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Ideally, the initial ensemble should be drawn from the underlying invariant measure,
in which case we have a perfect initial ensemble. A perfect initial ensemble is especially
useful in the scenario when our forecasting model is isomorphic to the model that gen-
erated the data, which scenario is called the perfect model scenario (PMS) [2, 5]. When
there is no isomorphism between the forecasting model and the model that generated
the data, then we are in the imperfect model scenario (IMS). A perfect model with a
perfect initial ensemble would give us a perfect forecast [6]. If either our model or initial
ensemble is not perfect, then we have no reason to expect perfect forecasts.

In all realistic situations, we have neither a perfect model nor a perfect initial ensem-
ble, yet we may be required to issue a meaningful forecast probability density function
(pdf). Roulston and Smith [7] proposed a methodology for making forecast distributions
that are consistent with historical observations from ensembles. This is necessary be-
cause the forecast ensembles are not drawn from the underlying invariant measure due
to either imperfect initial ensembles or model error. Their methodology was extended
by Broecker and Smith [8] to employ continuous density estimation techniques [9, 10]
and blend the ensemble pdfs with the empirical distribution of historical data, which is
referred to as climatology. The resulting pdf is what will be taken as the forecast pdf in
this paper.

The quality of the forecast pdfs can be assessed using the logarithmic scoring rule
proposed by Good [11] and termed ignorance by Roulston and Smith [12], borrowed from
information theory [13, 14]. Here, we discuss a way of choosing the initial distribution
spread (IDS) to enhance the quality of the forecast pdfs. The point is that if the spread
is too small our forecasts may be over confident and if it is too large our forecasts
may have low information content. Our goal is to choose an IDS that yields the most
informative forecast pdfs and determine, for instance, if this varies with the lead time of
interest. As is commonly done in data assimilation and ensemble forecasting (e. g. see
[1, 15]), we only consider Gaussian initial distributions. In traditional data assimilation
and ensemble forecasting techniques, estimation of the initial distribution is divorced
from forecasting: this is the main point of departure in our approach. We revisit this
later in the discussion of the results in § 5.

Our numerical forecasting experiments were performed on the Moore-Spiegel (M-
S) [16] system and an electronic circuit motivated by the M-S system. Indeed electronic
circuits have been studied to enhance our understanding of chaotic systems and Chua
circuits [17] are among famous examples. Recently, Gorlov and Strogonov [18] applied
ARIMA models to forecast the time to failure of Integrated Circuits. Hence, electronic
circuits have not only been studied to enhance our understanding of chaotic systems
and the forecasting of real systems, but also to understand the circuits themselves and
to address practical design questions.

This paper is organised as follows: §



2 Forecasting

Consider a deterministic dynamical system,

ẋ = F (x(t), λ), (1)

with the initial condition x(0) = x0, where x, F ∈ R
m, λ ∈ R

d is a vector of parameters,
F is a Lipschitz continuous (in x), nonlinear vector field and t is time. By Picard’s
theorem [19], (1) will have a unique solution, say ϕt(x0; λ). If ∇.F < 0, this system
might have an attractor [20], which if it exists we denote by A. In particular, we are
interested in the case when the flow on this attractor is chaotic.

2.1 Forecast Density

For any point in state space, x, and positive real number ǫ, let Bx(ǫ) denote an ǫ-ball
centred at x. Suppose that ̺ is some invariant measure (see appendix A) associated
with the attractor A. For any x0 ∈ A, we define a new probability measure associated
with Bx0

(ǫ) by

̺0(E) = lim
T→∞

1

T ̺(Bx0
(ǫ))

∫ T

0
1E∩Bx0

(ǫ)(x(t))dt, (2)

where 1 is an indicator function. This measure induces some probability density func-
tion, p0(x, x0, ǫ). We will call a set of points drawn from p0



where X(τ) is the random variable being forecast from the initial distribution corre-
sponding to xτ . Provided the underlying attractor is ergodic, we can rewrite (4) as

E[S(t)] = lim
T→∞

1

T

∫ T

0
S(ft(x; xτ ), X(τ))dτ. (5)

For each forecast, the underlying system can only furnish one verification of X and
not the distribution pt(x; x0). Therefore, we use (5) to score forecasts rather than (4).
Discretise time according to τi = (i − 1)τs, for i = 1, 2, .., N , where τs is the sampling
time. This gives a sequence of forecast pdfs, {ft(x; xi)}N

i=1, corresponding to verifications
{X(i)}N

i=1 and score S. We can thus discretise (5) to obtain the following empirical score
to value the t-ahead forecast system:

〈S〉(t) =
1

N

N
∑

i=1

S(ft(x; xi), X
(i)
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the method presented here could be used to determine the spread of this distribution,
regardless of the data assimilation technique. For a given structure of the correlation
matrix, we would seek the scalar multiple that yields the most informative forecast
distributions.

Other techniques for producing the initial ensemble aim at selectively sampling those
points that are dynamically the most relevant. In particular, the ECMWF ensemble
prediction system seeks perturbations of the initial state based on the leading singular
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