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Abstract

Numerical weather prediction (NWP) centres use numerical models of the
atmospheric flow to forecast future weather states from an estimate of the
current state. Variational data assimilation (VAR) is used commonly to de-
termine an optimal state estimate that miminizes the errors between obser-
vations of the dynamical system and model predictions of the flow. The rate
of convergence of the VAR scheme and the sensitivity of the solution to er-
rors are dependent on the condition number of the Hessian of the variational
least-squares objective function. The traditional formulation of VAR is ill-
conditioned and hence leads to slow convergence and an inaccurate solution.
In practice, operational NWP centres precondition the system via a control
variable transform to reduce the condition number of the Hessian. In this
paper we investigate the conditioning of VAR for a single, periodic, spatially-
distributed state variable. We present theoretical bounds on the condition
number of the original and preconditioned Hessians and hence establish the



1. Introduction

Variational data assimilation (VAR) is popularly used in numerical weather
and ocean forecasting to combine observations with a model forecast in order
to produce a ‘best’ estimate of the current state of the system and enable
accurate prediction of future states. The estimate minimizes a weighted non-
linear least-squares measure of the error between the model forecast and the
available observations and is found using an iterative optimization algorithm.
Under certain statistical assumptions the solution to the variational data as-
similation problem, known as the analysis , yields the maximum a posteriori
Bayesian estimate of the state of the system [7].

In practice an incremental version of VAR is implemented in many oper-
ational centres, including the Met Office [11] and the European Centre for
Medium-Range Weather Forecasting (ECMWF) [10]. This method solves
a sequence of linear approximations to the nonlinear least-squares problem



of the error correlation structure can be analysed using the same theory. We
consider three questions: how does the condition number of the Hessian de-
pend on the length-scale in the correlation structures; how does the variance
of the observation errors affect the conditioning of the Hessian; and how does
the distance between observations, or density of the observations, affect the
conditioning of the Hessian.

In the next section we introduce the incremental variational assimilation
method. In Section 3 we derive bounds on the conditioning of the problem
and examine our three questions. In Section 4 we present experimental results
obtained using the Met Office Unified Model supporting the theory and in
Section 5 we summarize the conclusions. In this paper we present results
only for the 3D-variational method, but our techniques can be extended to
the 4D-variational scheme and will be discussed in a subsequent paper.

2. Variational Data Assimilation

The aim of the variational assimilation problem is to find an optimal
estimate for the initial state of the system x0 (the analysis) at time t0
given a prior estimate xb

0 (the background) and observations yi at times ti ,
subject to the nonlinear forecast model given by

xi = M(ti, ti−1,xi−1), (1)

yi = Hi(xi) + δi, (2)

for i = 0, . . . , n . Here M and Hi denote the evolution and observation
operators of the system. The errors (x0 − xb

0) in the background and the
errors δi in the observations are assumed to be random with mean zero and
covariance matrices B and Ri ,



In practice, to improve the computational efficiency of the variational
assimilation procedure, a sequence of linear approximations to the nonlinear



3. Conditioning of the Assimilation Problem

A measure of the accuracy and efficiency with which the data assimilation
problem can be solved is given by the condition number of the Hessian matrix

A = (B−1 + ĤT R̂−1Ĥ) (7)

of the linearized objective function (4). Our aim here is to establish ex-
plicit bounds on the condition number of A and to investigate its proper-
ties in terms of the background and observation error covariance matrices
B and R̂ .

The condition number of the Hessian, which is a square, symmetric, pos-
itive definite matrix, is defined in the L2-norm by

κ(A) = ||A||2||A−1||2 ≡
λmax(A)

λmin(A)
, (8)

where λ(A) denotes an eigenvalue of the matrix. The condition number
measures the sensitivity of the solution to the linearized least-squares problem
(4), or equivalently the solution to the gradient equation (6), to perturbations
in the data of the problem. If the condition number of the Hessian, κ(A) , is
very large, the problem is ‘ill-conditioned’ and, even for small perturbations
to the system, the relative error in the solution may be extremely large. For
the gradient methods that are commonly used to solve the problem, such
as the conjugate gradient method, the rate of convergence then may also be
very slow.

Here we consider the conditioning of the 3DVar linearized least-squares
problem in the case of a single periodic system parameter with background
error variance σ2

b and uncorrelated observation errors with variance σ2
o .

3.1. Conditioning of the background error covariance matrix

We write the background error covariance in the form B = σ2
bC , where

C denotes the correlation structure of the background errors. The condition
number κ(B) then equals the condition number κ(C) . We assume that the
correlation structure is homogeneous, where the correlations depend only
on distance between states and not position. Under these conditions the
correlation matrices used commonly in practice have a circulant structure
[4], which we exploit to obtain our theoretical bounds. For example, the
Gaussian, Markov and SOAR correlation matrices have this structure, as do
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those based on Laplacian smoothing. A circulant matrix is a special case of
a Toeplitz matrix and has the essential property that each row is a cyclic
permutation of the previous row. The eigenvalues are given simply by the
discrete Fourier transform of the first row of the matrix and the eigenvectors
are given by the discrete exponential function.

For example, we consider a Gaussian correlation structure for a one-
dimensional system parameter on a uniform grid of N points. The elements
ci,j of the correlation matrix C are then given by

ci,j = exp

(
−∆x2|i− j|2

2L2

)
(9)

for |i− j| < N/2 , and by periodicity for the remaining elements, where ∆x
is the grid step and L is the correlation length-scale. Explicit expressions
for the conditioning of C can then be derived [5]. The condition numbers
for increasing length-scale L are shown in Table 1 for a grid with step size
∆x = 0.1 and N = 500 . It can be seen that the correlation matrix becomes
highly ill-conditioned as the length-scale increases, primarily due to a rapid
reduction in its smallest eigenvalue.

Table 1: Variation of the condition number of the background error covariance matrix
with length-scale.

Length-scale 0.05 0.1 0.15 0.2 0.25 0.3
Condition number 1.74 69.5 3.32 ×104 1.87 ×108 1.24 ×1013 7.45 ×1017

3.2. Conditioning of the Hessian

We write the observational error covariance matrix in the form R = σ2
oIp ,

where p is the number of observations. We assume that the observations
are direct measurements of the state variables. Then HTH is a diagonal
matrix, where the kth diagonal element is unity if the kth state variable
is observed and is zero otherwise. Under these conditions we can prove [5]
the following bounds on the condition number of the Hessian matrix for the
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3DVar problem

κ(C)

 1 + p
N

σ2
b

σ2
o
λmin(C)

1 + p
N

σ2
b

σ2
o
λmax(C)

 ≤ κ(B−1+HTR−1H) ≤ κ(C)

(
1 +

(
σ2
b

σ2
o

)
λmin(C)

)
,

(10)
where λmax(C) and λmin(C) are the largest and smallest eigenvalues of C
respectively.

We see that with σb fixed, as σo increases and the observations become
less accurate, the upper bound on the condition number of the Hessian de-
creases and both the upper and lower bounds converge to κ(C) = κ(B) .
As σo decreases, the lower bound goes to unity and, unless σo is much
smaller than λmin(C) , the upper bound remains of order κ(B) . We ex-
pect, therefore, that the conditioning of the Hessian will be dominated by
the condition number of B as the correlation length-scales change in the
background errors. We demonstrate this in Figure 1a for the Gaussian back-
ground covariance matrix with σ2

o = σ2
b = 0.1 , N = 500 grid points and

p = 250 observations. In this case the observations have little effect on the
conditioning of the assimilation problem.

3.3. Preconditioned variational data assimilation

A well-known technique for improving the convergence of an iterative
method for solving a linear least-squares problem is to apply a linear trans-
formation to ‘precondition’ the system and thus reduce the condition number
of the Hessian [3]. The strategy used in many forecasting centres is to pre-
condition the Hessian symmetrically using the square root of the background
error covariance matrix B1/2 . The preconditioning is implemented using a
control variable transform to new variables δz = B−1/2δx0 , which are thus
uncorrelated. In terms of the new control variable the problem is to minimize

Ĵ [δz] =
1

2
[δz−(zb

0−z0)]
T [δz−(zb

0−z0)]+
1

2
(HB1/2δz−d)TR−1(HB1/2δz−d),

(11)
where zb

0 = B−1/2xb
0 and z0 = B−1/2x0. The Hessian of the preconditioned

objective function is now given by

I + B1/2HTR−1HB1/2. (12)

In general there are fewer observations than states of the system and therefore
the matrix B1/2HTR−1HB1/2 is not of full rank, but is positive semi-definite.
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the coefficients ci,j of the correlation matrix C are expected to decrease as
the distance |i−j| increases. The upper bound given by (13) on the condition
number of the preconditioned Hessian takes the form 1 + maxi∈J

∑
j∈J |ci,j| ,

where J is the set of indices of the variables that are observed. We therefore
expect the conditioning of the problem to decrease as the separation of the
observations increases or as the density decreases.

In the case of only two observations at positions k and m , for example,
we find that the condition number of the preconditioned Hessian is exactly
equal to

λmax(I + B1/2HTR−1HB1/2) = 1 +
σ2
b

σ2
o
(1 + |ck,m|)

and the conditioning changes in proportion to the background error corre-
lations. In the Gaussian case, as the points get further apart the condition
number decays exponentially, as shown in Figure 2.
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Figure 2: Conditioning of the preconditioned Hessian for two observations as the grid-point
separation is increased.

4. Numerical Experiments with the Met Office Unified Model

In order to demonstrate the theoretical results in an operational system
we show results obtained using the Unified Model of the Met Office. The
Met Office incremental 3DVar system [9] is run for one outer loop at a spa-
tial resolution of N108 (approximately 1.46×1.11 degrees) for both the inner
and outer loops. The operational configuration of the Met Office data as-
similation system already includes a preconditioning by the square root of
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the background error covariance matrix and so the objective function is of
the form given by (11), with Hessian of the form (12). Thus, as explained
in Section 3.3, the smallest eigenvalue is unity and the condition number
is equal to the largest eigenvalue. This eigenvalue is calculated during the
minimization process by a Lanczos algorithm.

We first investigate the effect of the observation error variance on the con-
ditioning of the 3DVar assimilation problem. We define a set of 16 pseudo-
observations of pressure at the lowest model level, arranged in a 4× 4 square
over the UK with a constant spacing between observations in the latitudi-
nal and longitudinal directions. Since the objective function is specified in
the incremental formulation (11), the pseudo-observations are defined by the
innovations d rather than the actual observations. The value of these ob-
served innovations are taken to be 1 Pa. The 3DVar assimilation is then run
using these observations with different values for the observation error vari-
ance. The condition number of the Hessian for these different experiments
is shown in Table 2. We see that as the observations become more accurate
the condition number of the problem increases. This supports the theory of
Sections 3.2–3.3, which shows that the bound on the condition number is
inversely proportional to the observation error variance.

Table 2: Variation of condition number with observation error variance.

Observation error variance 0.01 0.25 0.5 1 2
Condition number 15,153,612 606,145 303,062 151,537 75,771

Next we investigate the effect of observation density on the conditioning.
We again define a set of 16 pseudo-observations of pressure on model grid
points as in the previous experiment. With a spacing of one grid step between
observations, the condition number of the Hessian is found to be 151,537.
When the spacing between observations is increased to two grid steps then
the condition number falls to 115,355. A further spread of the observations, to
a 15-grid-point spacing, results in an even lower condition number of 24,434.
Thus the pseudo-observation experiment confirms the theory of Section 3.4
that the condition number of the Hessian decreases as the observations are
spread further apart.

Finally, in order to investigate further the effect of observation density,
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