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Abstract

The problem of state estimation occurs in many applications of fluid flow.
For example, to produce a reliable weather forecast it is essential to find
the best possible estimate of the true state of the atmosphere. To find this
best estimate a nonlinear least squares problem has to be solved subject to
dynamical system constraints. Usually this is solved iteratively by an approx-
imate Gauss-Newton method where the underlying discrete linear system is
in general unstable. In this paper we propose a new method for deriving low
order approximations to the problem based on a recently developed model
reduction method for unstable systems. To illustrate the theoretical results,



a forecast. Data assimilation techniques aim to find this best estimate by
combining observational data with a numerical model of the system. In the
popular technique of four-dimensional variational data assimilation (4D-Var)
the assimilation problem is posed as a large nonlinear least squares problem
of the form

min
x

ϕ(x) = f(x)T f(x), (1)

where the function f(x) includes the nonlinear forecast model. This is often
solved by applying a few iterations of an approximate Gauss-Newton method,
in an algorithm known as incremental 4D-Var [1, 2]. We note that in order
to apply such a method we need the Jacobian of the function f(x) and
hence the Jacobian of the nonlinear forecast model, which is referred to
as the tangent linear model (TLM). Significant properties of the numerical
prediction models are their large dimensions and their unstable behaviour.
Instability in the TLM arises where the underlying nonlinear forecast model
is linearly unstable over a finite time interval. This motivates the necessity
to be able to approximate large unstable models by low order systems.

A commonly used approach to reduce the complexity of the problem
(1) is to approximate the full TLM by a linearized model at low spatial
resolution. Whilst this leads to an algorithm that is practical to compute





In practice, the nonlinear least squares problem (1) with f as defined in
(2) can be solved by applying the Gauss-Newton method. This is an iterative
algorithm that minimizes in each iteration step (k) the linear least squares
function

ϕ̃(δx
(k)
0 ) = ‖Jf δx

(k)
0 + f(x

(k)
0 )‖2

2, (3)

where Jf denotes the Jacobian of f . The new iterate is then defined as

x
(k+1)
0 = x

(k)
0 + δx

(k)
0 . It follows from (2) that the Jacobian Jf is given by
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with linearized observation and model matrices Hi :=
@hi

@xi
(x

( +



For ease of notation the iteration index (k) is omitted in the following. We
consider a time-invariant approximation

S :

{
δxi+1 = Mδxi,
di = Hδxi,

(6)

to the linear system (5), where the constant matrices M and H are approx-
imations to the time-varying operators Mi+1;i and Hi over the time window

[t0, tN ]. The initial state δx0 = B
1
2
0 ω is a normally distributed random vari-

able with mean zero and covariance matrix B0 ∈ Rn�n, where ω ∼ N (0, I).
The transfer function T of the system (6) is a complex matrix valued

function describing the behaviour of the system in frequency domain. It is
defined as

T : C → Rp�m, (7)

z 7→ T (z) := H(zI − M)�1B
1
2
0 . (8)

The system (6) is in general unstable, i.e. the eigenvalues of the system
matrix M may lie outside as well as inside the unit circle. To be able to find
low order approximations to (6) we need a reliable model reduction technique
for unstable systems. The method of α-bounded balanced truncation has
recently been developed [6] for α-bounded systems, i.e. for systems where all
eigenvalues of the system matrix M lie in a circle around the origin with real
positive radius α. For any regular unstable system S it is possible to find
such an α. The α-bounded balanced truncation then computes restriction
and prolongation matrices U and V , respectively, such that the projected
system,

Ŝ :

{
δx̂i+1 = UT MV δx̂i,

d̂i = HV δx̂i,
(9)

with low order state vector δx̂i = UT δxi ∈ Rr,



F : C → Rm�p that is holomorphic in the complement of the circle around
the origin with radius α and, therefore, for α-bounded systems. The scalars
σ

(�)
r+1, . . . , σ

(�)
n are the Hankel singular values of the α-scaled system S�, given

by the transfer function

T� =
1

α
H(zI − 1

α
M)�1B

1
2
0 ,



system inside the Gauss-Newton procedure. As a test model we consider a
two dimensional Eady model in the x−z plane – a simple model of baroclinic
instability, which is the dominant mechanism for the growth of storms at
mid-latitudes.

4.1. Experimental design

The nondimensional equations for the 2D Eady model [7] are now de-
scribed. The basic state is given by a linear zonal wind shear with height, z,
in a domain between two rigid horizontal boundaries, z = ±1

2
.

Following [8] it is assumed that the interior quasi-geostrophic potential
vorticity (QGPV) is zero. The initial state is given by the perturbation
buoyancy, b = b(x, z, t), on the boundaries, z = ±1

2
, at time t = 0. This

is used to calculate the corresponding perturbation geostrophic stream func-
tion, ψ = ψ(x, z, t), which satisfies:

∂2ψ

∂x2
+

∂2ψ

∂z2
= 0, in z ∈ [−1

2
,
1

2
], x ∈ [0, X], (13)

with boundary conditions

∂ψ

∂z
= b, on z = ±1

2
, x ∈ [0, X]. (14)

Perturbations to the basic state are advected zonally by the basic shear flow
as described by the non-dimensional QG thermodynamic equation:(

∂

∂t
+ z

∂

∂x

)
b =

∂ψ

∂x
, on z = ±1

2
, x ∈ [0, X]. (15)

The spatial boundary conditions in the x-direction are taken to be periodic
such that at any time, t, and height, z, b(0, z, t) = b(X, z, t) and ψ(0, z, t) =
ψ(X, z, t). As in [8] we use dimensionless values for x, z, and t.

In the experimental studies here, the Eady model is discretized using 11
vertical levels for stream function. There are 20 grid points in the horizontal,
giving 40 degrees of freedom in the state vector b. The advection equations
are discretized using a leap-frog advection scheme. We refer to [8] for further
details. The observation matrix H is chosen such that the observations are
taken from the lower-level buoyancy only.
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we reduce the order of the system to 20, which is much smaller than the
number of unstable poles.
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Figure 1: Comparison of low resolution (dotted line with triangles), standard balanced



10 orders of magnitude more accurate.
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Figure 2: Comparison of low resolution (dotted line with triangles), standard balanced
truncation (dashed line with circles) and α-bounded balanced truncation (solid line with
stars) approximations to the buoyancy on the upper boundary

The experiments have shown the clear superiority of the α-bounded ap-
proximation technique. This benefit can be explained in part by examining
the eigenstructure of the reduced dimensional systems. With the α-bounded
method it is possible to match more of the significant eigenvalues of the full
system than is the case for the low resolution model and for the standard
balanced truncation model. Figure 3(a) shows the eigenvalues of the system
matrix of the original full order system (crosses) while Figures 3(b), 4(a) and
4(b) show the eigenvalues of the different low order approximations. The
α-bounded approximation method matches almost all of the eigenvalues of
the full order system, inside as well as outside the unit circle (see Figure 3(b),
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circles). In contrast, the standard balanced truncation method (Figure 4(a),
circles) is capable of matching only some of the eigenvalues outside the unit



best estimate of the true state of the atmosphere at the initial step of a given
time window. In the well-known 4D-Var method this is achieved by solving
a nonlinear least squares problem constrained by nonlinear model equations
that describe the evolution of the state of the atmosphere with time. In
operational weather forecasting, this complex problem is solved using an
approximate Gauss-Newton procedure. Each step of this iterative method
contains a linear least squares problem subject to linear model equations, the
tangent linear model (TLM). The TLM is deduced from a nonlinear system
and may be unstable over a finite time window. The state vectors have
very large dimension and further approximations are therefore indispensable.
Usually the TLM is approximated by using a model with a lower spatial
resolution.

In this paper we have proposed that the model reduction method of α-
bounded balanced truncation may be employed to obtain better approxima-
tions to the unstable TLM within the Gauss-Newton procedure. This model
reduction technique computes a low order approximation to the TLM while
still capturing its most important properties. It can be applied independently
of the number of unstable poles of the full order system. The existence of a
global error bound can be proved.

The proposed method is computationally expensive, however, and more
work is needed in order to make it feasible for operational systems. However,
it is possible to make the method more practical for very large systems by
using Krylov subspace techniques for finding the projections.

We have compared the α-bounded balanced truncation method with the
standard balanced truncation approach for unstable systems and with the low
resolution approximation using numerical experiments with a 2-dimensional
Eady model. The Eady model is a simple model of baroclinic instability,
which is the dominant mechanism for the growth of storms at mid-latitudes.
In the numerical experiments we demonstrate the clear superiority of the α-
bounded approximation method. It captures the dominant behaviour of the
full order system. The low order approximation of the buoyancy on the lower
and upper boundary is hardly distinguishable from the full order solution. In
the experiments performed, the error was found to be on average ten orders of
magnitude smaller than the errors of the other two approximation techniques.
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