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Abstract

This paper provides a new proof of a theorem of Chandler-Wilde,
Chonchaiya and Lindner that the spectra of a certain class of in�nite,
random, tridiagonal matrices contain the unit disc almost surely. It also
obtains an analogous result for a more general class of random matrices
whose spectra contain a hole around the origin. The presence of the hole
forces substantial changes to the analysis.

Mathematics Subject Classi�cation: 65F15, 15A18, 15A52, 47A10, 47A75,
47B80, 60H25.

Key Words: spectrum, random matrix, hopping model, tridiagonal matrix,
non-self-adjoint operator.

1 Introduction

Over the last �fteen years there have been many studies of the spectral prop-
erties of non-self-adjoint, random, tridiagonal matrices A, some of them cited
in [8, 13, 14, 17]. It has become clear that if all of the o�-diagonal entries
Ai;j with i � j = �1 of the matrices concerned are positive, the almost sure
limit as N !1 of the spectra of random N �N matrices subject to periodic
boundary conditions can be quite di�erent from the spectral behaviour of the
corresponding in�nite random matrix, [9, 10, 15, 16]. Indeed the limit in the
�rst case can be the union of a small number of simple curves, while the second
limit has a non-empty interior.

Numerical calculations suggest that the situation is quite di�erent if the o�-
diagonal entries have variable signs, but much less has been proved in this
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situation, which is the one that we consider here. In a recent paper, [5],
Chandler-Wilde, Chonchaiya and Lindner made important progress in deter-
mining the almost sure spectrum of a remarkably interesting class of non-self-
adjoint, random, tridiagonal matrices introduced by Feinberg and Zee in [13],
and sometimes called random hopping matrices, because the diagonal entries
all vanish. Speci�cally they proved that, contrary to earlier conjectures, the
in�nite, tridiagonal matrix

Ac =

0BBBBBBBBB@

. . . . . .

. . . 0 1
cn�1 0 1

cn 0 1

cn+1 0
. . .

. . . . . .

1CCCCCCCCCA
has spectrum that contains the unit disc almost surely, [5]. The paper assumed
that the entries cn are independent and identically distributed with values in
f�1g.
In the present paper we assume that the entries cn are independent and identi-
cally distributed with values in f��g for some �xed � 2 (0; 1]. We assume that
the probability p that cn = � satis�es 0 < p < 1; the corresponding probability
measure on 
� = f��gZ is denoted by �. The matrix Ac is identi�ed with the
bounded operator acting in the natural manner on ‘2(Z).

In Lemma 26 we prove that

Spec(Ac) � f� : 1� � � j�j � 1 + �g

by a perturbation argument. We also prove that

Spec(Ac) � fx+ iy : jxj+ jyj �
p

2(1 + �2)g

by obtaining a bound on the numerical range of Ac. There are currently no
general techniques for identifying the precise forms of holes in the spectra
of non-self-adjoint operators, and we have not done so here, but numerical
calculations are consistent with the hypothesis that it is the intersection, H�,
of two elliptical regions as de�ned in (36); see the �gures at the end of Section
7. Little is known about the part of the spectrum of Ac outside the unit disc
even in the case � = 1, but numerical studies suggest that the boundary of the
spectrum has a self-similar fractal structure in that case; [5, 17].

The main result of [5], that the spectrum contains the unit disc almost surely,
is for the case that � = 1, when there is no hole in the spectrum. It depends
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upon the identi�cation of a particular sequence c 2 
1 such that the equation
Acf = �f has a bounded solution f for every � 2 C such that j�j < 1.

Our Theorem 7 rederives the main result of [5], in which � = 1, but depends



As is well-known, the set �N;� is the union of eigenvalues of N � N matrices.
(Precisely, it is the union, over all sequences c and all j�j = 1, of the eigenvalues

of the matrix A
(N;per)
c;�



This implies that B = XY and M = Y X. The second identity in (3) follows
by some simple algebra that holds for any pair of bounded operators X and
Y , and the �rst identity is a trivial consequence.

If A is invertible then (5) implies that B and M are also invertible; therefore
(4) is equivalent to (3). �

Theorem 3 Let H = ‘2(Z), let He be the closed subspace of sequences whose
supports are contained in the set of even integers, and let Ho be the closed
subspace of sequences whose supports are contained in the set of odd integers.
Let A be a bounded operator on H whose matrix satis�es Ar;s = 0 for all r; s
such that jr � sj 6= 1. Then A(He) � Ho and A(Ho) � He. Moreover the
identities

Spec(A2) = Spec(B) = Spec(M)

are valid in either of the following two cases.

1. jAr;sj = 1 for all r; s such that jr � sj = 1;

2. There exist constants �; 
 such that 0 < � < 
 < 1 and jAr;sj � � if
r � s = 1 while jAr;sj � 
 if r � s = �1.

Proof
Case 1. An elementary calculation establishes that there exists a sequence
f : Z ! C such that Af = 0, jf2nj = 1 for all n and f2n+1 = 0 for all n



3 The case � = 1

The following lemma was noted in [5].

Lemma 4 If c 2 
 then Spec(Ac) is invariant with respect to both of the maps
� ! � and � ! ��. If � 2 S then � and i� lie in S. Hence S is invariant
under the dihedral symmetry group D2 generated by these two maps.

Proof The invariance of Spec(Ac) under complex conjugation follows directly
from the fact that Ac has real entries. If D is the diagonal matrix with entries
Dr;r = (�i)r for all r 2 Z then DAcD

�1 = iA�c, so

Spec(Ac) = iSpec(A�c): (6)

Iterating this identity yields Spec(Ac) = �Spec(Ac). This proves the �rst part
of the lemma. The second part follows once one observes that c 2 E if and
only if �c 2 E . �



The operator A2
c has two invariant subspaces

He = ff 2 ‘2(Z) : f2n+1 = 0 for all n 2 Zg

and Ho = ‘2(Z) 	 He. After an obvious relabeling of the subscripts, the
restriction of Ac to He equals Ab while the restriction of Ac to Ho is equal to
Mb, as de�ned in (8). The �nal statement of the lemma is now an application
of Theorem 3, case 1. �

We will exploit extensively the formula Spec(A2
c) = Spec(Ab) which appears in

the above lemma. The equation Spec(Ab) = Spec(Mb) will not play a role in
our subsequent arguments, but makes an intriguing connection between spectra
of rather di�erent tridiagonal operators. Extending this connection slightly, for
b 2 
 de�ne c = �+(b) and ~Mb by

( ~Mbf)n = fn�1 + in(c2n+1+



Theorem 7 The set S contains[
n2Z+; r2f0;:::;2n+2g

e�ir=2
n+1

[0; 21=2n ]: (9)

Hence S contains the unit disc in C.

Proof For n = 0 the theorem states that

[0; 2]� f1; i;�1;�ig � S:

This follows by combining Lemma 4 with direct calculations of Spec(Ac) when
cn = 1 for all n 2 Z (in which case Spec(Ac) = [�2; 2]) and when cn = �1 for
all n 2 Z (in which case Spec(Ac) = i[�2; 2]). For larger n the �rst statement
of the theorem follows by applying Lemma 6 inductively. The second statement
is now a consequence of the fact that the set (9) is dense in the unit disc. �

4 The maps ��

A crucial role has been played in the proofs above by the nonlinear map �+ on

 introduced in Lemma 5, and this map will be key to the arguments that we
make throughout this paper. And in fact a sequence which is almost a �xed
point of �+ (in a sense made precise below Lemma 8) is central to the proof
of Theorem 7 in [5], though the proof is quite di�erent and no mapping �+

appears in [5].

The relationship between the above proof of Theorem 7 and that in [5] is
clari�ed to some extent by the following. Building on the de�nition of �+

made above, let us de�ne maps �� : 
! 
 by ��(b) = c where

c0 = �1; c2n + c2n+1 = 0; c2nc2n�1 = bn; (10)

for all n 2 Z. We also de�ne the space inversion symmetry b! bb by bbn = b1�n
for all n 2 Z.

Lemma 8 If ��(b) = c then ��(bb) = bc. In particular ��(c) = c if and only if
��(bc) = bc. Each of the equations ��(c) = c has exactly one solution.

Proof Let c = �+(b) and d = ��(bb). Then d0 = �1, d2n + d2n+1 = 0 and

d2nd2n�1 = bbn = b1�n for all n 2 Z. Therefore bd0 = d1 = 1. Also

bd2n+1 + bd2n = d1�(2n+1) + d1�2n = d�2n + d1�2n = 0
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and bd2n
bd2n�1 = d1�2nd1�(2n�1) = d2(1�n)�1d2(1�n) = bb1�n = bn

for all n 2 Z. Therefore bd = �+(b) = c and d = bc.
The proof that c = ��(b) implies d = �+(bb) is similar. The other statements
of the lemma follow immediately. �

This paper and [5] use three di�erent special sequences. The sequences c� are
de�ned by ��(c�) = c�. It follows directly from their de�nitions that c+;0 = 1
and c+;1 = �1 while c�;0 = �1 and c�;1 = 1. However

c+;n = c�;n = c+;1�n = c�;1�n

for all n 6= 0; 1. The paper [5] uses the sequence ce such that ce;0 = ce;1 = 1,
while ce;n = c�;n for all other n. Because of the space inversion symmetry the
use of c+ or c� in any proof is really a matter of convenience.

We now turn to the solution of the equation Acu = �u where u : Z! C is an
arbitrary sequence. The eigenvalue equation is equivalent to the second order
recurrence equation

un+1 + cnun�1 = �un:

Lemma 9 Suppose that c 2 
 and bcn = c1�n for all n 2 Z; that un+1 +
cnun�1 = �un for some � 2 C and all n 2 Z and u0 = 0, u1 = 1; and thatbun+1 + bcnbun�1 = �bun for all n 2 Z and bu0 = 0, bu1



Proof



Lemma 14 If b 2 
 is periodic with period N , i.e. bn+N = bn, n 2 Z, then
c = �+(b) is 4N-periodic. Conversely, if b 2 
, c = �+(b), and c is 2N-periodic
for some N 2 N, then b is N-periodic.

Proof First note that, if c = �+(b) and one de�nes ~c 2 
 by ~cn = c2n, n 2 Z,
then

c = �+(b), (~c0 = 1; ~cn = �bn~cn�1; c2n+1 = �~cn; n 2 Z): (12)

Therefore

~cm+n = ~cm (�1)n
nY
j=1

bm+j (13)

for all m 2 Z and n 2 N. If b is N -periodic, then

~cm+2N = ~cm

2NY
j=1

bm+j = ~cm

NY
j=1

b2
m+j = ~cm;

for all m 2 Z. Therefore c is 4N -periodic.

Conversely, if c = �+(b), for some b 2 
, and c is 2N -periodic for some N 2 N,
then ~c is N -periodic and, from (12), it follows that b is N -periodic. �

To illustrate the above lemma, de�ne c�; c+ 2 
 by c�n = �1, c+
n = 1, for

n 2 Z, and de�ne the sequences c(m;+); c(m;�) 2 
, for m = 0; 1; :::, by

c(0;�) = c�; c(m;�) = �+(c(m�1;�)); m 2 N: (14)

Then explicit calculations of the action of �+ yield that c(1;+) = �))TJ/ehC.527lations of the action of � +



and
Spec(Ac(m;�)) = e�i=2

m+1

Spec(Ac(m;+)): (18)

Combining equations (15), (17) and (18), we see that we have shown thatn
r e�ij=2

m

: 0 � r � 21=2m+1

; j 2 f0; :::; 2m+2 � 1g
o
� �4m ; m = 0; 1; ::::

Thus we have shown the following modi�cation of Theorem 7 which, of course,
by (2), has Theorem 7 as a corollary.

Theorem 15 The set �1 contains the set (9), and so is dense in the unit disc
in C.

We know Spec(Ac(m;�)) explicitly, but do not have explicit formulae for the
sequences c(m;�). However we can show that c(m;�) converges pointwise to the
sequence c+, the unique �xed point of �+, as m ! 1. This is the content of
the next two lemmas. We omit a proof of the �rst of these lemmas which is an
easy consequence, by simple induction arguments, of the de�nition of �+.

Lemma 16 If b 2 
 and c = �+(b), then c0 = c+;0 and c1 = c+;1. If, for some
N 2 N, bm = c+;m for m = 1; :::; N , then also cm = c+;m for m = 2; :::; 2N + 1.
If, for some N 2 Z+, b�m = c+;�m for m = 0; 1; :::; N , then b�m = c+;�m for
m = 1; 2; :::; 2N + 2.

Lemma 17 Let b 2 
, and de�ne c(n) 2 
 for n 2 N by c(1) = �+(b) and
c(n+1) = �+(c(n)), n 2 N. Then, for n 2 N,

c(n)
m = c+;m; m = 2� 2n; 3� 2n; :::; 2n � 1;

so that c(n) ! c+ pointwise and Ac(n) converges strongly to Ac+ as n ! 1.
Further,

Spec(Ac(n)) � f� : j�j � 21=2ng:

Proof The �rst equation follows by induction from Lemma 16. The second
equation follows by induction from (16) and the trivial bound that Spec(Ab) �
f� : j�j � 2g, which holds for all b 2 
. �

5 The mapping ��;+

For the rest of the paper we consider operators Ac for which the coe�cients
cn take values in f��g, where 0 < � � 1; that is, in the notation we have
introduced in the introduction, we assume that c 2 
�, for some � 2 (0; 1].
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developed to a high degree of sophistication; see [1, 3, 2, 4] and the references
therein. We need only a small part of this theory, and it is easy to develop this
from �rst principles. We do this in a short Lemma 25 below, inspired by earlier
analysis in [12, 9, 10], and particularly [10, Theorem 12]. Both the proof of
Lemma 25, and the e�ective application of this lemma to prove Theorem 27,
depend on the next two lemmas which describe properties of the spectra and
eigenfunctions of periodic operators.

We assume throughout this section that the parameter � 2 (0; 1).

Lemma 19 Let

�(�; 
) =
Re(�)2

(1 + 
)2
+

Im(�)2

(1� 
)2
(25)

where � 2 C and �1 < 
 < 1. Then the quadratic equation

z2 � �z + 
 = 0 (26)

has a solution satisfying jzj = 1 if and only if � = 1. If � < 1 then both
solutions satisfy jzj < 1. If � > 1 then one solution satis�es jzj < 1 and the
other satis�es jzj > 1.

Proof For � 2 R, z = ei� is a solution of (26) if and only if

cos(�) =
Re(�)

1 + 

; sin(�) =

Im(�)

1� 

;

so that (26) has a solution satisfying jzj = 1 if and only if �(�; 
) = 1.

The set U = f� 2 C : � < 1g is connected and contains the origin. Since the
solutions of (26) depend continuously on � , and both solutions satisfy jzj < 1
if � = 0, it follows that both satisfy jzj < 1 for all � 2 U . The case � > 1 is
similar. �

The following lemma is closely related to a similar result for the non-self-adjoint
Anderson model in [10, Theorem 11].

Lemma 20 If c 2 
� and � 2 C then the space of all solutions of Acf = �f is
two-dimensional. If c is periodic with period p then the asymptotic behaviour as
n! �1 of the solutions is determined by the solutions z1; z2 of the polynomial
z2� �(�)z+ 
 = 0, where �(�) is a monic polynomial in � with degree p, given
by �(�) = tr(Tp), where Tp = XpXp�1 : : : X1 and

Xn =

�
0 1
�cn �

�
;

and 
 = det(Tp) = ��p. Ordering the two solutions so that jz1j � jz2j, there
are three cases:
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1. � lies in the closed set

Bc = f� : jz1j = 1 and jz2j = �pg:

This set is the spectrum of Ac, equivalently, the set of � for which Acf =
�f has a bounded solution.

2. � lies in the open set

Ic = f� : 1 > jz1j � jz2j > �pg:

This is the case if and only if all solutions of Acf = �f decay exponen-
tially as n! +1.

3. � lies in the open set

Oc = f� : jz1j > 1 and jz2j < �pg:

This is the case if and only if there exists a solution of Acf = �f that
decays exponentially as n ! +1 and grows exponentially as n ! �1,
and another solution that decays exponentially as n ! �1 and grows
exponentially as n! +1.

Proof The sequence f : Z ! C is a solution of Acf = �f if and only if
fn+1 + cnfn�1 = �fn for all n 2 Z. This recurrence relation can be rewritten
in the form �

fn
fn+1

�
=

�
0 1
�cn �

��
fn�1

fn

�
= Xn

�
fn�1

fn

�
= Tn

�
f0

f1

�
where Tn = XnXn�1 : : : X1. If c is periodic with period p, then the asymptotic
behaviour of the two-dimensional space of eigenfunctions f is determined by
the magnitude of the eigenvalues z1; z2 of Tp. These are the solutions of the
equation z2��z+
 = 0 where � = tr(Tp) and 
 = det(Tp). A simple induction
establishes that the (i; j)-th entry of Tp is a polynomial in � with degree less
than p unless i = j = 2 in which case it is a monic polynomial with degree p.
Therefore � is a monic polynomial in � with degree p. However

det(Tp) =

pY
r=1

det(Xr) = c1 : : : cp = ��p

15



does not depend on �. The continuous dependence of the roots of a polynomial
on its coe�cients implies that Bc is closed while Ic and Oc are open. An
application of Lemma 19 now completes the proof. One sees, in particular,
that

Spec(Ac) = Bc = f� : �(�; 
) = 1g:
�

Our next lemma enables us to determine the sets Ic and Oc for certain impor-
tant periodic sequences c, and to determine the spectra of certain paired peri-
odic operators. We continue with the assumptions and notation of Lemma 20.

Lemma 21 If V is a connected component of CnBc then V � Ic or V �
Oc. If V is unbounded then V � Oc, and if 0 2 V then V � Ic. If CnBc

has exactly two components then the bounded component equals Ic and the
unbounded component equals Oc.

Proof We �rst observe that V , Ic and Oc are all open sets and that their
de�nitions imply directly that Ic; Oc are disjoint. Therefore V = (V \ Ic) [
(V \Oc), where the two intersections on the right-hand side are disjoint. Since
V is connected, it follows that V = V \ Ic or V = V \ Oc This completes the
proof of the �rst statement.

Lemma 20 case 1 implies that

B� = Spec(Ac) � f� : j�j � 1 + �g:

Therefore CnBc has only one unbounded component V and it contains f� :
j�j > 1 + �g. To prove that V � Oc it is su�cient by the �rst part of this
proof to �nd a single point � 2 V \ Oc. The fact that � is a polynomial with
degree p implies that j�(�)j ! 1 as j�j ! 1. This implies that the solutions
of z2� �(�)z+ 
 = 0, where 
 = ��p, are z � �(�) and z � 
=�(�) to leading
order for all large enough j�j. Therefore � 2 Oc for all such �.

The proof is completed by proving that 0 2 Ic. For � = 0 one has Tp =

XpXp�1 : : : X1 where each Xr is of the form
�

0 1
�� 0

�
. If p = 2m it follows that

Tp =
�
��m 0

0 ��m
�
. The fundamental equation must therefore take one of the

forms z2 � 2�mz + �2m = 0, z2 + 2�mz + �2m = 0 or z2 � �2m = 0. In each
case both solutions have modulus �p=2 < 1. The same holds if p = 2m+ 1.

The �nal statement of the lemma follows from the following observations.
There must be a component of C n Bc that contains 0 and there must be
an unbounded component. The �rst part of the proof shows that these are
distinct, and the extra hypothesis is that there are no other components. �

Our next task is to determine the sets Bc; Ic and Oc for certain particular
periodic sequences.
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Lemma 22 If cn = � for all n 2 Z then Spec(Ac) is the ellipse

Spec(Ac) =

�
u+ iv :

u2

(1 + �)2
+

v2

(1� �)2
= 1

�
(27)

=

(
�ei� : � =

1� �2p
1 + �2 � 2� cos(2�)

)
: (28)

Moreover the interior U



Moreover,
Ic� =

�
�ei� : 0 � � < ��n (�; �)

	
and

Oc� =
�
�ei� : � > ��n (�; �)

	
:

Proof Our proof of (31) is by induction. We note �rst that (31) holds for
n = 0 by Lemmas 22 and 23. Suppose now that (31) holds for some n � 0 and
all 0 < � < 1. Then

Spec(A�2c(n;�)) = f�ei� : � = ��n (�; �2)g =

�
�ei� : � =

�
��0 (2n�; �2n+1

)
�1=2n

�
:

Further, since �c(n+1;�) = ��+(c(n;+)) = ��;+(�2c(n;+)), it follows from Lemma
18 that

Spec(A�c(n+1;�)) =
n
�
p
� : � 2 Spec(A�2c(n;�))

o
:

Combining these equations, we see that (31) holds with n replaced by n + 1.
Thus (31) follows by induction.

The formulae for Ic� and Oc� follow from (31) and Lemma 21. �

We remark that ��n (�; �) = �+
n (���=2n+1; �), so that the spectra of Ac� in the

above lemma are related by

Spec(Ac+) = e�i�=2
n+1

Spec(Ac�):

This is a symmetry which is surprising from an inspection of the sequences
c�, which need not even have the same period. (For example, as observed in
Section 4, c+ has period 4 and c� period 2 in the case n = 1.)

In principle, since c� is periodic, (31) should be computable alternatively from
the characterisation of the spectrum for general periodic sequences in Lemma
20. As an example of this, for the sequence c� = �c(1;�) which has period 2,
with c�n = (�1)n�, the transfer matrix T2 is given by

T2 = X2X1 =

�
0 1
�� �

��
0 1
� �

�
=

�
� �
�� �� + �2

�
:

Applying Lemmas 19 and 20 with � = �2 and 
 = ��2, we �nd that Spec(Ac)
is the set of all � = u+ iv for which

(u2 � v2)2

(1� �2)2
+

(2uv)2

(1 + �2)2
= 1:

If one puts � = �ei�, then this may be rewritten in the form (31).
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The main point of the above theory and calculations are to prove and pre-
pare the use of the following result on operators Ac that are paired periodic
operators. To state this result let us introduce the notations

E� =

�
x+ iy :

x2

(1 + �)2
+

y2

(1� �)2
< 1

�
(32)

and

E�� =

�
x+ iy :

x2

(1� �)2
+

y2

(1 + �)2
< 1

�
; (33)

so that E� and E���2 T48c



Proof We regard VcR as a small perturbation of L in the identity Ac = VcR+L,
noted in the proof of Lemma 5. Since L is a unitary operator with spectrum
fz : jzj = 1g, we have

k(L� zI)�1k = j1� jzj j�1

for all z not on the unit circle. The inclusion (34) now follows from kVcRk = �
by a perturbation argument; see [11, Th. 9.2.13].

The inclusion (35) depends on an estimate of the numerical range of Ac. Fol-
lowing [11, Section 9.3], x + iy 2 Num(Ac) if there exists f 2 ‘2(Z) such that
kfk = 1 and x+ iy = hAcf; fi. This implies that

x =
1

2
h(Ac + A�c)f; fi; y = � i

2
h(Ac � A�c)f; fi:

Therefore

x+ y =
1

2
hBf; fi

where
B = (Ac + A�c)� i(Ac � A�c):

A simple calculation shows that Bm;n = 0 unless jm� nj = 1, while

Bn;n+1 = Bn+1;n = (1� �)� i(1� �):

Therefore jBn+1;nj = jBn;n+1j =
p

2(1 + �2) for all n 2 Z and

x+ y � 1

2
kBk �

p
2(1 + �2):

The other three steps in the proof of the bound for jxj+ jyj are similar. �

The statement of our main theorem refers to the open set

H� = E� \ E��; (36)

the intersection of the ellipses E� and E��. This set satis�es

[[0; 1� �]] � H� � [[0; r�]] (37)

where

r� =
1� �2

p
1 + �2

: (38)

Theorem 27 If 0 < � < 1 then

f� : j�j � 1gnH� � S�:
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Proof Note �rst that if c� and ��n (�; �) are de�ned as in Lemma 24, then

��n (�; �) � ��;n =

 
1� �2n+1

1 + �2n

!1=2n

;

for all � 2 R, so that Ic� � f� : j�j < ��;ng. Thus, de�ning c� 2 
� as in
Lemma 25, with c = c+ or c� and � = ��, we see from Lemma 25 that

Spec(Ac�) � Ic n E� � f� : j�j � ��;ng n E� : (39)

Applying Proposition 1, it follows that, for all n 2 N,

S� � f� : j�j � ��;ng nH� :

The theorem follows since supn ��;n = 1 and S� is closed. �

Figure 1: Plots of Spec(Ac) for the case when c is periodic and � = 0:5. The two
plots show the sets �N;� � S�, the union of the spectra for all sequences c of period
� N , for N = 2 (left) and N = 12 (right). The two ellipses visible in the left-hand
plot, the boundaries of E� and E�� de�ned in (32) and (33), are the components
of �1;�; the other closed curve is Spec(Ac) for c = �c(1;�), i.e. c



numerical computations we have been able to carry out are consistent with a
hypothesis that the hole is precisely the set H�, i.e. they are consistent with
a hypothesis that Spec(Ac) \ H� = ; for every c 2 
�, and hence for every



It is not feasible to calculate �N;�, the union of all 2N�1





n tr(Tn;�) = un+1 + vn
1 �
2 �2 � 2
3 �3 � �
4 �4 � 2
5 �5 � �3 � 3�
6 �6 � �2

7 �7 � �5 � 2�3 � �
8 �8 � 2

Table 2: Values of tr(Tn;�) for 1 � n � 8.

for all r � 1. If � 2 = 4� then for every " > 0 there exists a constant b" such
that

kT rk � b"(
 + ")r (44)

for all r � 1.

Proof The eigenvalues z� of T are the roots z of z2��z+� = 0. The condition
� 2 6= 4� implies that the eigenvalues are distinct, so T is diagonalizable { there
exists an invertible matrix B such that

T = B

�
z+ 0
0 z�

�
B�1:

Therefore

kT rk = kB
�
zr+ 0
0 zr�

�
B�1k � kBk kB�1k
r:

The slightly worse bound (44) is obtained when � 2 = 4� because one has to
use the Jordan canonical form for T . �

Lemma 29 The identity det(T2n;�) = 1 holds for all n � 1 and all � 2 C.

Proof If m 2 N then (42) and (43) imply

det(T2m;�) =
mY
r=1

det(X2rX2r�1)

=
mY
r=1

(ec2rec2r�1)
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=
mY
r=1

ecr
= det(Tm;�):

It follows by induction that

det(T2n;�) = det(T1;�) = ec1 = 1:

�

The following lemma depends on Proposition 11 above, abstracted from [5],
which notes properties of the integer coe�cients pi;j of the polynomials

ui =
iX

j=1

pi;j�
j�1:

Lemma 30 The polynomial um is even for odd m and odd for even m. Its
leading term is �m�1. If m = 2n and n � 2 then

um = �m�1; (45)

um+1 = �1 + �m=2
m=4X
r=0

�r�
2r (46)

where �r 2 f0; 1;�1g for all r.



for all m 2 N. Therefore 
5 = 
3 = �1 and


8m+1 =
mY
r=1

(ec8rec8r�2ec8r�4ec8r�6)

=
mY
r=1

(ec4rec8r�1ec8r�2ec4r�2ec8r�5ec8r�6)

=
mY
r=1

(ec4rec4r�2)

= 
4m+1

for all m 2 N. A simple induction now implies that 
m = �1 for m = 2n + 1
and all n � 1. �

Lemma 31 If m = 2n and n � 2 then

� = tr(Tm;�) = vm + um+1 = �m � 2 (47)

for all � 2 C.

Proof The proof uses the identity vmum+1 � umvm+1 = 1 of Lemma 29 to-
gether with the two identities proved in Lemma 30. These are identities within
the commutative ring Z(�) of all polynomials with integer coe�cents in the
indeterminate quantity �, but they imply similar identities in the commuta-
tive ring Z(b�) of all polynomials with integer coe�cients in an indeterminate

quantity b� that satis�es the identity b�m�1 = 0. (Equivalently one may start by
disregarding all terms in the identities that involve �r with r � m � 1.) The
identities





Theorem 34 One has
f� : j�j � 1gnH� � S� (48)

for all � 2 (0; 1).

Proof Given � 2 (0; 1) we put m = 2d where d 2 N is large enough to yield

�1=2 < h = 4�1=m: (49)

We use the identities
� = det(Tm;�) = 1

and
� = tr(Tm;�) = �m � 2

proved in Lemmas 29 and 31 and valid for all � 2 C. Let c 2 
� be the
periodic sequence with period m such that cn = �ecn for all 1 � n � m. The
main task is to prove that if j�j < h then all solutions � : Z! C of

�n+1 = ��n � cn�n�1 (50)

decay exponentially as n ! +1. This will imply, by Lemma 20, and using
the notations of that lemma, that

Ic � f� : j�j < hg:

Arguing as in the proof of Theorem 27, it will then follow from Lemma 25 and
Proposition 1 that

S� � f� : j�j � hg nH�;

this holding for any h = 4�1=m such that (49) holds and m = 2d, so that

S� � f� : j�j < 1g nH�:

Since S� is closed, (48) will follow.

Thus it remains only to show that all solutions of (50) decay exponentially at
+1. To see that this holds, de�ne xn = ��n=2�n and � = ��1=2� so that (50)
may be rewritten in the form

xn+1 = �xn � ecnxn�1

for 1 � n � m. Where � = max(1; j�j), Lemma 32 now yields

k(Tm;�)rk � b 4r�rm

for all r 2 N. Lemma 33 with 
 = 4�m implies

kTr;�k � b 4r=m�r;
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and hence
jxrj � b3 4r=m�r;

again for all r 2 N. Hence, where � = max(�1=2; j�j),

j�rj � b3 4r=m�r�r=2 = b3

�
�h�1

�r
for all r 2 N. Since 0 < � < h, it follows that � decays exponentially. �

9 Semi-in�nite and �nite matrices

All our results so far have focused on calculations of the spectrum of the bi-
in�nite matrix Ac. In this �nal section we say something about the spectrum
of the semi-in�nite matrix

A+
c =

0BBB@
0 1
c1 0 1

c2 0
. . .

. . . . . .

1CCCA
in the case that c = (c1; c2; :::) 2 f��gN is pseudo-ergodic (contains every �nite
sequence of ��’s as a consecutive sequence). We also say something (though
have mainly unanswered questions) about the �nite N �N matrices

A(N)
c =

0BBBBB@
0 1
c1 0 1

c2 0
. . .

. . . . . . 1
cN�1 0

1CCCCCA
and

A(N;per)
c;� =

0BBBBB@
0 1 �cN
c1 0 1

c2 0
. . .

. . . . . . 1
��1 cN�1 0

1CCCCCA : (51)

Here A
(N)
c is tridiagonal, A

(N;per)
c is tridiagonal except for \periodising" entries

in row 1 column N and row N column 1 (in these entries we assume that
j�j = 1), and each cj = ��: we have in mind particularly the random case
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where the cj’s are independent and identically distributed random variables
taking the values ��.

Our main result on the spectrum of Ac, proved in the previous sections, is
that it contains the set f� : j�j � 1g n H�. We suspect that H� is a genuine
hole in the spectrum for 0 < � < 1, i.e. that H� \ S� = ;. We have not
shown this result but have shown in Lemma 26 the weaker result that f� :
j�j < 1 � �g \ S� = ;. Our �rst result in this section is that this hole is
not present in the spectrum of the semi-in�nite matrix. The proof depends
on recent results on semi-in�nite pseudo-ergodic operators due to Lindner and
Roch [19], derived using characterisations of the index of Fredholm operators,
whose matrix representations are banded semi-in�nite matrices, in terms of so-
called \plus indices" of limit operators, these characterisations derived using
K-theory results for C�-algebras in [20].

Theorem 35 Suppose c 2 f��gN is pseudo-ergodic. If � = 1 then Spec(A+
c ) =

S. For all � 2 (0; 1], f� : j�j � 1g � Spec(A+
c ).

Proof In the case that � = 1 it is shown in [6] that Spec(A+
c ) = S. Thus, for

� = 1,
f� : j�j � 1g � S = Spec(A+

c )

follows from Theorem 7 (or [5, Theorem 2.3]). For all � 2 (0; 1] it follows from
[19, Theorem 2.1] that the essential spectrum of A+

c , i.e. the set of � 2 C for
which A+

c � �I+ is not Fredholm (here I+ is the identity operator on ‘2(N)),
is the set S�. Thus and by Theorem 27,

(f� : j�j � 1g nH�) � S� � Spec(A+
c ):

It remains to show that H� � Spec(A+
c ). But, applying [19, Theorem 2.4]

(note that the set E�(U;W ) in the notation of [19, Theorem 2.4] is precisely
the set H� for this operator), it follows that, for � 2 H�, either A+

c �((((�, i.e. the set of



If � = x + iy is an eigenvalue of A
(N;per)
c;� then 1 � � � j�j � 1 + � and

jxj+jyj �
p

2(1 + �2) , while if � is an eigenvalue of A
(N)
c then jxj+jyj � 2

p
�.

Proof The �rst of these statements is clear from the de�nition of �N;�, (40),
and Proposition 1 which gives that �1;� � S�. The second of these statements
is shown for � = 1 in [6, Theorem 4.1]. The second statement follows for
0 < � < 1 by the observation that, where d 2 f�1gN , c = �d 2 f��gN ,
and DN is the diagonal matrix with leading diagonal (1; �1=2; �; :::; �(N�1)=2), it

holds that D�1
N A

(N)
c DN =

p
� A

(N)
d : The last sentence then follows from Lemma

26. �

Note that in the last sentence of the above theorem the condition jxj+jyj � 2
p
�

implies both that j�j � 1 + � and that jxj+ jyj �
p

2(1 + �2) .

Figure 3: Plots of Spec(A(N)
c ) (left) and Spec(A(N;per)

c;� ) (right) for a case when
N = 2000, � = 0:9025, � = 1, and the entries of the vector c = (c1; :::; cN ) are
independent and identically distributed with Pr(cj = ��) = 0:5 for each j (the same
vector c is used in the two plots).

In Figure 3 we plot the spectra of SpecA
(N)
c and SpecA

(N;per)
c;� for N = 2000 and

� = 1 for a typical realisation with the entries c 2 f��gN randomly chosen
with the cj independently and identically distributed with Pr(cj = �) = 0:5
and � = 0:9025 so that

p
� = 0:95 (the several other realisations we have

computed are very close in appearance to these plots). Theorem 36 tells us that

Spec(A
(N)
c ) � 0:95�1 � 0:95S and that Spec(A

(N;per)
c;� ) � S0:9025, and that if

� = x+iy is an eigenvalue of A
(N)
c then jxj+jyj � 1:9, while if � is an eigenvalue

of A
(N;per)
c;� then 0:075 � j�j � 1:9025 and jxj+ jyj �

p
2(1 + �2) � 1:905.

32



It is clear from Figure 3 that Theorem 36 is only the beginning of the story.
We observe in the �gure a hole in the spectrum of A

(N;per)
c;� , but it is a hole of

radius approximately 0.6, not 0.075, with a large proportion of the eigenvalues
positioned on the boundary of this hole, while outside the hole the spectra of
A

(N;per)
c;� and A

(N)
c appear near identical. The same qualitative behaviour is vis-

ible in Figure 4, which is a similar plot except that � is reduced to 0.5 and we
change the probability distribution, making it twice as likely that the entries
of the vector c are
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