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familiar from Lagrangian fluid dynamics, and their numelrigjaplication to PDEs can be found
for example in the Moving Finite Element method [4], the Drefation method [5], the GCL



focus on a two-phase model to clearly demonstrate the \rgibeised moving mesh schemes,
which can be adapted to numerically solve more sophisticaitedels.

In the next section we present the normalised one-dimeakiandel proposed in [1], fol-
lowed by §3 where we surmise the fixed numerical mesh method used is¢13s to compare
results with the three moving mesh strategies. The dethilsese strategies are given §d,
where we solve the tumour growth model numerically usindheae in turn. The results from
the fixed mesh method and the three moving mesh methods atssiésl irg5. Finally, in§6 we
conclude that a moving mesh method can prove to be an elegdataurate numerical approach
that updates the mesh smoothly with the solution of the atgimodel, whilst preserving cho-
sen features of the model such as local mass balance, dveglattial masses, (for self-similar
problems, similarity can be preserved). However, sinceritesh depends upon the model, care
must be taken when choosing a feature of the model to preserve

2. A mathematical model of tumour growth

The model assumes the tumour consists of two phases, watévagells, which are treated
as incompressible fluids whose densities are equal, torlgastder. The model is derived by
applying mass balance to the cell and water phases. Fudbamgtions made are that inertial
effects are negligible, no external forces act on the systed),@anthe timescale of interest, the
cell and water phases can be treated as viscous and inviscid fl



In the next three sections we show that moving the mesh tepregeatures of the model can
produce results in line with [1]. We also present resultsclvldemonstrate that the local feature
of the model used to track the nodes needs to be carefullyeohos

3. Rescaling to a fixed numerical mesh

In [1] the moving domairx € [0, (t)] is mapped to a fixed numerical domdjre [0, 1] by
the transformatiold = x/ (t), T = t. Using the chain rule to fierentiatea(E, T) with respect to
time T, the transformed problem is
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Step F2: FindJ’j“ by applying central finite dierences to (9),
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forj =12...,N-1, whereal, = 3@ +afl) anda™, = 3(@l, +al), leading
2 2
to a linear system of equations. At the inner boundafy= 0, as given by (12). To
determinauy, we discretise the boundary condition (13) by taking vafu&s , and [] 7, ,
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This velocity-based strategy is similar to the numericappiag in §






The updated total mags™! ~ 6(t™?) is then found using (31) and the same time-stepping
approach used in Step 4, I8+ = 8™ + AtO™.

To derive an expression for the mesh velocity, we again ugmite’ integral rule on (29) to
calculate
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Since each step of our scheme is second order in space aratdiestin time, and recalling that

At = O % , We might expect to sep,q ~ 2, although since our meshes are generally non-

uniform and varying in time, this is only an approximate hiyyasis. Convergence results are

Method | N En() Pan En(X) On
A 10 | 2.034x 107 - 1.275x 10™° -
20 | 8346x10° 1.3 3306x10°% 1.9
40 | 3547x10° 1.2 8478x107 2.0
80| 1.471x10° 1.3 2050x107 2.0
B 10 | 2.299%x 104 - 6.207x 1077 -
20 | 9293x10° 1.3 1109x10* 25
40 | 3.891x10°° 1.3 3043x10° 1.9
80 | 1.600x 10 1.3 7224x10°% 2.1

C 10 | 1.448x 10° - 1.819x 10° -

20 | 3645x10° 2.0 1944x10°% 3.2
40 | 8.807x 107 2.0 7148x107 1.5
80| 2090x 1077 2.1 1880x107 1.9

Table 1: Relative errors fax andX'with rates of convergence using the explicit Euler time-sieg scheme.

shown in Table 1. We see thit(a) andEn(X) decrease aNl increases for each of the moving
mesh methods. This strongly suggests that as the numbedestiacreases, both the solution
and the position of the nodes are converging. For Methods A and B, thesalues presented in
this table indicate superlinear convergencepénd theg-values suggest second-order conver-
gence ofx For Method C, thep andq values suggest second-order convergence of daiid X.

Having established convergence of our moving mesh scheme®w compare the numeri-
cal results from the methods &% with those of the method describedsi8.

We generate results using the parameters detailed in (84{3&). All three methods were
investigated wittN = 80, At = 7.5 x 1073, and final timet = 75, i.e. 10,000 time-steps. Each of
Methods A and C produce very similar results, so only theltestom Method C and Method B
are plotted below. Figures 9-11 are due to Method C and dispéasame travelling wave char-
acteristics as the results in [1] for the same parameteosébl resembling Figures 1-3). The
value ofa near the free boundary remains fairly constant, arad the centre of the tumour de-
creases at a steady rate as time increases. The velocity peakthe boundary, but the velocity
at the boundary appears to stay constant with respect toftinte> 37.5. This coincides with
the tumour radius growing steadily, Figure 11. The minima subtly diferent to that of [1];
the troughs in Figure 2, which resemble those in [1], aréndlljgess rounded than those shown
in Figure 10. Interestingly, Method A (a locally conservativersion of the method i§3) also
presented rounder minima, identical to those in Figure 10.

Figures 12—-14 show that Method B appears to behave like Methend C (and [1]) at early
times. However, after approximately= 45, a appears to grow at the boundary, and no longer
decreases at a regular rate at the centre of the tumour.drontine, the velocity at the boundary
decreases considerably, with the tumour radius nearlyhieg@ steady state &t= 75. This
behaviour is not apparent in [1], nor from Methods A and C. plues from Method B are less
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Figure 18: Cell volume fractioa(x, t) using Method B and parameter set (34) and (36).
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6. Conclusions

We have numerically solved the non-dimensionalised formarofvascular tumour growth
model given in [1] using three fierent moving mesh methods. Working with the original non-
dimensionalised form of the model, we have replicated tlsalte of [1] and presented three
different velocity-based approaches to move the mesh. Tferatit approaches to define the
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