Department of Mathematics

Preprint MPS_2010_15
21 April 2010

State estimation using model order reduction for unstable systems

by

C. Boess, A.S. Lawless, N.K. Nichols, A. Bunse-Gerstner

State estimation using model order reduction for unstable systems

 $^aDepartment\ of\ Mathematics,\ University\ of\ Reading,\ UK$ $^bZeTeM,\ Universitaet\ Bremen,\ Germany$

a ca . Da a a a a ca d d . . I

c b b a a da a a ca d d I

d c - d a a a a da a a da a b

d a b a b

 $(x) = f(x)^T f(x); (1)$

F a^{\bullet} , a a d $(k)^{\bullet}$ d . \checkmark . W c \bullet d a - a a a a

$$S: \left\{ \begin{array}{ll} X_{i+1} & = & M \ X_i; \\ d_i & = & H \ X_i; \end{array} \right.$$
 (6)

a ' (5), c ' a a c ' M a d H a a - a ' $M_{i+1;i}$ a d H_i d M_i d M

$$T: \mathbb{C} \to \mathbb{R}^{p-m};$$
 (7)

$$z \mapsto T(z) := H(zI - M)^{-1} B_0^{\frac{1}{2}}$$
: (8)

T (6) a abl, ... a fidation fidation ablance of ablance of ablance are ablanced abla

$$S: \left\{ \begin{array}{ccc} \hat{X}_{i+1} &=& U^T M V \ \hat{X}_i; \\ \hat{d}_i &=& H V \ \hat{X}_i; \end{array} \right. \tag{9}$$

d d a c $\hat{x}_i = U^T x_i \in \mathbb{R}^r$, $r \ll n$, a a d d d d d $r \ll n$ a $r \ll n$ b d d $r \ll n$ c $r \ll n$ a $r \ll n$ b d

$$||T - \hat{T}||_{h_{\infty,\alpha}} \le 2($$

$$F: \mathbb{C} \to \mathbb{R}^{m \ p} \quad \text{a} \quad \stackrel{\bullet}{\longleftarrow} \quad \text{c} \quad \text{c} \quad \text{c} \quad \stackrel{\bullet}{\longrightarrow} \quad \text{d} \quad \text{d}$$

$$T = \frac{1}{2}H(zI - \frac{1}{2}M)^{-1}B_0^{\frac{1}{2}};$$

d Ga A-N c d . A a d d c d a d a d A a d A ba c c a d a d A d A a d A ba c A a d A d A ba c A a d A d A a d A ba c A a d A d A a c A d A a c A d A ba c A a d A d A ba c A a c A d A d A ba c A a c A d A d A ba c A a c A d A d A ba c A a c A ba c A a c A a c A b c A a c A a c A b c A a c A a c A b c A a

$$\frac{\mathscr{Q}^2}{\mathscr{Q}_{\boldsymbol{X}^2}} + \frac{\mathscr{Q}^2}{\mathscr{Q}_{\boldsymbol{Z}^2}} = 0; \qquad z \in [-\frac{1}{2}; \frac{1}{2}]; \ \boldsymbol{X} \in [0; \boldsymbol{X}]; \tag{13}$$

da c d 🍎 b

$$\frac{\mathscr{Q}}{\mathscr{Q}_Z} = b; \qquad z = \pm \frac{1}{2}; \ x \in [0; X]:$$
 (14)

a^{*} d ^{*}c b d b

$$\left(\frac{\mathscr{Q}}{\mathscr{Q}t} + Z\frac{\mathscr{Q}}{\mathscr{Q}_X}\right)b = \frac{\mathscr{Q}}{\mathscr{Q}_X}; \qquad z = \pm \frac{1}{2}; \ X \in [0; X]: \tag{15}$$

The analogous date of the control o

Figure 1: Comparison of low resolution (dotted line with triangles), standard balanced truncation (dashtione

е

10 d $\stackrel{\bullet}{\bullet}$ a $\stackrel{\bullet}{\bullet}$ d acc a.

(a) Solution on upper boundary

(b) Error on upper boundary

Figure 2: Comparison of low resolution (dotted line with triangles), standard balanced truncation (dashed line with circles) and α -bounded balanced truncation (solid line with stars) approximations to the buoyancy on the upper boundary

c c. f). I c f a dad base c d f ca f d (F f 4(a), c c. f ca absolute a c f a dad base c d f

a da da bd c a db da dd a dd a a da a a a a a a ca a bd c d a bd a dd a b**1** ** **1** d * **5** a a a Ga A-N c d . Eac A a d d d c a a a d a a a b a b c a a d a a a, a a d A(TLM). T TLM d d d c d. a A a adab afi d. Tacaa adab afi d. Tacaa ada ada ada daalaada. Uada TLM aadb ada adaa. I a a d d a d d c d b d d ba c d ca a b d d b a b a aab TLM
d c c c c a d d a a TLM

d c c c c a d d a a TLM

i ca b a d d d d

b a b a d d d d

i c a c a

T $^{\bullet}$ / a^{\bullet} d a b NERC Na a C . Ea Ob $^{\bullet}$ a .

- [2] La \longrightarrow AS, G a S, N c \longrightarrow NK. A a a d \longrightarrow a a dda a a \longrightarrow . I J. N ca \longrightarrow M d F \longrightarrow 2005;47:1129 35.
- [3] B $\stackrel{\bullet}{\bullet}$ C. U $\stackrel{\bullet}{\bullet}$ d d c c $\stackrel{\hat{\downarrow}}{\bullet}$ c a $\stackrel{\hat{\downarrow}}{\bullet}$ D c a $\stackrel{\bullet}{\bullet}$ 4D-Va d. P .D. $\stackrel{\bullet}{\bullet}$; U $\stackrel{\bullet}{\bullet}$ a B ; 2008.
- [4] La $\mbox{\mbox{$\$

- [7] Ead ET. L $\stackrel{\bullet}{\bullet}$ a $\stackrel{\bullet}{\bullet}$ a d c c $\stackrel{\bullet}{\bullet}$ a $\stackrel{\bullet}{\bullet}$. T $\stackrel{\bullet}{\blacksquare}$ 1949;1:33 52.
- [8] J C, H BJ, N c NK. A 6 c c 4D-Va : F a d Q J R M S c 2005;131:1 19.