheme is cycled for a constant

time index k = 10000, varying the regularization parameter, �. Right: Zoomed version.

too large, error which enters the system via the data in general will be ampli�ed, such

that the analysis error growth without limits in its long-term behaviour. This growth

happens even for an arbitrarily small data error.

In a numerical part we studied simple examples and also applied the theory to a

two-dimensional Eady model, a simple model of atmospheric instability. The numerical

results con�rm and demonstrate the general theory very well.
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