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Applied Statistics, School of Biological Sciences,

University of Reading, Reading, UK

June 12, 2010

1









Table 1: Methamphetamine data — frequency distribution of treatment episodes per
drug user

f1 f2 f



Table 3: Scrapie data — frequency distribution of the scrapie count within each
holding for Great Britain in 2005



Table 5: Protistan diversity in the Gotland Deep — frequency counts of observed
species

f1 f2 f3 f4 f6 f8 f9 f10 f11

48 9 6 2 2 2 1 2 1
f12 f13 f16 f17 f18 f20 f29 f42 f53 n
1 1 2 1 1 1 1 1 1 84

in Table 5 stem from a recent work by Stock et al. (2009). Microbial ecologists

are interested in estimating the number of species N in particular environments.

Unlike butterflies, microbial species membership is not clear from visual inspec-

tion, so individuals are defined to be members of the same species (or more

general taxonomic group) if their DNA sequences (derived from a certain gene)

are identical up to some given percentage, 95% in this case. Here the study

concerned protistan diversity in the Gotland Deep, a basin in the central Baltic

Sea. The sample was collected in May 2005. The maximum observed frequency

was 53.

The classical approach to estimation of N is to assume that each population

unit enters the sample independently with probability p (dealing with heterogeneous

capture probabilities by modeling and averaging). Given p, the unbiased Horvitz-

Thompson estimator of N is n/p, and the maximum likelihood estimator is its integer

part bn/pc. One then estimates p using any of several methods, and the final estimate

of N is n/p̂ or bn/p̂c (Lindsay and Roeder 1987, Böhning et al. 2005, Böhning and

van der Heijden 2009, Wilson and Collins 1992, Bunge and Barger 2008, Chao 1987,

1989, Zelterman 1988).

Here we take a new approach: we consider ratios of successive frequency counts,
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Figure 2: Scatterplot with regression line of (x + 1)f(x+1)/fx vs. x for the butterfly
data

This simple and powerful method applies exactly when the frequency counts

emanate from the Katz family of distributions, namely the binomial, Poisson, and

gamma-mixed Poisson or negative binomial, and it applies approximately to exten-

sions of the Katz family and to general Poisson mixtures. It can be implemented using

any statistical software package that performs weighted least squares regression, and

it is superior to existing methods for the negative binomial model (including max-

imum likelihood) in several ways. In addition, it substantially mitigates the effect

of truncating large counts (recaptures or replicates), which is an issue with almost

every existing method, parametric or nonparametric. In section 2 we discuss the

method and its scope of applicability; in section 3 we describe weighting schemes; in
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section 4 we look at goodness of fit of the linear model; and in section 5 we com-

pare our method with existing techniques, analyze the five datasets, and discuss the

implications of our findings. An appendix covers aspects of the approximation used

for reaching the linear model as well as a comparative simulation study, a discussion

of standard error approximations, and an assessment of the effect of deleting large

“outlying” frequencies.

2 Linear regression and the Katz distributions

Let p0, p1, p2, . . . denote a probability distribution on the non-negative integers. The

condition

r(x) :=
(x + 1)px+1



lower bound for the population size, since the homogeneity assumption leads to

downwardly biased estimation in the presence of heterogeneity. In this case the

frequency count data f1, f2, . . . summarizes the nonzero values of m1, . . . , mN .

• Now suppose that population unit i appears a random number of times mi in

the sample, but now m1, . . . , mN are i.i.d. Poisson random variables with (ho-

mogeneous) mean λ. This model arises naturally in species abundance sampling

where each species contributes some number of representatives to the sample;

it also appears as an approximation to the binomial model with λ ≈ kq, for

large k and small q



for estimating N in a variety of situations.

We make two further comments on distribution theory. First, it may be readily

shown using the Cauchy-Schwartz inequality that the ratio on the left-hand side of

(1) is non-decreasing for any mixed-Poisson distribution. This means that the linear

relation, and hence our weighted linear regression procedure below, can be regarded

as a first-order linear approximation for any Poisson mixture (not just gamma), thus

justifying a degree of robustness of our method across a wide range of heterogeneity

models. Second, there are extended versions of relation (1) which give rise to distri-

butional extensions of the Katz family that need not be mixed-Poisson (Johnson et

al., 2005). Such extensions may be parameterized and we conjecture that our method

below will be robust to small perturbations along these parameters.

Condition (1) suggests linear regression of the left-hand side upon the right, in

some form. Observe that the natural estimate of px would be p̂x(N) := fx/N , if N

were known. But

(



and we fit the model

log

(
(x + 1)fx+1

fx

)
= log r̂(x) = γ + δx + εx. (2)

We consider this in terms of linear regression in the next section. To obtain a simple



so that we have log (x + k) + log (1 − p) ≈ log (1 − p) + log (k) + x/k. Note that this

approximation is exact for x = 0 (the point where we predict) and good for x = 1

(corresponding to the informative “singleton” frequency count). In the Appendix we

discuss this approximation further, as well as alternatives. With reference to model

(2) we have γ = log (1 − p) + log (k) and δ = 1/k. We focus on this model in the

discussion below.

Note also that due to the simple structure of the estimator f̂0 = f



3 Heteroscedasticity and weighted least squares



nomial with cell probabilities π = (π1, . . . , πm)T . Then it is well-known that f =

(f1, ..., fm)T has covariance matrix Σ = n[Λ(π) − ππT ], where Λ(π) is a diagonal

matrix with elements π on the diagonal, and n = f1 + ... + fm. Writing

Σ = n[Λ(π) − ππT ] = Λ(nπ) − 1

n
nπ nπT ,

we see that Σ can be estimated as

Σ̂ = Λ(f) − 1

n
f fT .

An application of the multivariate delta-method then shows that an estimate of

cov (Y) is

∇f (Y(f)) Σ̂
(
∇T

f Y(f))
)

=



1
f1

+ 1
f2

−1
f2

0 . . . 0 . . . 0

−1
f2

1
f2

+ 1
f3

−1
f3

0 . . . 0

0
. . .

...
. . .

0 . . . 0 −1
fi

1



terms in cov(Y)) with little loss of precision for our purposes. This corresponds to

our intuition that covariances between adjacent log-ratios may not play a large role

in reducing MSE. Let

Λ(f) =



1
f1

+ 1
f2

0 0 . . . 0 0

0 1
f2

+ 1
f3

0 . . . 0 0

...
. . .

...
. . .

0 0 0 1
fi

+ 1
fi+1

0 0

...
. . .

. . . 0 1
fm−1

+ 1
fm



(5)

be the diagonal part of (4); we then suggest using (5) in our weighted regression

model. This is computationally simpler, especially when dealing with a high number

of recaptures. A small simulation study confirms the precision of this simplification,

at least within the domain of the simulation. We computed the bias of N̂ using

the weighted regression model under three scenarios: with weights according to (4),

according to (5) and according to W = Im (the m-dimensional identity matrix, i.e.,

unweighted). Frequency data were drawn from a negative binomial distribution with

parameters p = 0.8 and k = 7, and replicated 1, 000 times. Table 6 shows results for

N = 100 and N = 1, 000. It is clear that weighting is important in fitting the model:

the unweighted regression model leads to potentially heavily biased estimators of the

population size, whereas the effect of ignoring the covariance between log (xfx/fx−1)

and log ((x + 1)fx+1/fx) is negligible. Finally we note that weighted least squares

can introduce numerical problems, especially in sparse-data situations (Björck, 1996,
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Table 6: The effect of different weight matrices according to (4), (5) and W = Im

for frequency data from the Negative Binomial distribution with parameters k = 7,
p = 0.8

Bias of N̂
N (4) (5) unweighted

100 3.05 3.40 8.81
1, 000 2.70 0.36 45.86

Standard error of



is the “truncation point” or maximum frequency used in the analysis (we return to

this issue below). We make the further approximation exp (γ̂ + δ̂x) ≈ (x +1)f̂x+1/f̂x,

leading to the recursive relation f̂x+1 = f̂x exp (γ̂ + δ̂x)/(x + 1), x = 1, 2, . . . , m − 1.

Since f̂0 is given, this defines the sequence {f̂x, x = 0, 1, . . . , m}. We then define our

χ2 statistic as

χ2 =
m∑

x=1

(fx − f̂x)2

f̂x

and simulations support that this has a χ2 distribution with m−2 degrees of freedom if

the regression model holds. Note that we have m unconstrained frequencies, since n =∑m
x=1 fx is random, and we lose 2 degrees of freedom due to estimating the intercept

and slope parameters. Note also that the estimate of the intercept parameter fixes

f̂1 = f1, so that the degrees of freedom are indeed only reduced by 2. This approach

has the benefit of gaining one degree of freedom when compared to a goodness-of-fit

measure based solely on the regression model which works with the m − 1 values ŷx,

x = 1, ..., m − 1.



estimate ex post facto. Bunge and Barger (2008) propose a goodness-of-fit criterion

for selecting m, while the coverage-based nonparametric methods of Chao and co-

authors fix m heuristically at 10 (see Chao and Bunge, 2002). Our weighted linear

regression approach also has the potential for loss of fit as m increases, depending on

the realized structure of the data, and again we can fix m and collapse all frequencies

greater than this threshold to one value. Sensitivity of the various methods to the

choice of m is a complex topic (Bunge and Barger (2008) compute all estimates at all

possible values of m); however, our data analyses below show that the the weighted

linear regression model is considerably less sensitive to m than its chief competitors

in the negative binomial case, namely ML and the Chao-Bunge estimator.

Finally we note that in the ML approach, if the negative binomial fit is less than

ideal (although perhaps still acceptable), numerical maximum likelihood algorithms

often do not converge, or converge to the edges of the parameter space, which in

turn distorts the apparent fit. The regression-based method described here offers

a more robust approach to parameter estimation, and appears not to be prone to

the numerical problems which arise for maximum likelihood estimation under the

negative binomial model. In fact, the negative binomial parameter estimates (p̂, k̂)

derived from the regression model could be used as starting values for a numerical

search for the ML estimates. This is a topic for further research.
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5 Alternative estimators, data analyses, and dis-

cussion

5.1 Alternative estimators

We first consider certain other options for the negative binomial model.

• Maximum likelihood. This approach is well-studied and has a long history (see

Bunge and Barger (2008)), but as noted above, good numerical solutions for the

model parameters (p, k) seem to be remarkably difficult to obtain, even using

reasonably sophisticated search algorithms with high-precision settings. In our

experience we get good numerical convergence only when the frequency data is

smooth and fits the negative binomial well, or when the right-hand tail is fairly

severely truncated. The latter issue causes the additional computational burden

of investigating many truncation points, each involving numerical optimization.

Nonetheless we can obtain ML results for the negative binomial in some cases.

The ML estimator N̂ML is consistent for N given that the model is correct.

• Chao-Bunge. Let τ denote the probability of observing a unit at least twice, i.e.,

τ = 1 − p0 − p1. Chao and Bunge (2002) developed a nonparametric estimator

τ̂ for τ , and on this basis proposed the estimator

N̂CB :=
m∑

j=2

fj

τ̂

for N . They showed that N̂CB is consistent for N under the negative binomial

model. However, in applied data analysis τ̂ may be very small or even negative,
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leading to very large or negative values of N̂CB. This is one reason why Chao

and Bunge set m = 10 (as noted above). In fact N̂CB fails roughly as often as

N̂ML, although not necessarily in the same situations.

• Chao (1987, 1989) proposed the nonparametric statistic

N̂Ch = n +
f 2

1

2f2

,



Table 7: Data analyses. N̂ = weighted linear regression model; N̂ML = negative
binomial maximum likelihood estimate; N̂CB = Chao-Bunge estimator; N̂Ch = Chao
lower bound; SE = standard error; p = p-value from χ2 goodness-of-fit test; * =
estimation failed.

study N̂ SE p N̂ML SE p N̂CB SE N̂Ch

Meth. 61,133 17,088.8 0.000 * * * * * 33,090
Polyps – low 495 37.15 0.340 892 342.3 0.619 668 141.4 458
Polyps – high 513 52.0 0.001 587 77.2 0.010 584 72.0 511



Figure 3: Residual plot (fx − f̂x)/

√
f̂x versus x for both treatment groups in the

adenomatous polyps data set
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way or risk the severe downward bias of procedures based on the assumption of

homogeneity, that is, on “pure” binomial or Poisson models. Since the time of Fisher

et al. (1943) considerable success has been achieved using mixed-Poisson models with



model to data, and that it gives us a view of a new and little-known territory for

exploring the robustness and extensions of that model.

6 Appendix

6.1 Comparative simulation study

We begin with one further extension. The suggested weighted linear regression

estimator N̂ depends on a first-order Taylor approximation which might not be

good for larger values of x. One might consider a second-order approximation,

but this leads to an estimator with large variance due to the functional relation-

ship of x and x2. An alternative linear approximation is possible by developing

log(k + x) = log((k − 1) + (x + 1)) linearly around x + 1 leading to the approximation

log(x + 1) + (k − 1)/(x + 1)

and the regression model

log

(
(x + 1)fx+1

fx

)
− log(x + 1) = γ′ + δ′/(x + 1) + εx. (6)

We call this the hyperbolic model (HM). The hyperbolic model is also of very simple

structure and prediction is possible since the model is defined for x = 0 leading to

f̂0 = f1/ exp(γ̂′ + δ̂′). We denote the estimator based on this model by N̂HM .

In the following simulation comparison, then, we compare N̂ , N̂HM , N̂CB and

N̂Ch. We generated counts from a negative binomial distribution with dispersion
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parameters equal to 1, 2, 4, 6, and 10 and event probability parameter such that the

associated mean matches 1. The population sizes to be estimated were N = 100 and

N = 1, 000. For each simulated data set f0, f1, . . . , fm were generated; then f0 was

ignored and f1, . . . , fm were used to compute the various estimators. This process was

repeated 1,000 times and bias, variance and MSE were calculated from the resulting

values. The results are shown in Table 10. Clearly N̂ performs better than N̂HM

since the former always has smaller MSE than the latter. In fact, there is only once

case in which N̂HM had smaller bias than N̂ , namely N = 1000 and k = 1, 2 and

the smaller bias here was balanced by the smaller variance of N̂ . Hence, we do not

consider N̂HM any further. We see in addition that N̂ and N̂CB overestimate the true

size N = 100 whereas N̂Ch tends to underestimate. We need to point out that N̂CB

produced many negative values so its bias and RMSE were evaluated on the basis of

the positive values. The bias of N̂ is smaller than that of N̂CB, and the same size

that of N̂Ch. Also, the RMSE of N̂CB is a lot larger than that of N̂ . The situation

changes for N = 1, 000. In this case both the bias and MSE for N̂ are lower than

those from N̂Ch for every value k of the dispersion parameter. We notice, however,

that N̂CB shows a reduced bias, but the RMSE of the N̂ is still smaller. Overall, we

find that N̂ and N̂CB are behaving somewhat similarly for larger population sizes;

however, a major benefit of N̂ is that it is well-defined in the many situations where

N̂CB fails.

6.2 Standard errors

In Tables 9 and 10 we compare the standard error calculated from (3) with the

true standard error. This was done by taking 10, 000 replications of N̂ , say N̂i, i =

27



Table 8: RMSE and Bias for estimators based upon the WLRM, the HM, the Chao-
Bunge estimator and the lower bound estimator of Chao, N = 100 and N = 1000,
k = 1, 2, 4, 6, 10, where k



1, ..., 10, 000. Then the mean (1/10, 000)
∑

i V̂ ar(N̂i) was computed and the root

of it forms column 2 in the tables. The third column was constructed by simply

computing the empirical standard deviation of N̂i, i = 1, ..., 10, 000. We see that the

approximation is good for larger values of N and reasonable for smaller values of N .

Table 9: Estimated (using (3)) and true standard error for WLRM estimator N̂ ;
N = 100 and N = 1, 000, k = 1, 2, 4, 6, 10,



Table 10: Estimated (using (3)) and true standard error for WLRM estimator N̂ ;
N = 100 and N = 1, 000, k = 7, 8, 9, 11, p = 0.8; Results are based on 10, 000
replications

k Ŝ.E.(N̂) true S.E.(N̂)
N=100

7 12.20 11.80
8 9.29 8.96
9 7.45 7.35
11 5.03 4.99

N=1000
7 30.52 31.67
8 24.43 25.46
9 20.05 20.71
11 14.02 14.59

6.3 Dependence of estimators on the truncation point



Table 11: Dependence of the weighted least-squares N̂ and the Chao-Bunge estimator
on the truncation point, compared for all datasets

polyps – low polyps – hi butterflies microbial
m WLRM C-B WLRM C-B WLRM C-B WLRM C-B
3 609 411 881 446 754 682 767 266
4 525 440 620 459 744 696 364 492
5 509 471 542 472 776 715 364 492
6 523 524 513 482 759 727 364 -240
7 519 596 512 497
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