Department of Mathematics

Preprint MPS_2010-20 4 May 2010

Flow-Dependent Balance Conditions for Incremental Data Assimilation: Elliptic Operators

by

S.J. Fletcher, N.K. Nichols and I. Roulstone

b (L op. cit

v v v fi

2.1,

fi

2.2,

v v b

v v b

v v b

v v b

v v b

fi

v v b

v v b

v v b

v v b

v v b

$$r r^2 ; (1)$$

$$r r^2$$
; (1b)

3.2
$$u_{g} = \frac{g}{af} \stackrel{eh}{=} : \qquad v_{g} = \frac{g}{af} \stackrel{eh}{=} : \qquad (1)$$

$$u_{g} = \frac{g}{af} \stackrel{eh}{=} : \qquad v_{g} = \frac{g}{af} \stackrel{eh}{=} : \qquad (1)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$u^{b} = u_{g} = \frac{f}{f} \left(\underbrace{u_{g}}_{a} \stackrel{ev_{g}}{=} + \underbrace{v_{g}}_{a} \stackrel{ev_{g}}{=} + \underbrace{u_{g}}_{a} u_{g}^{2} \right) : \qquad (1)$$

$$v^{b} = v_{g} + \frac{f}{f} \left(\underbrace{u_{g}}_{a} \stackrel{eu_{g}}{=} + \underbrace{v_{g}}_{a} \stackrel{eu_{g}}{=} - \underbrace{u_{g}}_{a} u_{g}^{2} \right) : \qquad (1)$$

$$v^{b} = \underbrace{\frac{g}{af} \stackrel{eh}{=} \frac{g^{2}}{a^{3}f^{3}} - \left(\stackrel{eh}{=} \stackrel{e^{2}h}{=} - \stackrel{eh}{=} \stackrel{e^{2}h}{=} - \stackrel{eh}{=} \stackrel{e^{2}h}{=} - \frac{eh}{=} - \frac{eh}{=$$

$$b = \frac{g}{f}r^{2}h + \frac{g}{f^{2}a^{2}}\frac{\partial h}{\partial e} + \frac{2g^{2}}{f^{3}a^{4}}\frac{\partial h}{\partial e} + \frac{2g^{2}}{\partial e}\left(\left(\frac{\partial^{2}h}{\partial e}\right)^{2}\right)$$

$$= \frac{\partial^{2}h}{\partial e^{2}h}\frac{\partial^{2}h}{\partial e^{2}} + 2 \qquad \frac{\partial^{2}h}{\partial e}\frac{\partial^{2}h}{\partial e} + 2 \qquad \left(\frac{\partial^{2}h}{\partial e}\right)^{2}$$

$$+ \qquad \frac{\partial^{2}h}{\partial e}\frac{\partial^{2}h}{\partial e^{2}}$$

$$+ \qquad \frac{1}{2}\left(\left(\frac{\partial^{2}h}{\partial e}\right)^{2} + 2 \qquad \left(\frac{\partial^{2}h}{\partial e}\right)^{2}\right)$$

$$+ \qquad \frac{1}{2}\left(2\frac{\partial^{2}h}{\partial e}\frac{\partial^{2}h}{\partial e^{2}} + 2\frac{\partial^{2}h}{\partial e}\frac{\partial^{2}h}{\partial e} + 2 \qquad \left(\frac{\partial^{2}h}{\partial e}\right)^{2}\right)$$

$$+ \qquad 2\frac{1}{f}\left(\frac{\partial^{2}h}{\partial e}\right)^{2} \qquad 2 \qquad \left(\frac{\partial^{2}h}{\partial e}\right)^{2}\right)$$

$$= \qquad \frac{1}{2f}\frac{\partial^{2}e}{\partial e}\left(\frac{\partial^{2}h}{\partial e}\right)^{2}\right)$$

$$= \qquad (1)$$

$$\frac{e^2h}{e^2}; \qquad \frac{e^2h}{e^2}; \qquad \frac{e^2h}{e^2}; \qquad \frac{e^2h}{e^2e}; \qquad (22)$$
ffi. A, B, C, D $E : (21)$ v $f : (;;h;p;q),$
 $p = eh = e : (1)$ (20) e $f : (21)$

$$(1), \qquad (20), \qquad (30), \qquad (30),$$

$$h^{0} \qquad h^{0} \qquad h^{0$$

@h

4.2

iff
$$b$$
, B_u . b , w b w b w b B_u $\frac{P}{gh} - \frac{L_R}{L}$; ()

ffi • (s^{-6}) 1 2 10^{-14} : 1 10^{-16} : 10^{-18} 2: : 2 10 ¹⁶ 10^{-14} 2:2 $: 2 \quad 10^{18}$:1 1: 2 10 18 10^{-15} 1: 10^{-16} 1: 2 10 ¹⁶ 10^{-15} : 10 ¹⁸

 h_1 $/_{:1}$ 1^0 . If $1 2^{\bullet}$ 1^{\bullet} . If $1 1^{\bullet}$. If $1 2^{\bullet}$

ı	b	-	,	-	, r		ffi › · ·	AC F	
-		ffi ›	(s ⁶)		1		2		
		$\frac{g^2f^2}{\bar{h}^2}$	2	:	10 11	2:	10 14	:11	10 14
		$\frac{g^2f^2}{\bar{h}^2}$	$\frac{\mathscr{Q}u_g}{\mathscr{Q}_1}$	<i>h</i> 11					

PB 13(i.56.15 6.74 Td[(@)]TJ /F8 99 T22)1.1388.0 Td4.882μ4[(8960[(2674 Tf 5.75[.875TJ /F8 9.963 Tf 6.1363 T60[(-40 Td6.0


```
Fib., 1 2. Methods of Mathematical Physics, Vol 2.
       . L. , F.- . | b | w | w | w | x | x |
        . J. Atmos. Sci., 59, 1 0-1 .
    , . 200 . Fi
  ▶ , . . 1 . Partial Di erential Equations.
{\mathbb F} {\mathfrak h} , . . . 1 . b {\mathfrak h} {\mathfrak h} - {\mathbb F} {\mathfrak v} . {\mathcal Q}. J. R. Meteorol.
Soc. 99 2 . . .
\mathcal{P}, \mathcal{P}, \mathcal{P}, \mathcal{P}
      . J. Atmos. Sci., 25, 2 -2 .
   , . . 1 .
           3
J. Atmos. Sci., 54, - .
L , . . 200 . v .
Q. J. R. Meteorol. Soc. 129, 1 - .
. Q. J. R. Meteorol. Soc. 126, 2 1-012.
   , . . 1 . , <sub>v</sub> , , , , ,
-10.1002/ j. 2
  orol. Soc. 66, 121. 12,
              \dot{\rho} , 1 1. \dot{\rho} , J Atmos. Sci.
48 21 . 21 .
```

