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Abstract

Four-dimensional variational data assimilation (4D-Var) is used in environ-
mental prediction to estimate the state of a system from measurements.
When 4D-Var is applied in the context of high resolution nested models,
problems may arise in the representation of spatial scales longer than the
domain of the model. In this paper we study how well 4D-Var is able to
estimate the whole range of spatial scales present in nested models. Using
a model of the one-dimensional advection-diffusion equation we show that
small spatial scales that are observed can be captured by a 4D-Var assimila-
tion, but that information in the larger scales may be degraded. We propose
a modification to 4D-Var which allows a better representation of these larger
scales.
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1. Introduction

In many applications of environmental forecasting, such as numerical
weather prediction, it is necessary to estimate the current state of the system
in order to make a forecast. Usually the number of available measurements
of the system is not sufficient to define the state uniquely and so the mea-
surements are combined with a numerical model forecast, using techniques
of data assimilation, in order to provide the best estimate of the system
state. In operational numerical weather prediction a common data assim-
ilation technique is that of four-dimensional variational data assimilation
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(4D-Var). This technique formulates the assimilation problem as an opti-
mization problem over space and time, constrained by a numerical model
of the equations describing the atmospheric flow. The solution to this opti-
mization problem provides the state estimate from which a forecast can be
produced.

An important challenge in weather prediction is the improvement of our
ability to forecast small-scale localized weather systems, such as convective
storms. Such systems are often associated with severe weather events, such



to capture better the long-wave information by using our knowledge of how
such waves are aliased. Finally we draw conclusions in section 4.

2. Four-dimensional variational data assimilation

2.1. Formulation

The aim of four-dimensional data assimilation (4D-Var) is to estimate the
system state x





is commonly used in data assimilation for nested models, for example at the
Met Office [11], and it is the transform we will use in this paper. In this case
the variables �z correspond to the different wave numbers in the discrete sine
transform.

One possible problem with the use of this transform is the treatment of
waves that have a wavelength longer than the domain of the nested model. In
this case the true scale of the wave cannot be represented by the sine trans-
form and so information from such long waves will be projected onto shorter
scales by the transform. This is essentially a reverse of the classical aliasing
problem. Whereas usually aliasing is considered as the misinterpretation of
small-scale waves as larger-scale waves, here we have large-scale waves being
misinterpreted as shorter-scale waves. To illustrate this effect we define a
sine wave with wavenumber one over the periodic domain [0; 1) and calculate
its sine transform over the whole domain and then the sine transform of the
part of the wave in the nested domain [0; 0:25]. The results are shown in
Figure 1. Both transforms are calculated using 32 spatial points. We see
that for the transform over the whole domain the power is all at wavenum-
ber two. This is a property of the sine transform, in which the power of a
sine wave of wavenumber k appears at wavenumber 2k when the transform
is applied on a domain of length one. When the transform is applied on the
smaller domain there is only a quarter wavelength that fits into the domain,
which is not within the discrete spectrum on the nested model grid. In this
case we see that most of the power is projected onto wavenumber one, with
significant power also in higher wavenumbers.

Previous studies have examined different methods for treating the large
spatial scales in a nested model data assimilation using a three-dimensional
variational data assimilation scheme, a variation of 4D-Var in which the
observations are all considered to be at the same time as the background.
Within this context the authors of [1] examined the possibility of taking the
large scales completely from a parent model analysis and using the nested
model data assimilation to update only the small scales. An alternative
method that has been proposed is to constrain the large scales to be close to
those of the parent model analysis and a nested model background field by
the addition of an extra term in the objective funtion [7]. Here we examine
how the aliasing of the long waves affects their representation in a 4D-Var
scheme and propose a new modification to the data assimilation system to
allow for this.
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Figure 1: Sine transform of sine wave with wavenumber k = 1 on domain [0, 1) (left) and
on domain [0, 0.25] (right).

3. Assimilation experiments

3.1. Model

The model we use to test the 4D-Var algorithm is the one-dimensional
advection-diffusion equation,

ut + cux = �uxx; (6)

where u(x; t) is the temperature, x is the spatial coordinate, t is the time,
c ≥ 0 is the constant advection velocity, � ≥ 0 is the diffusion constant and
subscripts indicate derivatives. The equation for the parent model is defined
on the domain x ∈ (0; 1] with periodic boundary conditions.

The model is discretized using an explicit Euler scheme for the time
derivative, centred differences for the diffusion term and upwind differences
for the advection term. We define a spatial step ∆x and time step ∆t. Then
u(xj; tn) is approximated by uj,n, where for each point we have the discrete
update equation

uj,n+1 = (� + �)uj−1,n + (1 − � − 2�)uj,n + �uj+1,n; (7)
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with � = c∆t=∆x and � = �∆t=(∆x)2. The scheme is first-order in time and
space, but is close to second-order spatial accuracy when the discrete Peclet
number c∆x=� is small [6, p. 138].

For the nested model we discretize (6) on the limited domain [0:5; 1], with
the boundary conditions u(0:5; t) and u(1; t) taken from a run of the parent
model at all times t. In the interior of the domain the discretization scheme
is exactly as in the parent model, with a higher resolution spatial step ∆xH

and time step ∆tH . Close to the boundaries the nested model solution is
relaxed to the parent model solution using a Davies relaxation scheme over
a small buffer zone [5].

3.2. Experimental design

Idealised 4D-Var experiments are set up by running the model from a
known initial state, which we refer to as the true trajectory, and then gener-
ating observations from this true trajectory to use in the assimilation. The
truth is generated at a higher resolution than either the parent or nested
models, with spatial step ∆xT and time step ∆tT . For the experiments pre-



perfect analysis on the parent model grid which includes the components of
the truth uT at the initial time that can be represented on this grid, that is

uP (x; 0) = 5 sin �x + sin 2�x: (9)

To generate a background field with known covariance for the nested model,
we choose to add random noise to this field in spectral space at the nested
model resolution. We interpolate uP



error covariance matrix Σ in (5) is defined to be a diagonal matrix, in which
the first seven components are set to the true variance of the background
error, 0.25. For the higher wavenumbers there is no useful information coming
from the background, so we assume a variance of 5.0, which ensures that
the observations will be given a much greater weight than the background
at these scales. In Figure 2 we show the power spectrum of the error in the
background and the error in the analysis. For clarity we show only the lowest
and highest wavenumbers, which are the parts of the spectrum containing
the true solution.

The first thing that we notice is that the data assimilation in the nested
model is able to capture the high resolution information at wavenumber
k = 18. This wave appears in the true solution, but it cannot be resolved by
the parent model and so is set to zero in the background field. The use of the
4D-Var system with the high resolution nested model enables information at
this scale to be inferred from the observations. Further experiments show
that a necessary condition to infer this wave is that the observations are
also at the high resolution; it is not sufficient to have a high resolution data
assimilation system with only low resolution observations [2]. At the low
wavenumbers we see that the errors in the analysis are worse than those in
the background for k = 1 and 2. The large-scale information coming from
the background has been degraded during the assimilation process. Since
these wavenumbers include information from the long wave that cannot be
represented on the nested model domain, the nested assimilation does not
treat this information correctly in this case.

In general we may expect the large scales provided by the parent model
to be reasonably accurate and we would like to use the nested model assim-
ilation to improve the small scales. Hence we would ideally like the 4D-Var
scheme applied to the nested model to retain the large-scale information
from the parent model. Since we have seen that this large-scale information
is projected onto low wavenumbers by the sine transform, we may expect to
improve the analysis if we constrain the solution to be closer to the back-
ground in these low wavenumbers. To test this possibility we run the assim-
ilation experiment again, but within the matrix Σ we assume that variance
on the low wavenumber components (k theerariance
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Figure 2: Power spectrum of errors in background (black) and analysis (grey) for low
wavenumbers (left) and high wavenumbers (right) when the true error variances are used.

been much reduced with respect to the experiment using the true variances.
The wavenumber one component of the solution is now more accurate than
the background. At wavenumber k = 2 the analysis is still worse than the
background, but it is improved with respect to the first experiment. Other
choices of the variances at the low wavenumbers lead to further improve-
ments at these scales [2]. An important aspect of this experiment is that the
analysis at wavenumber k = 18 is still as accurate as in the first experiment.
Hence, by over-weighting the low wavenumbers in the background field, we
have been able to retrieve the small-scale information while retaining the
accuracy of the background in the large scales.

4. Conclusions

The development of data assimilation schemes for very high resolution
nested models is an important component of the development of future
weather prediction systems. In this paper we have analysed one particu-
lar aspect of such schemes, namely the treatment of very long waves within a
4D-Var data assimilation system. Information on large spatial scales is pro-
vided to a nested model by a larger-domain parent model and it is important
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Figure 3: As Figure 2, for the experiment in which the low wavenumbers are over-weighted
in the assimilation.

that the assimilation in the nested model does not degrade this information.
We have shown that within a nested model domain these scales are projected
onto low wavenumbers by a spectral transform. Hence the low wavenumbers
in the background contain a combination of information at scales which the
nested model can resolve and information at scales larger than the domain.
When a standard 4D-Var assimilation is performed in spectral space it is not
able to disinguish between these two sources of information. Hence the high
resolution assimilation is able to improve the estimate of the state at small
scales, but this occurs at the expense of a loss of information at the large
scales. We have proposed a modification to 4D-Var for these cases, in which
the low wavenumbers in the background are given more weight in order to
allow for the fact that they contain information on larger scales than can be
represented in the nested model. By performing the assimilation in spectral
space and over-weighting the low wave numbers, we are able to improve the
estimates of these large scales, while still keeping the same accuracy in the
smaller scales.

Previous studies reported in [1] and [7] have also used the large scales of
the parent model analysis as a constraint in the nested model analysis, in



proach of [1] enforces the large scales of the nested model to be exactly equal
to those of the parent analysis, that of [7] weakly constrains the large scales
by a combination of these scales from the parent analysis and a previous
nested model forecast. In the new approach presented here we use the large
scales from only the parent analysis as a constraint, as in the work of [1],
but they act as only a weak constraint and observations are allowed to alter
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